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Transverse acoustic spin and torque from pure spinning of objects
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Acoustic spin has been recently explored for many applications. In particular, transverse acoustic spin was
demonstrated for inhomogeneous acoustic fields. In this Letter, we show the emergence of acoustic spin and
torque in rotating acoustic objects of the same physical properties as the surrounding, to single out the effects
purely due to rotation. The spinning of a cylindrical column of air or water in the same medium possesses
intrinsic spin angular momentum, and we study the torque and force it experiences in evanescent acoustic fields.
The resulting discontinuity can thus scatter sound in unusual ways, including a negative radiation force, although
it has no imaginary part in its parameters.
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Objects that experience moving and/or spinning motion
undergo intrinsically distinct scattering signatures [1–8] and
require special treatment different from the one of objects at
rest [9–20]. For example, it was shown in Ref. [21] that a
body rotating around its axis of symmetry in a QED vacuum
spontaneously emits energy. A simple cylindrical inhomo-
geneity with finite (or infinite) conductivity is also shown to
possess a different scattering response that may be solved
by means of the instantaneous rest-frame technique [22,23].
Several promising applications were proposed with spinning
building blocks, e.g., waveguide rotation sensor systems [8] or
gyroscopes [24,25]. In the same vein, Censor et al. analyzed
the governing equations of pressure waves (acoustics) [26]
in moving or rotating media, and showed that an equivalent
wave equation may be derived [27]. The same analysis was
extended to elastic waves in solids [28,29]. More recently, this
formalism was used to investigate the possibility of a scat-
tering cancellation technique for spinning cylindrical acoustic
objects [30] or analyzing [31,32] metamaterials with spinning
components [33].

In a different context, Anhäuser et al. proposed quantita-
tively the transfer of acoustic orbital angular momentum to an
absorbing millimeter-sized object, that resulted in making it
spin [34]. Then, Bliokh et al. analyzed in detail the inherent
analogies between acoustic waves and electromagnetic waves
[35] and showed that despite the apparent scalar nature of
acoustic waves [36], several vectorial effects, such as spin
[37,38] and orbital angular momentum [39] can take place
in both frameworks. More recently, Meng et al. used an
active acoustic particle that experiences a negative radiation
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force (i.e., acoustic pulling) when excited by a single acoustic
wave [40].

In this Letter we investigate the interaction of a spinning
acoustic volume with an incident acoustic plane wave in terms
of torque, radiation, and scattering forces. We treat the scatter-
ing object by its acoustic polarizabilities in a semianalytical
way. We show that although it has no imaginary part in its
parameters, it can lead to torque and acoustic force. What is
striking is that it is possible to obtain positive and negative
radiation force. This shows its potential application in the
domain of acoustic pulling, which was previously achieved
in a different way [40] with either the active particle (nonzero
imaginary part of the density) or the composite incident signal
(two plane waves with directions making a finite angle). Our
proposal lifts these constraints and may represent a rather
easier way to implement these intriguing effects. Our work
thus considers a different avenue, that relies on the object
instead of the external source. Moreover, with this concept
we can obtain both acoustic torque and acoustic pulling force,
with the same design and by only using incident plane waves.

Consider a medium that is uniformly rotating [with the
rotation axis coinciding with êz, as schematized in Fig. 1(a)]
at angular velocity �. We formulate a coupled system, with
details shown in the Supplemental Material (SM) [41], leading
to the following wave equation (modified Helmholtz equa-
tion),
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FIG. 1. (a) Schematic view (x-y plane) of the single cylindrical
scattering particle of radius a (in gray color) lying inside a ho-
mogeneous infinitely extended medium (here air, in yellow color,
with the dashed circle meaning the domain extends to infinity) and
the incident plane wave excitation impinging on it. The acoustic
monopole scattering is due to pure spinning, resulting from expan-
sion and compression of the object. (b) Schematic representation of
the acoustic dipole scattering, resulting in oscillatory linear motion of
the object. The scales of motion in this figure are exaggerated, as in
reality the motion or expansion of the particle are only perturbations.

with γn = i(n� − ω) the rotation Doppler-shifted frequency
(see SM [41]). Equation (1) is actually a Helmholtz-like
equation, expressed in polar coordinates, with the effective
(spinning) wave number kn. When there is no spinning (i.e.,
� = 0), we can see from Eq. (2) that we recover k = ω/c. The
behavior of kn, i.e., the spinning wave number, can be found in

Ref. [30]. As the parameter γn is complex number, kn has both
propagating (real part) and damped (imaginary part) compo-
nents. Similar to the case at rest, the governing equation has to
be complemented by appropriate continuity conditions at the
physical interfaces of the problem [26]. For spinning media,
the continuity conditions must take into account the relative
movement. It can be shown that p should remain continuous
as before; however, the continuity of 1/(ρ∂r p) should be
replaced by the continuity of the normal displacement

ζr = γnvr + �vθ

γ 2
n + �2

=
(
2�2 − γ 2

n

)
∂r p − 3iγn�np/r

ρ
(
4�2 + γ 2

n

)(
�2 + γ 2

n

) . (3)

By inspection of Eq. (3), again by letting � = 0, we get the
usual continuity as acoustics at rest.

We consider the scattering problem of a spinning cylinder
of radius a under the excitation of a plane and monochromatic
acoustic wave. As illustrated in Fig. 1(a), the cylinder’s axis of
rotation is its axis of symmetry which is along the êz direction.
The expansion of the fields and the derivation of the scattering
cross section are derived in the SM [41].

By applying the continuity of p and ζr on the boundary
r = a, we can show that each scattering order is given by

ςn =
∣∣∣∣Jn(kna) Jn(k0a)
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where |M| denotes the determinant of a matrix M and with the
coefficient 
Jn expressed as
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Let us first assume that ρ = ρ0 and β = β0, to filter out the
scattering due to the inhomogeneities (i.e., ρ/ρ0 �= 1 and/or
β/β0 �= 1). Further, when k0a � 1 and kna � 1, i.e., for
acoustically small scatterers, we may derive the expressions
of ςn in a closed-form up to the order 4 in κ̃ = k0a (to simplify
the notations), i.e.,

ς0 = i
3π

4

α2

1 − α2
κ̃2 − i

πα2

32(1 − α2)2
[13 + 36α2 log(κ̃/2) − α2(5 − 36γE + 8α2 + i18π )](κ̃ )4 + O(κ̃5),

(6)

ς±1 = i
π

4

α

±2 + α
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32(2 ± α)2(1 ∓ 2α)
{−4 ± α[19 ∓ i2π (∓1 + 2α) ± 4γE (∓1 + 2α) + 2α

× (±13 + 6α ∓ 4 log 2) + 4 log 2] + 4α(∓1 + 2α) log κ̃}κ̃4 + O(κ̃5), (7)

where α = �/ω is the rotation ratio of the spinning object and γE is the Euler-Mascheroni constant. The symbol O(·) represents
a function of the same order as (·) (i.e., Landau symbol) [42]. The +,− signs in Eq. (7) correspond to the coefficient ς1 and ς−1,
respectively. Here, have to emphasize, that if α → 0, all the scattering coefficients ςn (∀n ∈ Z) converge to zero, as we have
assumed here ρ = ρ0 and β = β0.

The acoustic monopole scatters a pressure field given by [17]

p(m) = −k0c0

4
ρ0MH (1)

0 (k0r), (8)

with M the monopole strength [43] shown in Fig. 1(a). On the other hand, the acoustic dipole scatters a pressure field given by

p(d ) = −i
k2

0c0

4
ρ0(Dx cos θ + Dy sin θ )H (1)

1 (k0r), (9)
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with Dx,y the dipole terms in the x, y directions, respec-
tively. For instance, Dx cos θ + Dy sin θ just corresponds to
Dr , as p(d ) ∝ D · ∇[H (1)

0 (k0r)] [44]. The expressions given
in Eqs. (8) and (9) are reminiscent of those of the Mie de-
velopment of Eq. (8) in the SM [41], i.e., the term of order
n = 0 that is p0ς0H (1)

0 (k0r) and n = ±1, i.e., p0i(ς1eiθ +
ς−1e−iθ )H (1)

1 (k0r). Here, the monopole and dipole strength
can be related to the monopole and dipole acoustic polariz-
abilities [45], using these relations,

M = −iωβ0αm p0, Dx,y = −iβ0c0α
x,y
d p0. (10)

The monopole can be expressed as M = −4p0ς0/(k0c0ρ0),
whereas the dipole strengths are

Dx = −4

k2
0ρ0c0

(ς1 + ς−1)p0, (11)

and

Dy = −4i

k2
0ρ0c0

(ς1 − ς−1)p0. (12)

By combining Eqs. (8)–(12) we can derive the expressions of
the different polarizabilities, i.e.,

αm = −4i

k2
0

ς0, (13)

αx
d = −4i

k2
0

(ς1 + ς−1) and α
y
d = 4

k2
0

(ς1 − ς−1). (14)

It can be seen from Eqs. (13) and (14) that the polarizabil-
ities have the unit of a surface, as can be anticipated, in this
two-dimensional (2D) scenario. These equations were derived
for the most general scenario, i.e., without restrictions on the
direction of the incident velocity. In order to have an effect
due only to spinning, let us consider an incident velocity in
the y direction. For instance, when � = 0 and ρ/ρ0 �= 1 or
β/β0 �= 1, we have ςn = ς−n, so α

y
d = 0 and αx

d = −i 8
k2

0
ς1.

But, when � �= 0 and even if ρ/ρ0 = 1 and/or β/β0 = 1, we
have αx

dα
y
d �= 0, as ς1 �= ς−1, and as can be seen from Eq. (7).

By following a particle in the co-spinning frame of reference
R′, i.e., a frame that is rotating with a frequency � equal to
that of the fluid, it can be easily seen why ς−n �= ςn, as these
multipoles correspond to an angle −θ and θ , respectively.
When there is no rotation, there is an invariance with respect
to θ so both coefficients are equal. By inducing rotation, this
symmetry is broken and thus the invariance is no longer valid.

Now, using Eqs. (13) and (6), we can obtain the analyti-
cal expressions (k0a � 1) of Im(αm) and Re(αm), where we
assume here no material inhomogeneity, so k0 = k, that is

Re(αm) = 3πα2

1 − α2
a2 − πα2

8(1 − α2)2
f1(ka)k2a4 + O[(ka)3],

Im(αm) = 9π2α4

4(1 − α2)2
k2a4 + O[(ka)3], (15)

with f1(ka) = [13 − 8α4 + α2(36γE − 5) + 36α2 log ( ka
2 )].

Similarly, using Eqs. (14) and (7), we can derive the dipole

acoustic polarizability in the quasistatic limit,
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The real and imaginary parts of αm and α
y
d are given in

Fig. 2. Two scenarios are considered: First, we choose pa-
rameters such that the quasistatic approximation applies, that
is, ka � 1, a = 1 m, and �/(2π ) = 10 Hz. This scenario is
plotted in Fig. 2(a), and we can see an excellent agreement
between the numerical results [Eq. (4)] and those obtained
analytically [Eqs. (15) and (16)]. The resonant polarizabilities
(αm and α

y
d ) correspond to the poles, that can be seen in

Eqs. (15) and (16). The other scenario does not obey the
quasistatic approximation, and the parameters are hence a =
10 m and �/(2π ) = 100 Hz. In this case, the polarizabilities
undergo several oscillations reminiscent of Mie scattering.
Here, we do not see any marked resonant effect, as before.

In this study, we are interested in investigating both torque
and scattering force from spinning acoustic particles, so we
consider an inhomogeneous acoustic field in order to induce
transverse spin, that is, an evanescent acoustic field [37,38],
with its pressure and velocity expressed as

p = p0e−κx+ikyy, v = p0

ρω
(iκ, ky, 0)T e−κx+ikyy, (17)

with (·)T the transverse of a given matrix. The spin of this
inhomogeneous (evanescent) field can be shown to be S =
ρ/(2ω)Im(v∗ × v), and with Eq. (17) it is explicitly

S = −|p0|2
ρ0ω3

κkye−2κxez, (18)

and the torque due to spinning T = ω Im(αy
d )S [38] is also

explicitly

T = −|p0|2
ρ0ω2

κkye−2κx Im
(
α

y
d

)
ez. (19)

Similarly, the gradient and scattering forces are given by

Fgrad = Re(αm)∇W p + Re
(
α

y
d

)∇W v,

Fscatt = 2ω
[
Im(αm)Pp + Im

(
α

y
d

)
Pv], (20)

where we make use of [39,46]

Pp = 1

4ω
Im(β0 p∗∇p), W p = β0

4
|p|2,

Pv = 1

4ω
Im(ρ0[v∗ · ∇]v), W v = ρ0

4
|v|2.

(21)

Now, by combining Eqs. (15) and (16) (for the quasistatic
case), along with Eqs. (19) and (20), we have access to
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FIG. 2. (a) Absolute value of (top) the monopole polarizability αm and (bottom) the dipole polarizability α
y
d , in logarithmic scale (i.e.,

10 log10) vs α = �/ω. The solid lines give the numerical results of both real and imaginary parts of (αm, α
y
d ) computed with Eq. (4) and

Eqs. (13) and(14), while the dashed lines give analytical expressions obtained when k0a � 1, using Eqs. (15) and (16). The radius of the object
is a = 1 m and �/(2π ) = 10 Hz. (b) Same as in (a) but for a = 10 m and �/(2π ) = 100 Hz. Please note that in (b) the scale is linear, unlike
in (a), and that there is no analytical approximation, since k0a ≈ 1.

the torque and force (gradient and scattering) experienced
by the spinning object in the evanescent field. These re-
sults are depicted in Fig. 3(a), using the same parameters
as those of Fig. 2(a). These quantities are normalized with
T0 = −πβ0|p0|2a2/(2k0) and F0 = k0T0. Again, we find an
excellent agreement between analytical and seminumerical
results. Several resonances can be observed for Tz, F grad

y , and
F scatt

x , stemming from the resonances of the polarizabilities.
The important feature here is that an object of the same prop-
erties as the surrounding (ρ = ρ0 and β = β0) interacts with

inhomogeneous acoustic fields in an unexpected manner, as
both torque and force can be experienced by this transparent
object solely due to spinning.

The other scenario consists in using the exact value of ς0

and ς±1, by solving Eq. (4) and using them for the calcu-
lation of αm and α

y
d , and subsequently the torque and force

in a seminumerical manner [38]. Figure 3(b) gives the same
responses in a more general case that cannot be treated ana-
lytically [similar as in Fig. 2(b)]. The torque and force are here
of lower amplitude, due to the lack of resonances.

FIG. 3. (a) Logarithmic scale plot of the (top) normalized torque 10 log10(Tz/T0 ), (middle) normalized gradient force 10 log10(F grad
y /F0 ),

and (bottom) normalized scattering force 10 log10(F scatt
x /F0), vs α. The solid (dashed) lines give the numerical (analytical) calculations, for the

same object as of Fig. 2(a) and for ky/k0 = 1.2 and κ/k0 = 0.6633. The insets in these plots show the linear scale plot of these parameters
in a magnified view to showcase the regions where resonances occur and positive to negative values are obtained. (b) Same as in (a) but for
the same object of Fig. 2(b). Please note that in (b) the scale is linear, unlike in (a). The red dashed lines denote zero values of the considered
parameters.
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The important feature of Fig. 3 is that both spin and
force undergo positive/negative values for a specific spin-
ning parameter α (highlighted by the red dashed lines). For
instance, having negative force is paramount for obtaining
a pulling effect. Recently, in Ref. [40] the condition for
acoustic pulling was shown, i.e., the necessity to have either
an active particle or a composite acoustic source, e.g., two
incident waves making a finite angle. Yet, this study con-
cerned only scatterers at rest. By allowing spinning, and even
if ρ = ρ0 and β = β0, we can see that positive to negative
force and spin can be obtained in a straightforward way,
without the need for an active particle or complex incident
wave.

To sum up, scattering from spinning acoustic objects was
analytically and numerically characterized and shown to lead
to an acoustic force and torque. Such objects, when present
in evanescent acoustic fields, are shown to interact with the
transverse spin even in the extreme case in which they possess
a unit relative density and compressibility. Hence, the effects

due to purely spinning can result in a surprising interaction
of the rotating volume with the acoustic field in a way in-
trinsically different from regular static objects (i.e., ρ/ρ0 �= 1,
β/β0 �= 1, and � = 0). For instance, although the object is
lossless, it experiences a net torque which is markedly differ-
ent from objects at rest with a different impedance than the
surrounding [38]. Similarly, the spinning domain feels both
scattering and gradient forces. Several applications may result
from this investigation, in which acoustic objects undergo
rotation, e.g., for paving the way for fast acoustic communi-
cation devices [47] or Willis coupling [48].
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