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Quantum paraelectric phase of SrTiO3 from first principles
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We demonstrate how the quantum paraelectric ground state of SrTiO3 can be accessed via a microscopic ab
initio approach based on density functional theory. At low temperature the quantum fluctuations are strong
enough to stabilize the paraelectric phase even though a classical description would predict a ferroelectric
phase. We find that accounting for quantum fluctuations of the lattice and for the strong coupling between the
ferroelectric soft mode and lattice elongation is necessary to achieve quantitative agreement with experimental
frequency of the ferroelectric soft mode. The temperature dependent properties in SrTiO3 are also well captured
by the present microscopic framework.
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SrTiO3 is arguably one of the most intensively studied
materials of the perovskite family [1–7]. Under ambient
conditions SrTiO3 is an insulating paraelectric, however a
transition to the ferroelectric phase can be induced by nu-
merous mechanisms with relatively low activation energy. The
temperature-strain phase diagram of SrTiO3 is, at low temper-
atures, characterized by a very small region of paraelectricity
with a ferroelectric phase emerging for small strains [8]. With
increasing temperature the paraelectric region widens, yet,
ferroelectricity remains accessible even above room temper-
ature for high enough strain [4]. The proximity of the ambient
paraelectric phase to a ferroelectric phase in the phase diagram
is also underlined by the possibility to induce the phase tran-
sition through oxygen isotope substitution [5] or by applying
an intense laser pulse [6,7].

At low temperature (T < 0.5 K), SrTiO3 displays a strik-
ing superconductive behavior with low carrier concentration
[1,9]. Notably, this superconducting phase is characterized by
the competition of isotope oxygen doping and quantum fluc-
tuation of the transverse optical (TO) soft phonon mode. Both
compete for the formation of electron pairing and ferroelec-
tricity, a mechanism known as quantum criticality [10–12].
The microscopic details of the superconducting phase and
quantum criticality in SrTiO3 are still debated [13,14]. These
quantum fluctuations, however, play an important role even
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for the ground state, where they are decisive in a competition
between ferro- and paraelectricity.

Its low temperature paraelectric phase makes SrTiO3 stand
out among the other compounds of the ABO3 perovskites
family such as BaTiO3 and PbTiO3 [4,15–23] where, with
decreasing temperature, the polar TO phonon softens until
it turns unstable and the material becomes ferroelectric. This
phase is characterized by a double well shape of the potential
energy landscape along the coordinate of the so-called ferro-
electric soft (FES) mode, such that at zero temperature the
ground state is in a degenerate superposition of positively and
negatively polarized states, which endows the material with
an internal macroscopic polarization when the degeneracy
is lifted by spontaneous symmetry breaking. While the FES
mode of SrTiO3 displays a similar characteristic softening, it
stabilizes at low temperatures and no ferroelectricity is ob-
served. This low temperature behavior has been rationalized
in terms of quantum fluctuations that prevent the formation
of a macroscopic dipole [3]. This phenomenon of quantum
paraelectricity and has been invoked to explain the behavior
of other complex oxides [3,24–26]. A number of models
have been developed to describe the dielectric properties of
this phase, in particular the Barrett and Vendik models have
been widely used to understand quantum paraelectric behavior
[3,24,27–31]. The decisive role played by quantum fluctua-
tions for the temperature dependent competition between the
ferro- and paraelectric phases has been confirmed by quan-
tum Monte Carlo calculations with an effective Hamiltonian
for phenomenologically strained SrTiO3 [32,33] as well as
for other materials [25,26]. The quantum paraelectric phase
is therefore now widely accepted as the explanation for the
low temperature behavior of SrTiO3 [3,34,35], however the
ground state of the quantum paraelectric phase and the fre-
quency of the FES mode at low temperature have not yet been
described by a microscopic theory.
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FIG. 1. (a) Atomic geometry of SrTiO3 in the tetragonal phase. Schematic images for the eigenvector of (b) antiferrodistortive mode and
(c) ferroelectric soft mode. (d) Schematic image for the strain direction along c axis. (e) Frequency of the FES mode as a function of the lattice
parameter c predicted by DFTP within LDA, PBE, and PBEsol functionals. (f) Cuts of the PBE potential energy surface of the FES mode for
different lattice variation Qc. In (e), vertical dashed lines indicate the optimized lattice constants for each functional.

The conventional first principles method to evaluate
phonon frequencies of materials at zero temperature is density
functional perturbation theory (DFPT) [36]. In DFPT calcula-
tions, which are based on a harmonic description of the lattice,
an imaginary eigenvalue of the dynamical matrix indicates a
phonon instability that can point towards a phase transition.
However, DFPT does not include the quantum nuclear ef-
fects that are believed to stabilize the paraelectric phase in
SrTiO3 and therefore wrongly predicts an instability of the
FES mode that suggests a phase transition to ferroelectric-
ity [37–39]. This failure to describe quantum paraelectricity
and its influence on the frequency of the FES mode pre-
vents the application of standard ab initio methods to give
a microscopic explanation of recent experiments on quan-
tum criticality and THz induced ferroelectricity in SrTiO3

[6,7,10–12]. On the other hand, the quantum description of
nuclei in the ab init io molecular dynamics are investigated
based on the path integral approaches [40,41].

In this Letter, we unambiguously confirm the quantum
nuclear nature of the ground state of SrTiO3 based on DFT
calculations and show that quantum fluctuations of the FES
mode stabilize the paraelectric phase at low temperatures.
To describe the quantum behavior of the lattice dynamics,
we compute the potential energy surface obtained from DFT
and construct a lattice-nuclear Schrödinger equation. We find
that it is, indeed, not enough to only describe the FES mode
as a quantum state in a one-dimensional (1D) Schrödinger
equation, but the nonlinear coupling to the lattice needs to
be included in the quantum description. From this description
we correctly reproduce frequency of the FES mode at zero
temperature as well as the temperature dependence of the

frequency and dielectric constant in the quantum paraelectric
phase, which well agree with the experimental observations.
We furthermore show that the crystal properties obtained with
DFT strongly depend on the exchange-correlation functional
and that a correct description of both the lattice constants as
well as the atomic positions are crucial to obtain the correct
quantum paraelectric phonon energy.

Below 105 K, the crystal structure of SrTiO3 forms a
tetragonal unit cell with the oxygen octahedra rotated with
respect to the cubic cell. This rotation counteracts the forma-
tion of ferroelectricity and is hence usually referred to as an
antiferrodistortive (AFD) motion [37]. Therefore, the tetrag-
onal geometry can be described as a

√
2 × √

2 × 2 supercell
of the primitive cubic perovskite ABO3 unit cell with an addi-
tional AFD rotation, as depicted in Figs. 1(a) and 1(b). This
AFD in-plane rotation is accompanied by an elongation and a
contraction of the c and a lattice vectors relative to the cubic
structure [37]. To investigate the optimized geometry and
total energy, we perform DFT calculations using the QUAN-
TUM ESPRESSO package [42]. The projector augmented wave
method is employed to describe core level atomic orbitals and
a plane-wave basis set with 70 Ry energy cutoff is used. The
Brillouin zone is sampled with 6 × 6 × 4 k points. In Table I,
we summarize the lattice parameter a, c/a ratio, and AFD
rotation angle obtained with various DFT functionals. Com-
paring with experimental observation [43–46], local density
approximation (LDA) [47] and Perdew-Berke-Ernzerhof re-
vised for solid (PBEsol) [48] functionals provide a contracted
lattice parameter a and a higher a/c ratio with an over-
rotated AFD angle. Even though the Perdew-Berke-Ernzerhof
(PBE) [49] functional and Heyd-Scuseria-Ernzerhof (HSE06)
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TABLE I. The lattice parameter of tetragonal SrTiO3 and the
associated FES mode frequency for different functionals. The
functional-dependent lattice parameters are consistent with previ-
ously reported results [39].

LDA PBEsol PBE HSE06 Exp.

a (Å) 3.843 3.882 3.929 3.908 3.898 [43]
c/a 1.008 1.007 1.005 1.004 1.001 [44]
AFD (◦) 6.4 6.1 5.3 3.2 2.1 [45]
DFPT (THz) 2.4 −1.5 −3.9 −2.2 [39]

[50,51] hybrid functional describe elongated a and c lat-
tices with over-rotated AFD angle, these lattice parameters
are closer to experimental observations than the former two
functionals.

By performing DFPT calculations on SrTiO3 we evaluated
the FES mode energy for different functionals and found
that for the respective optimized lattice parameters (indicated
by the vertical dashed lines), the FES mode is unstable for
PBE and PBEsol but not for LDA; see Fig. 1(e) and Table I.
This indicates that LDA would predict a classical paraelec-
tric ground state in contrast with PBE and PBEsol (as well
as hybrid functionals [39,52]) predicting a phase transition.
Regardless of the functional an additional frequency soften-
ing of the FES mode is induced by the c lattice parameter
elongation. This instability can be understood by considering
the potential energy landscape of the FES mode computed
with PBE. Given the strong dependence of the DFPT results
on the lattice parameter c we calculated the potential energy
surface for variation of c from equilibrium value, denoted by
Qc, as reported in Fig. 1(f). The potential energy surface for
the FES mode is evaluated by displacing the atomic positions
along the optimized ferroelectric geometry with respect to the
optimized tetragonal geometry; we denote this parametrized
displacement as Qf . At the optimized lattice parameter, Qc =
0 Å, the potential energy surface shows a shallow double well
potential. This explains the instability found in DFPT and
why in the absence of quantum fluctuations the system would
spontaneously collapse into one of the two wells inducing
a ferroelectric polarization. Similar potential energy calcula-
tions for the LDA functional (not shown) provide a single
well dispersion and hence no phase transition is expected.
Changing Qc results in an asymmetric behavior when using
the PBE functional: for negative Qc, i.e., lattice contraction,
the double well disappears while it deepens under lattice ex-
pansion, positive Qc. This behavior explains why the phase
transition between the ferroelectric and paraelectric phases of
SrTiO3 can be easily induced by strain [4,53].

Given the shallow double well found for the FES mode
in SrTiO3, it is necessary to include quantum-nuclear effects,
namely the zero-point motions of the atoms. We restrict our
description of the lattice dynamics to the FES mode and
the lattice motion in the c direction, which we have estab-
lished above to be intimately dependent. We sample the DFT
total energy for 25 × 13 geometries along the FES mode
parametrized by Qf and the lattice expansion parametrized by
Qc. We then fit the potential energy surface; details on the

definition of the FES eigenvector and the fitting coefficients
are reported in the Supplemental Material [57].

First we solve the nuclear Schrödinger equation in 1D
(1DSE) for the FES mode along the potential energy curve for
the optimized lattice parameters (Qc = 0) [58]. The Hamilto-

nian for the 1DSE reads ĤFES
1D = P̂2

f

2M f
+ ∑6

i=1 k f ,iQ̂2i
f , where

P̂f and M f = 1.76 × 10−25 kg are the momentum opera-
tor and the FES phonon mass, respectively and k f ,i are
the coefficients that parametrize the DFT potential energy
surface. While for a ferroelectric one would expect a dou-
ble degenerate ground state in the double well potential,
the diagonalization of the 1DSE provides a nondegenerated
ground (ψ0) and first excited (ψ1) state, which are depicted in
Fig. 2(a). The energy difference between the first excited and
the ground state (h̄ω = ε1 − ε0) can be identified as the FES
phonon frequency; the values are summarized in Table II for
different functionals. Except for LDA, where the quantum ef-
fects in the 1DSE entails only a frequency stiffening, the FES
frequency changes sign due to quantum fluctuations. While
a positive frequency for the FES mode correctly indicates
that the paraelectric phase is stable, the values are too high
compared to the experiments.

To obtain the correct low temperature FES mode fre-
quency, we find it is necessary to explicitly include its
coupling to the lattice mode Qc in a two-dimensional
(2D) lattice-nuclear Schrödinger equation (2DSE). The
corresponding Hamiltonian given as ĤFES,c

2D = P̂2
f /2M f +

P̂2
c /2Mc + V̂ FES,c

2D is built on the 2D potential energy surface,
as shown in Fig. 2(b) and calculated as described above in
terms of Q̂ f and Q̂c: V̂ FES,c

2D = ∑6
i=1 k f ,iQ̂2i

f + ∑5
j=2 kc, j Q̂

j
c +

∑6
i=1

∑5
j=1 k f c,i, j Q̂2i

f Q̂ j
c . The total cell mass (Mtot = ∑

i Mi =
1.22 × 10−24 kg) and Wentzcovitch-type fictitious cell mass
( 3Mtot

4π2�2/3 = 9.34 × 10−26 kg) [59] are both considered for the
mass of the lattice (Mc); we verified that the deviation of the
FES frequency due to the choice of the lattice mass is less than
5%. The ground (ψ0) and first excited states (ψ1), obtained
from the solution of the 2DSE, are depicted in Figs. 2(c) and
2(d). The characteristic node of the first excited state along
the Qf indicates that the state is of FES mode character and
hence can be used to determine the FES frequency. Similar to
the 1DSE case, the 2DSE provides nondegenerate ground and
first excited states with positive FES phonon frequencies for
all the investigated functionals, as summarized in Table II. All
FES mode frequencies become softer, when the FES-lattice
interaction is included, as compared to the values obtained by
only using the 1DSE. Importantly, the FES phonon frequen-
cies evaluated by PBE (0.44 THz) and HSE06 (0.83 THz) are
close to the experimentally measured values at low temper-
ature [54–56]. We conclude that both quantum fluctuations
and the FES-lattice interactions are crucial in determining the
frequency of the FES mode.

We then extend our microscopic approach to include the ef-
fect of finite temperatures. Experimentally it has been shown
that a flat temperature dependence of the FES mode is ex-
pected in the quantum paraelectric phase (T < 4 K), [3,34]
whereas for increasing temperatures a stiffening of the FES
mode and a drop of the dielectric function are observed
[6,34,55,56]. We first evaluate the temperature dependent
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FIG. 2. (a) Potential energy surface (V1D) and ground and first excited wave functions obtained by solving 1DSE. (b) 2D potential energy
surface (V FES,c

2D ) consists of FES mode and c lattice. (c) Ground and (d) first excited wave functions obtained by solving 2DSE.

FES frequency via ab initio molecular dynamics simulations
with a thermostat [59]. As shown in Fig. 3(a), the results
with PBE provide values which are comparable with the
experimental observations at high temperature, where the
quantum effects are overshadowed by thermal fluctuations
(see Supplemental Materials for details [57]). This indicates
that PBE provides a realistic potential energy surface and
that the effect of a slightly overestimated lattice is negli-
gible [38]. To include temperature in our quantum lattice
model we apply Kubo’s formula for the linear response of
a thermal state to a perturbation Ĥ ′(t ) = −Z∗Q̂fE (t ), where
Z∗ is the FES mode effective charge that we assume to be
temperature independent. The resulting polarizability takes
the form α(ω, T ) = −∑

i, j ρi(T )Z∗|Di j |2 × ( 1
(ε j−εi )−ω−iδ +

1
(ε j−εi )+ω+iδ ), where the dipole matrix and the thermal den-

sity matrix are defined as Di j = 〈ψi|Q̂ f |ψ j〉 and ρi(T ) =
e−(εi−ε0 )/kBT /

∑
j e−(ε j−ε0 )/kBT , respectively. The temperature

dependent frequency of the FES mode is then evaluated by av-

TABLE II. Computed frequency of the FES mode by solving a
nuclear Schrödinger equation with Wentzcovitch-type fictitious cell
mass and experimentally observed frequency of FES mode in THz
units.

THz LDA PBEsol PBE HSE06 Expt.

1DSE 4.4 2.8 1.2 1.5
2DSE 4.1 2.4 0.44 0.83
Neutron 0.53 (5 K) [54]
Hyper-Raman 0.49 (6 K) [55]

0.53 (9 K) [56]

eraging over the polarizability as ω(T ) =
∫

ω Im [α(ω,T )]dω∫
Im [α(ω,T )]dω

; the
results of this procedure with PBE are depicted in Fig. 3(a).
Even though the 2D potential only includes two degrees of
freedom (Qf and Qc), the temperature dependence behavior is
well reproduced and the typical flattening at low temperatures
(<10 K) is evident. We assigned the observed deviations of
our model from the experiment to the effect of the phonon de-
grees of freedom that are not included in the model [6,55,56].
An attempt on improving the description of our method by
including the effect of temperature on the lattice parameter
bearing no significant change to the picture is discussed in the
Supplemental Material [57].

Now, using the Lyddane-Sachs-Teller relation [60] we can
further estimate the temperature dependence of the dielectric
function as ε(T ) ∼ 1/ω(T )2 [3,34,61]. In Fig. 3(b), we com-
pare with the experimental observed dielectric constants by
fixing the value of the dielectric function at zero temperature
to the experimental one and using the temperature depen-
dent FES frequency calculated above. The characteristic flat
plateau up to 4 K and the subsequent drop in the dielectric
function is reproduced very well by our PBE calculations.
Similar calculations with LDA do not follow the correct trend,
highlighting the failure of LDA at describing the correct po-
tential energy landscape for the FES mode.

In conclusion, we investigated the low temperature quan-
tum behavior of SrTiO3 from a fully microscopic point of
view. In line with the concept of quantum paraelectricity [3],
we show that only the quantum description of the lattice pre-
dicts a stable phonon mode and hence the paraelectric phase, a
result in contrast with conventional perturbation theory, which
wrongly predicts an instability that leading to a ferroelectric
transition at low temperature. We show that, not only do the
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FIG. 3. (a) Temperature dependence of FES mode frequency obtained with PBE and experimental observations [6,55]. (b) Temperature
dependency of the estimated dielectric constant using Lyddane-Sachs-Teller relation with PBE and LDA functionals and experimental
observation [3]. In (b), the vertical dashed line is a guide for eye placed at 4 K to indicate the dielectric plateau limit.

quantum fluctuations of the FES phonon stabilize this phase,
but that the interaction between FES mode and fluctuations
of the c lattice parameter contribute to the ground state and
to the first FES eigenmode energy, therefore it is crucial to
treat these degrees of freedom on the same footing in order to
explain the dynamical properties of SrTiO3. Our DFT-based
treatment of the lattice-nuclear Schrödinger equation pro-
vides low temperature phonon frequencies in agreement with
the experimentally observed values. Combined with thermal
statistics, this treatment also reproduces the temperature de-
pendence of the frequency of the FES mode and the dielectric
constant, namely the frequency stiffening of the FES mode
with increasing temperature and the flat behavior of the dielec-
tric constant stemming from the quantum fluctuation of the
lattice. Besides providing a detailed and direct first principles
description of the FES frequency and the quantum paraelectric
ground state of SrTiO3, which has been conjectured for a long

time and thus far only been considered in the context of phase
dynamics, this work opens avenues to investigate recently
observed light induced ferroelectricity in SrTiO3 [6,7] and to
address the ground state of SrTiO3 embedded in an optical
cavity [62,63] by providing a model for the low temperature
nuclear lattice Hamiltonian.
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