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Berry phase induced entanglement of hole-spin qubits in a microwave cavity
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Hole spins localized in semiconductor structures, such as quantum dots or defects, serve in the realization of
efficient gate-tunable solid-state quantum bits. Here, we study two electrically driven spin-3/2 holes coupled
to the electromagnetic field of a microwave cavity. We show that the interplay between the non-Abelian
Berry phases generated by local time-dependent electrical fields and the shared cavity photons allows for fast
manipulation, detection, and long-range entanglement of the hole-spin qubits in the absence of any external
magnetic field. Owing to its geometrical structure, such a scheme is more robust against external noises than
conventional hole-spin qubit implementations. These results suggest that hole spins are favorable qubits for
scalable quantum computing by purely electrical means.
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Introduction. Spin-based solid-state quantum bits (qubits)
are among the most desirable platforms for implementing a
quantum processor as they are inherently scalable, they in-
teract weakly with the environments, and can be integrated
efficiently with electronics [1–11].

Electric fields, instead of the conventional magnetic fields,
are preferred for quantum manipulation as they can be applied
locally, can be made strong, and can be switched on and off
fast. Spins in solids, and specifically in semiconductors, can
experience strong spin-orbit interactions (SOIs) that allow
for coherent electrical spin control. Most of the implemen-
tations and proposals rely on the SOI mechanism facilitated
by the presence of a static magnetic field that breaks the
time-reversal symmetry. However, generating such a coupling
purely electrically, without breaking this symmetry, would be
advantageous as it would deactivate various dephasing mech-
anisms that rely on charge fluctuations, such as phonons and
gate voltage noise [12–16].

A variety of schemes that utilize the non-Abelian geometric
phase acquired by the spin qubit states in the presence of
SOI and external electrical fields have been proposed for ma-
nipulating geometrically spins in solid-state devices without
the need for an applied magnetic field [17–20]. Of particu-
lar interest are the hole-spin qubits realized in the S = 3/2
valence band of many semiconductors [17,20]. They possess
strong SOI, and the p-type character of the orbital wave
functions leads to a suppression of the hyperfine coupling to
the surrounding nuclei [21]. Experimentally, hole spins have
been under intense scrutiny recently [15,16,21–26], and a lot
of progress has been made implementing conventional one-
and two-qubit gates [25–30]. Building on the original works
by Avron et al. [31,32], in Refs. [17,20] it has been shown
explicitly how single geometrical hole-spin qubit gates [33]
can be implemented using only electrical fields. However,

*wysokinski@magtop.ifpan.edu.pl
†mtrif@magtop.ifpan.edu.pl

to the best of our knowledge, leveraging the geometry of
the hole-spin states in order to implement two-qubit gates
and create entanglement has yet to be demonstrated. Such
geometrical entanglement is potentially more robust since it is
not affected by gate timing errors and various control voltage
inaccuracies. In this Letter, we make this step and propose a
way to create entanglement between hole-spin qubits utilizing
their non-Abelian geometric structure, local electric fields,
and the photons in a microwave cavity. We show that (i)
the cavity photons become imprinted with the Berry phases
generated during the single hole-spin qubit gates, allowing for
an efficient nondestructive qubit readout, and (ii) the interplay
between photons and the non-Abelian geometry of the states
allows for long-range, entangling hole-spin qubit interactions
of a geometrical origin. Moreover, such a coupling is only
present when both qubits are electrically driven, making it
ideal for selectively coupling hole spins.

System and model Hamiltonian. We consider the system
shown in Fig. 1, which consists of two electrically driven

FIG. 1. Left: Sketch of the two-hole-spin S = 3/2 system cou-
pled to a cavity field Êc = E0(a† + a). Each of the two spins j = 1, 2
is driven by a classical time-periodic electrical field E j (t + Tj ) =
E j (t ), with Ti the corresponding period. The cavity induces a time-
dependent coupling between the two spins (blue wavy line). Right:
The evolution of one of the effective qubits in the degenerate low-
energy sector on the Bloch sphere during the adiabatic driving. Here,
s2(t ) is the instantaneous direction of the effective magnetic field
quantified by the angles θ2(t ) and φ2(t ), while in red we exemplify
one possible cyclic trajectory.
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spins 3/2 coupled to the electric field of a microwave cavity.
The minimal Hamiltonian describing the system reads [17]

Htot(t ) =
∑
j=1,2

d j[Ej,α (t ) + E0,α (a† + a) ]�α
j + ω0a†a, (1)

where d j is the spin-electric field coupling strength of spin
j = 1, 2, Ej,α (t ) and E0,α are the α = x, y, z components of
the j = 1, 2 (time-dependent) external and cavity electric
field, respectively, while a (a†) is the photon annihilation
(creation) operator, with ω0 being the bare cavity frequency.
Also, the matrices �n

j , with n ∈ {1, 5}, are the generators of
the SO(5) Clifford algebra for spin j [17,34]. The above
Hamiltonian is precisely that of Ref. [17] proposed to process
spin-3/2 valence band impurities in III-V semiconductors, but
accounting for a quantum electrical field stemming from the
cavity on top of the time-dependent classical drive. There,
the coupling to the electrical field originates from the linear
Stark effect allowed by the diamond Td symmetry, as it is the
case of acceptor spins in Si [35]. In such cases, d = eaBχ ,
with e, aB, and χ being the electron charge, the Bohr radius,
and the dimensionless dipolar parameter, respectively [36,37].
More complicated terms, such as the quadrupolar couplings
[20], can be accounted for within the same framework by
extending the couplings to all the �n

j matrices. For simplicity,
in the following we substitute d jE0,α ≡ g j,α and take d j = 1.
In the presence of an electric field the time-reversal symmetry
is preserved and each spin 3/2 is described by two doubly
degenerate instantaneous states.

Adiabatic perturbation theory. For static external fields,
and in the absence of the cavity, the spectrum consists of (at
least) double degenerate levels, a consequence of the Kramers
theorem. In the adiabatic limit, quantified by Ė j,α/Ej,α � 2ε j ,

with 2ε j = 2
√∑

α E2
j,α (t ) being the instantaneous spin split-

ting of hole j, as well as for weak spin-photon coupling
|g j | � |ε j − ω0|, we can treat both the dynamics and the
coupling to photons in time-dependent perturbation theory. In
the following, we extend the approach in Ref. [38] used to
single out the geometrical effects in degenerate systems to the
S = 3/2 spin system. In contrast to Ref. [38], however, we
treat the environment (cavity photons) on the same footing
with the two spins 3/2. The full technical details are left for
the Supplemental Material (SM) [34], while here we only
describe the steps and summarize the results. That entails first
performing a time-dependent unitary transformation, U (t ) =
U1(t )U2(t ), that diagonalizes each of the isolated spin-3/2
Hamiltonians, so that H̃tot(t ) = ω0nph + ∑

j[Hj,0(t ) + Vj (t )],
where Hj,0(t ) = ε j (t )�5

j is the unperturbed part of the spin
j = 1, 2 Hamiltonian [38], with nph ≡ a†a, and

Vj (t ) = Ė j,αA j,α + g j,α
(
∂αε j �

5
j + iε j

[
A j,α, �5

j

])
Xph. (2)

Here, A j,α = −iU †
j (t )∂Ej,αUj (t ) is the non-Abelian gauge

field pertaining to the electric field Ej,α with ∂α ≡ ∂Ej,α , and
Xph = (a† + a). Note that Vj (t ) leads to both diagonal and
off-diagonal transitions between the degenerate eigenstates
of the bare spin Hamiltonian Hj,0(t ). Next, we can treat the
Ė j,α and Vj (t ) in perturbation theory with respect to the spin
splittings ε j and photon frequency ω0 using a time-dependent
Schrieffer-Wolff (SW) transformation U ′(t ) = U ′

1(t )U ′
2(t ),

with U ′
j (t ) = e−S j (t ) ≈ 1 − S j (t ) + S2

j (t )/2 + · · · . By impos-
ing [Sj (t ), Hj,0 + ω0a†a] + Vj (t ) = 0, it allows us to keep
the leading diagonal terms in the velocities Ė j,α and the
second-order corrections in g j,α . Then, projecting onto the low
four-dimensional energy subspace spanned by the {−ε1,−ε2},
we can find an explicit expression for Sj (t ) (see SM for
details). That in turn allows us to obtain the low-energy spin-
photon Hamiltonian δH(t ) = ∑

j δH j (t ) + H1−2(t ), with

δH j (t ) = Ė j,αg j,β
(
F l

j,αβXph + g j,γOl
j,αβγ nph

)
,

H1−2(t ) = 2g1,αg2,β

ω0
Ė1,γ Ė2,δF l

1,αγF l
2,βδ, (3)

representing the photon-dependent single hole-spin Hamil-
tonian and the cavity-mediated spin-spin coupling term,
respectively. Here, Al

j,α ≡ P l
jA j,αP l

j , with P l
j a projector

onto the low-energy degenerate subspace of spin j, F l
j,αβ =

∂αAl
j,β − ∂βAl

j,α + i[Al
j,α,Al

j,β ] is the corresponding non-
Abelian Berry curvature, and Ol

j,αβγ is an operator that
encodes also the geometry of the states. In particular, for
ω0 � ε1,2, this can be written as

Ol
j,αβγ = i[∂αA j,β ,A j,γ ]l − 2∂β log[ε j]F l

j,γ α

− 2
(
G l

j,βγAl
j,α − A−

j,βAh
j,αA+

j,γ

)
, (4)

where [· · · ]l ≡ P l
j[· · · ]P l

j , G l
j,βγ is the quantum metric in the

lowest subspace [34], and Ah
j,α ≡ Ph

j A j,αPh
j , with Ph

j = 1 −
P l

j being the Berry curvature in the highest-energy subspace

of spin, and A+(−)
j,α ≡ Ph(l )

j A j,αP l (h)
j . The Hamiltonians in

Eq. (3) are the central results of this Letter, showing that pho-
tons in a cavity can be imprinted with the individual hole-spin
Berry phases and, moreover, they can mediate interactions
between two hole spins via the geometry of their states in
the absence of any external magnetic fields. Therefore, such
effects are present only if the spins are driven, providing the
means for selectively entangling spin-3/2 qubits coupled to
the same cavity field. Notably, the above Hamiltonians depend
only on the geometry of states through their Berry connec-
tions, being thus general and applicable, we believe, to any
non-Abelian system. Although the Hamiltonian H1−2(t ) ∝
Ė1,γ Ė2,δ , the evolution operator endowed by this term is effec-
tively geometrical when the two driving frequencies 
1,2 (in
a continuous operation mode) are incommensurate [34,39], as
we show explicitly later.

The first term in δH j (t ) in Eq. (3) describes the leading
order coupling of the degenerate spin-3/2 subspace to the
photons, in agreement with the findings in Ref. [38]. This
term can be leveraged in order to manipulate the qubit by
driving the cavity with a classical (coherent) field. The second
contribution instead is different and accounts for the cavity
frequency shift induced by the individual hole-spin geometry
of states. Thus, we have extended the dispersive readout of
geometrical Abelian Berry phases [40,41] to the non-Abelian
realm. While seemingly complicated, the origin of each term
in Ol

j,αβγ can be unraveled by using a Floquet approach for
describing the dynamics [34]. Interestingly, for ω0 ∼ Ė j,α/ε j ,
the photons and the external driving become resonant, and
given that generally [Al

j,α,F l
j,αβ ] 	= 0, it can result in a
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different type of Jaynes-Cummings Hamiltonian that is acti-
vated by the geometry of the states. Nevertheless, we leave
this aspect for future work, and focus here on the regime
ω0 
 Ė j,α/ε j .

Dispersive Floquet approach. Next we utilize a Floquet
description of the hole-spin dynamics that is appropriate when
each of the spins 3/2 is driven periodically, or Hj (t + Tj ) =
Hj (t ) [Hj (t ) ≡ Ej,α (t )�α

j ], with 
 j = 2π/Tj being the driv-
ing frequency of spin j = 1, 2. In the absence of the cavity,
the time-dependent wave functions (or Floquet states) can
be written as |�s

j (t )〉 = e−iEs
j t |ψ s

j (t )〉, where |ψ s
j (t + Tj )〉 =

|ψ s
j (t )〉 is found as solutions to the Schrödinger equation

H j (t )|ψ s
j (t )〉 ≡ [Hj (t ) − i∂/∂t]|ψ s

j (t )〉 = E s
j |ψ s

j (t )〉, and E s
j

are the Floquet eigenvalues for spin j that are defined up
to multiple of 
 j , with s = 1, 2, . . . labeling the periodic
Floquet states. In the adiabatic limit, E s

j = εs
j + γ s

j /Tj , with
εs

j and γ s
j being the instantaneous (or average) energy and

the Berry phase of the spin j in the Floquet state s. Cou-
pling the spins to the photons results in both shifts in the
individual Floquet energies and a coupling between the two
spins. The full dynamics of the two spins driven at different
frequencies is rather involved (see, for example, Ref. [39]),
and here instead we focus on the weak coupling regime in
the dispersive limit, that is, when |�ss′

j (q) − ω0| 
 |g1,2|, with

�ss′
j (q) = |E s

j − E s′
j − q
 j | and q ∈ Z , which allows us to

treat the spin-photon interaction in perturbation theory. Using
a time-dependent SW transformation, which is described in
detail in the SM, the cavity induced low- (quasi-)energy spin
Hamiltonian can be cast as δH = ∑

j δH j + Hz
1−2 + H⊥

1−2,
with

δH j =nph

∑
q,s,s′

(−1)s
∣∣V ss′

j (q)
∣∣2 �ss′

j (q)[
�ss′

j (q)
]2 − ω2

0

σ z
j ,

Hz
1−2 = 2

ω0

∑
j,s,p∈low

(−1)s+pV ss
j (0)V pp

j̄
(0)σ z

1σ z
2 ,

H⊥
1−2 =

∑
j

V 12
j (0)V 21

j̄ (0)
2ω0

ω2
0 − [

�12
j (0)

]2 σ+
1 σ−

2 + H.c.,

(5)

where V ss′
j (q) = (1/Tj )

∫ Tj

0 dte−iq
 j t 〈ψ s
j (t )|g j · � j |ψ s′

j (t )〉 are
the Fourier components of the spin-photon matrix elements
between states s and s′ and spin j = 1, 2. Also, σα

j , with
α = x, y, z, are Pauli matrices acting in the two lowest- (quasi-
)energy Floquet states of the hole spin j = 1, 2. The first term
leads to a cavity frequency shift that depends on the Floquet
state of spin j, while the second and third terms account for
an Ising and XY couplings between the lowest spin Floquet
doublets, respectively. As showed in detail in the SM, in
the adiabatic limit 
 j � |E j | we find that δH j ∝ 
 j and
Hz,⊥

1−2 ∝ 
1
2, consistent with the expressions found in the
previous section. Note that Hz,⊥

1−2 depend only on the q = 0
Fourier components of V ss′

j (t ) which, as argued before, result
in geometrical effects only on the evolution. All these effects
are absent in the static case and, in particular, the entangle-
ment between the Floquet states is ignited only by driving both
spins.
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-1

 0
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FIG. 2. Cavity frequency shift 〈δω0〉 due to the interaction with a
single hole spin as a function of driving frequency 
 for several cone
angles θ and initial superposition weights β. The solid (dashed) lines
represent the result without (with) an adiabatic approximation. The
other parameters are ω0 = 0.15, ε = 1.05, g = 0.02, and the spin-
photon coupling is set along the z axis.

Circular driving. In order to verify both the adiabatic
theory and the above Floquet approach, in this section
we consider a specific model, namely that of a circularly
driven spin 3/2. Without loss of generality in the follow-
ing we shall use parametrization, E j = ε jn j (t ) and n j (t ) =
{− sin θ j sin 
 jt, sin θ j cos 
 jt, cos θ j}, where 
 j and θ j are
again the driving frequency and the cone angle for the jth
spin. We were able to find a time-dependent transformation
Ũ (t ) (for details, see SM) that makes the bare hole-spin
part of Htot(t ) fully time-independent and diagonal, i.e., it
gives access to the exact solution in the absence of the
cavity. Therefore, the entire time dependence of the spin-
photon system in this frame is shifted to the spin-photon
interactions. Then, in the dispersive regime we can decou-
ple the spin and photonic degrees of freedom by means
of the second-order SW transformation in g j , and the re-
sulting low-energy spin-photon Hamiltonian assumes the
same form as in Eq. (5) with H⊥

1−2 = 0. In general, δH j =
δω

g
0, j (t ) σ z

j nph and Hz
1−2(t ) = Jz

1−2(t )σ z
1 σ z

2 , with Jz
1−2(t ) =

−(
1
2/2ω0) f1(t ) f2(t ) and f j (t + Tj ) = f j (t ) [cf. Eq. (41)
in SM [34]]. For g j = {0, 0, g j} and in leading order in 
 j ,
we obtain [34]

δω
g
j,0 = − 2g2

j
 j
(
12ε2

j − ω2
0

)
cos θ j sin2 θ j(

4ε2
j − ω2

0

)2 , (6)

f j =g j sin2 θ j

ε j
, (7)

while H j = (1/2)
 j cos θ jσ
z
j (bare low-energy hole-spin

Hamiltonian). Above, δω
g
j,0 is the cavity frequency shift

pertaining to the geometrical imprints of the lowest-energy
sector, while we disregarded the (dynamical) contributions
δωd

j,0 that can shift the cavity frequency by a value indepen-
dent of the qubit state [34].

In the following, we demonstrate numerically that in the
presence of the driving the cavity frequency shift provides
a readout of the non-Abelian evolution. Given an initial
hole-spin state at time t = 0, |ψ (0)〉 = {

√
1 − β2, βeiφ},

we can evaluate the geometrical contribution during the
periodic evolution as 〈δωg

0〉 = (1/T )
∫ T

0 〈ψ (t )|σ z|ψ (t )〉 δω
g
0,

where |ψ (t )〉 ≡ U (t )|ψ (0)〉 with the evolution operator U (t )
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FIG. 3. The concurrence C[ρ12(t )] pertaining to the two-qubit
density matrix ρ12(t ) as a function of time for various driving 
1/
2

ratios. With dashed lines we mark the concurrence generated by the
effective static Hz,g

1−2. The left inset depicts the short time behavior
of the concurrence exhibiting fast oscillations, while the right inset
shows a nonmonotonic behavior of the concurrence for long times
t � h̄/Jz

1−2 for
√

2
2 = 
1. We have used following parametriza-
tion: ω0 = 0.15, g = 0.02, ε1 = 1.05, ε2 = 0.95, 
1 = 0.1, g1 =
g{1/2, 1/2, 1/

√
2}, g2 = g{1/

√
2, 1/2, 1/2}, θ1 = π/3, θ2 = π/4,

β1 = 0.4, and β2 = 0.3.

describing the bare hole-spin Hamiltonian. In linear order 
,
we find the simple functional dependence 〈δωg

0〉 = (2β2 −
1)δωg

0, which allows us to discriminate between different
qubit states. As expected, in the absence of the driving,
〈δωg

0〉 = 0. In Fig. 2 we plot the total photonic frequency shift
〈δω0〉 ≡ 〈δωd

0 〉 + 〈δωg
0〉 obtained from evolving the full spin

S = 3/2 Hamiltonian and that obtained from the adiabatic,
low-energy approximation, respectively as a function of the
driving frequency 
 for various values of β [34]. We see that
the adiabatic approximation (linear in 
) describes well the
frequency shift for a wide range of parameters [34].

Finally, we demonstrate the entangling properties of the
Hamiltonian Hz

1−2(t ). Before that, it is instructive to define an
effective static Hamiltonian, Hz,g

1−2 = Jz,g
1−2σ

z
1σ z

2 with Jz,g
1−2 =

−
1
2 f 0
1 f 0

2 /2ω0, where f 0
j = (
 j/2π )

∫ 2π/
 j

0 dτ f j (τ ) is
the q = 0 Fourier component of f j (t ). Since each closed spin
trajectory is contributing individually here, Hz,g

1−2 is inher-
ently geometrical (external noises affect its evolution similarly
to geometrical gates). For a given two-qubit density matrix
ρ12(t ), the entanglement can be quantified by the concur-
rence C[ρ12(t )] = max[0, λ1

12 − λ2
12 − λ3

12 − λ4
12] [42], where

the λk
12 are the eigenvalues of the Hermitian matrix R12 =√√

ρ12ρ̃12
√

ρ12 sorted in descending order with ρ̃12 = (σ y
1 ⊗

σ
y
2 )ρ∗

12(σ y
1 ⊗ σ

y
2 ). The concurrence is C = 0(1) for a sepa-

rable (maximally entangled) state. Starting from a separable
density matrix at t = 0, in Fig. 3 we show C[ρ12(t )] as a

function of time when the evolution is generated by the full
time-dependent Hz

1−2(t ) Hamiltonian and by the effective
static Hamiltonian Hz,g

1−2. We see excellent (poor) agreement
between the two cases when the driving frequencies are
incommensurate (commensurate), demonstrating the geomet-
rical origin of the entanglement at incommensurate drives.
Note that C[ρ12(t )] increases with time, becoming maximal
for t ∼ h̄/Jz

1−2 (cf. the right inset of Fig. 3). Furthermore, we
also analyzed the robustness of the entanglement generation
to noises in the driving frequencies, 
 jt → φ j (t ) ≡ 
 jt +
δ j (t ), with δ j (t ) being a Gaussian correlated noise [39]. We
have evaluated κ = |C0(t ) − C(t )|, where C0(t ) is a noiseless
concurrence and C(t ) is the mean concurrence, and we found
that κ is almost two orders of magnitude smaller in the case
of incommensurate drives as compared to the commensurate
ones [34]. That is again consistent with the enhanced protec-
tion associated with geometrical qubits [33].

In order to give some estimates for the strength of the
exchange coupling induced by the dynamics presented in
this Letter, we utilize the GaAs quantum dot model pro-
posed in Ref. [20]. We assume for the hole-spin splittings
ε1 = ε2 = 0.285 meV (which corresponds to electrical fields
in the range of 105–106 V/m), ω0 � 10 GHz, driving fre-
quency 
1 = √

2
2 = 0.043 THz, and spin-cavity coupling
strengths g1 = g2 = 5.7 μeV. For a cavity field parallel to the
z axis, the spin-spin interaction is maximized for θ1 = θ2 =
π/2, as showed in Eq. (7), and we obtain Jz

1−2 � 2.7 neV, or a
two-qubit gate time of 10−5 s. This timescale is much shorter
than the coherence times of a single spin-hole qubit that can
be as high as 10 ms [43].

Conclusions. We have proposed and studied an all-
electrical scheme for entangling hole spins in nanostructures
using the non-Abelian character of their states and the elec-
trical field of a microwave cavity. We showed that the
Berry phases of electrically driven hole spins imprint onto
the cavity photons allowing for a dispersive readout of the
hole-spin qubit. Furthermore, we have shown that the cavity
mediates long-range entangling coupling between the non-
Abelian Berry curvatures of two hole spins when both are
electrically driven, enabling selective entanglement between
hole-spin qubits. Our work might be relevant for a plethora of
other solid-state qubits with a nontrivial geometry of states,
such as electrons localized in quantum dots or molecular
magnets.

Acknowledgments. This work was supported by the Inter-
national Centre for Interfacing Magnetism and Superconduc-
tivity with Topological Matter project, carried out within the
International Research Agendas program of the Foundation
for Polish Science cofinanced by the European Union under
the European Regional Development Fund. We would like to
thank S. Hoffman and A. Lau for useful discussions.

[1] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120
(1998).

[2] B. E. Kane, Nature (London) 393, 133 (1998).
[3] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,

M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Science 309, 2180 (2005).

[4] J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar,
B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller,
J. W. Ager, and S. A. Lyon, Nature (London) 455, 1085
(2008).

[5] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and
J. R. Petta, Science 339, 1174 (2013).

L041402-4

https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1038/30156
https://doi.org/10.1126/science.1116955
https://doi.org/10.1038/nature07295
https://doi.org/10.1126/science.1231364


BERRY PHASE INDUCED ENTANGLEMENT OF HOLE-SPIN … PHYSICAL REVIEW B 104, L041402 (2021)

[6] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P.
Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E.
Hudson, K. M. Itoh et al., Nature (London) 526, 410 (2015).

[7] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink,
K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K.
Vandersypen, Nature (London) 442, 766 (2006).

[8] S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers, and L. P.
Kouwenhoven, Nature (London) 468, 1084 (2010).

[9] Y. Hu, F. Kuemmeth, C. M. Lieber, and C. M. Marcus, Nat.
Nanotechnol. 7, 47 (2012).

[10] J. T. Muhonen, J. P. Dehollain, A. Laucht, F. E. Hudson,
R. Kalra, T. Sekiguchi, K. M. Itoh, D. N. Jamieson, J. C.
McCallum, A. S. Dzurak et al., Nat. Nanotechnol. 9, 986
(2014).

[11] S. D. Liles, R. Li, C. H. Yang, F. E. Hudson, M. Veldhorst, A. S.
Dzurak, and A. R. Hamilton, Nat. Commun. 9, 3255 (2018).

[12] V. N. Golovach, A. Khaetskii, and D. Loss, Phys. Rev. Lett. 93,
016601 (2004).

[13] Y. A. Serebrennikov, Phys. Rev. Lett. 93, 266601 (2004).
[14] P. San-Jose, G. Zarand, A. Shnirman, and G. Schön, Phys. Rev.

Lett. 97, 076803 (2006).
[15] B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl,

M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J.
Warburton, Nature (London) 451, 441 (2008).

[16] M. Trif, P. Simon, and D. Loss, Phys. Rev. Lett. 103, 106601
(2009).

[17] B. A. Bernevig and S.-C. Zhang, Phys. Rev. B 71, 035303
(2005).

[18] P. San-Jose, B. Scharfenberger, G. Schön, A. Shnirman, and G.
Zarand, Phys. Rev. B 77, 045305 (2008).

[19] V. N. Golovach, M. Borhani, and D. Loss, Phys. Rev. A 81,
022315 (2010).

[20] J. C. Budich, D. G. Rothe, E. M. Hankiewicz, and B. Trauzettel,
Phys. Rev. B 85, 205425 (2012).

[21] J. Fischer, W. A. Coish, D. V. Bulaev, and D. Loss, Phys. Rev.
B 78, 155329 (2008).

[22] D. V. Bulaev and D. Loss, Phys. Rev. Lett. 95, 076805 (2005).
[23] D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J.

Finley, D. V. Bulaev, and D. Loss, Phys. Rev. B 76, 241306(R)
(2007).

[24] D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai,
N. G. Stoltz, P. M. Petroff, and R. J. Warburton, Science 325,
70 (2009).

[25] R. J. Warburton, Nat. Mater. 12, 483 (2013).
[26] A. P. Higginbotham, T. W. Larsen, J. Yao, H. Yan, C. M. Lieber,

C. M. Marcus, and F. Kuemmeth, Nano Lett. 14, 3582 (2014).
[27] J. van der Heijden, J. Salfi, J. A. Mol, J. Verduijn, G. C.

Tettamanzi, A. R. Hamilton, N. Collaert, and S. Rogge, Nano
Lett. 14, 1492 (2014).

[28] H. Watzinger, J. Kukucka, L. Vukusić, F. Gao, T. Wang, F.
Schäffler, J.-J. Zhang, and G. Katsaros, Nat. Commun. 9, 3902
(2018).

[29] S. Asaad, V. Mourik, B. Joecker, M. A. I. Johnson, A. D.
Baczewski, H. R. Firgau, M. T. Mądzik, V. Schmitt, J. J. Pla,
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