
PHYSICAL REVIEW B 104, L020509 (2021)
Letter

Superconducting instabilities in a spinful Sachdev-Ye-Kitaev model
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We introduce a spinful variant of the Sachdev-Ye-Kitaev model with an effective time-reversal symmetry,
which can be solved exactly in the limit of a large number N of degrees of freedom. At low temperature, its
phase diagram includes a compressible non-Fermi liquid and a strongly correlated spin singlet superconductor
that shows a tunable enhancement of the gap ratio predicted by BCS theory. These two phases are separated
by a first-order transition, in the vicinity of which a gapless superconducting phase, characterized by a nonzero
magnetization, is stabilized upon applying a Zeeman field. We study equilibrium transport properties of such
superconductors using a lattice construction and propose a physical platform based on topological insulator
flakes where they may arise from repulsive electronic interactions.
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Understanding strongly correlated forms of superconduc-
tivity (SC), going beyond the celebrated Bardeen-Cooper-
Schrieffer (BCS) [1–3] and Migdal-Eliashberg [4–7] theories,
remains an ongoing avenue of research. One of the main dif-
ficulties lies in the rarity of tractable models [8–10] providing
analytical insight into this phenomenon. Recently, the advent
of exactly solvable models of non-Fermi liquids, the family
of so-called Sachdev-Ye-Kitaev (SYK) models [11–14], has
sparked remarkable progress in exploring correlated phases
with intriguing properties such as strange metallic transport
and maximal chaos [15–24]. Solvable models of correlated
superconductors have been similarly constructed—two popu-
lar approaches consisting of explicitly adding pairing terms to
an SYK construction [25–27] or considering random Yukawa
electron-phonon interactions [28–32].

Building on these ideas, in this Letter we introduce
a simple model for correlated superconductivity with rich
phenomenology where the superconducting correlations are
instead generated directly by disordered SYK-type fermionic
interactions [33,34]. It consists of a pair of coupled complex
SYK (cSYK) models [11,12,35] with random two-body in-
teractions that are constrained by an antiunitary time-reversal
symmetry, and can thus be regarded as a spinful generalization
of the SYK model. This is inspired by recent work on a
related but subtly different symmetry setting where two SYK
models are instead related by a unitary symmetry [36–40], and
which hosts both (gapped) symmetry-broken and (gapless)
non-Fermi liquid phases with a holographic interpretation.

In analogy with the results of these works, at low temper-
ature the spinful SYK model shows the spontaneous breaking
of a U(1) symmetry. However, rather than the breaking of
an axial U(1) symmetry leading to a “traversable wormhole”
phase [38–40], the global U(1) symmetry is instead broken,
driving the system to a correlated spin-singlet superconduct-
ing phase. This superconductor shows an enhanced gap ratio
compared to the BCS prediction, and might also exhibit

connections to holography. It is separated by a first-order
transition from a SYK non-Fermi liquid, in the vicinity of
which a gapless superconducting phase, characterized by a
finite magnetization, is stabilized upon applying a Zeeman
field B (see a schematic low-temperature phase diagram in
Fig. 1). Using a lattice construction with spinful SYK models
at each site we compute the equilibrium transport properties
of the two SC phases, finding sharp qualitative differences in
their supercurrent-phase relations.

The model. We consider a variant of the SYK model that
consists of a (0+1)-dimensional “quantum dot” with a large
number N of degrees of freedom, each coming in two flavors
a =↑,↓. We assume all-to-all random interactions between
degrees of freedom of the same flavor, described by the com-
plex SYK Hamiltonian,

Ha =
N∑

i jkl=1

Ja
i j;kl c

†
iac†

jackacla − μa

∑
j

c†
jac ja, (1)

where the coupling constants are drawn from a Gaussian
distribution with zero mean and variance |J2

i jkl | = J2

8N3 and
μa are chemical potentials that can be tuned independently
for the two species. Fermionic commutation relations impose
the constraints Ja

i j;kl = −Ja
i j;lk = −Ja

ji;kl = (Ja
kl;i j )

∗ on the cou-
pling constants. In the following we also impose the stronger
requirement that Ja

i j;kl be fully antisymmetric [41]. We then
require invariance under the antiunitary symmetry � = τ xK,
where τ x is a Pauli matrix acting on the flavor degree of
freedom and K denotes complex conjugation. This enforces
J↑

i j;kl = (J↓
i j;kl )

∗ = J↓
kl;i j .

We now couple the cSYK models with two-body interac-
tions that conserve charge for each flavor [with U(1) ⊗ U(1)
symmetry] of the form Jab

i jkl c
†
iac†

jbckaclb. Consistency with the

antiunitary symmetry requires that Jab
i jkl = (Jba

i jkl )
∗. For con-

creteness we consider the coupling constants generated by
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FIG. 1. (Left) Illustration of the coupling terms in the spinful
SYK model, Eq. (2). (Right) Low-temperature (βJ = 100) phase di-
agram as a function of Zeeman field B and interaction parameter α at
charge neutrality μ = 0. For α < 0 the SYK non-Fermi liquid is sta-
ble, whereas for α > 0 we find an instability to a gapped spin-singlet
superconductor. Interestingly a region of gapless superconductivity
with finite magnetization is stabilized at nonzero B. White dashed
lines denote first-order phase transitions.

Coulomb interactions in a degenerate manifold that is con-
strained by �—see the Supplemental Material (SM) [42] for
details and connections to a proposed physical platform based
on a topological insulator flake. This enforces the constraints
Jab

il;k j = αJa
i j;kl = αJb

kl;i j with α a dimensionless constant con-
trolling the ratio of inter to intraflavor interactions. In
the proposed physical platform α > 0 (α < 0) corresponds
to repulsive (attractive) interflavor interactions. We thus
consider

H =
∑
i jkl

Ji j;kl [c
†
i↑c†

j↑ck↑cl↑ + c†
k↓c†

l↓ci↓c j↓

+α(c†
i↑c†

l↓ck↑c j↓ + c†
k↓c†

j↑ci↓cl↑)]

− (μ + B)
∑

j

c†
j↑c j↑ − (μ − B)

∑
j

c†
j↓c j↓, (2)

where we expressed μ↑,↓ = μ ± B in terms of a (global)
chemical potential μ and a Zeeman term B which breaks
the antiunitary symmetry �. For μ = 0 the Hamiltonian is
invariant under the combination of flavor and particle-hole
transformation c†

ia ↔ cib with a �= b.
Saddle-point equations. We first consider the charge

neutrality point μ = 0. The Euclidean-time path-integral for-
mulation of the model at inverse temperature β = 1/kBT
reads Z = ∫

[D[c, c†]e−S with the effective action S =∫ β

0 dτ (
∑

i,a c†
ia(τ )∂τ cia(τ ) + H ). Averaging over quenched

disorder in the couplings Ji jkl , and considering only replica-
diagonal solutions (assuming no spin-glass physics [43]),
we obtain an effective action written in terms of the (stan-
dard and anomalous) averaged Green’s functions Gτ,τ ′ =
1
N

∑
j〈T c j↑(τ )c†

j↑(τ ′)〉 and Fτ,τ ′ = 1
N

∑
j〈T c j↑(τ )c j↓(τ ′)〉

and their respective self-energies � and � (see the SM
[42] for details). From this effective action the semiclassical
(N → ∞) saddle-point equations are obtained by taking func-
tional derivatives with respect to the Green’s functions and

self-energies,

�τ = −J2

[(
1 + α2

2

)
G2

τ G−τ − 2αGτ Fτ F−τ + α2

2
F 2

τ G−τ

]
,

�τ = −J2

[(
1 + α2

2

)
F 2

τ F−τ − 2αFτ Gτ G−τ + α2

2
G2

τ F−τ

]
,

Gn = −B + �n + iωn

Dn
, Fn = �n

Dn
, (3)

where Dn = (B + �n + iωn)2 − �2
n. Here we used time trans-

lation invariance to express Gτ,τ ′ ≡ Gτ−τ ′ , whereas Gn ≡
G(ωn) (and similarly) are Fourier-transformed expressions in
terms of fermionic Matsubara frequencies ωn = (2n + 1)πT .
This set of coupled equations can be solved self-consistently
through an iterative method until convergence is attained.
In practice, as coupled models of this type [36–40] often
exhibit first-order phase transitions, we sweep the Zeeman
field B back and forth and feed the converged solution for
the next value of B considered. This gives rise to hysteresis
curves from which one picks the solution with the lowest free-
energy density F = −T ln Z/N , given in the large-N limit by
substituting the saddle-point solutions in the action [44],

−F
T

= 2 ln 2 +
∑
ωn

[
ln

(
Dn

(iωn)2

)
+ 3

2
(�nGn+�nFn)

]
.

(4)
Similarly, the entropy density S = (U − F )/T is obtained,
with the energy density

U = T
∑
ωn

[2BGn + �nGn + �nFn], (5)

and the magnetization M = 1
2N

∑
j〈c†

j↑c j↑ − c†
j↓c j↓〉 can be

read off from M = 1
2 − Gτ=0+ .

Phase diagram. We first explore the low-temperature
physics of the model by self-consistently solving the saddle-
point equations as described above. The resulting phase
diagram is shown in Fig. 2. For attractive interactions be-
tween the two flavors (α < 0) we find a SYK non-Fermi
liquid with extensive residual entropy. In contrast, for repul-
sive interactions (α > 0) there is an instability to a gapped
superconducting phase generated by the spontaneous breaking
of U(1) charge conservation. This should be compared to the
results of Refs. [38,39], showing a spontaneous breaking of
the axial U(1) symmetry with quantum number Q− = Q↑ −
Q↓ whereby an “excitonic” order parameter 1

N

∑
j〈c j↑c†

j↓〉
is generated for α < 0. Indeed, the Hamiltonian studied in
Refs. [38,39] is related to Eq. (2) by a particle-hole transfor-
mation for a single flavor c†

i↓ ↔ ci↓ combined with α → −α,
according to which we expect a spontaneous expectation value
� ≡ Fτ=0 = 1

N

∑
j〈c j↑c j↓〉 to develop for α > 0. That is, in

our case the global U(1) symmetry with Q = Q↑ + Q↓ is
instead broken, leading to a spin-singlet SC state, and the
instability now interestingly occurs for repulsive interflavor
interactions.

In the presence of a weak Zeeman field B, the SC phase re-
mains nonmagnetized (M = 0) as expected for a fully gapped
spin-singlet superconductor. The breaking of time-reversal
symmetry is however reflected in the different spectral gaps
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FIG. 2. Phase diagram of the model [Eq. (2)] at low-temperature βJ = 100 and charge neutrality μ = 0. The superconducting order
parameter � (left panel), magnetization M (middle panel), and residual entropy density S0 (right panel) are obtained from the self-consistent
solutions of Eqs. (3) as a function of α and B. Dashed white lines indicate first-order phase transitions.

for the hole and electron sides, as shown in Fig. 3. In contrast,
the non-Fermi liquid phase can be continuously magnetized
by tuning B, a reflection of the compressibility of the underly-
ing cSYK models [12,35]. At sufficiently large B a first-order
phase transition takes the system to a fully-polarized gapped
state with M = 1

2 . The discontinuous jump in residual entropy
between the non-Fermi liquid and gapped phases signals a
first-order phase transition. The transition between the two
gapped ordered phases (SC with � �= 0 and polarized phase
with M = 1

2 ) is also of first order as expected from standard
Landau arguments.

A surprising result is the appearance of an intermediate
phase which is gapless and superconducting, upon applying a
Zeeman field B. This phase exhibits extensive residual entropy
and magnetization associated with the SYK non-Fermi liquid
as well as a nonzero SC order parameter �. The presence
of a nonzero M and � seems contradictory but can occur,
e.g., in a “phase coexistence” scenario where only part of
the system spontaneously breaks the U(1) symmetry [38].
Here the Green’s function Gτ exhibits power-law decay at
long times, in contrast to the exponential decay observed in
the gapped SC phase (see Fig. 3). When tuning the chemical
potential away from charge neutrality (μ �= 0), we find that
both the gapped and gapless SC phases are compressible as
described the SM [42].

Gap ratio enhancement. We now increase temperature and
consider the transition out of the gapped SC phase. In Fig. 4

FIG. 3. Comparison of the regular and anomalous Green’s func-
tions Gτ and Fτ in the gapped (solid lines, α = 0.4 and B = 0.1J)
and gapless (dashed lines, α = 0.4 and B = 0.2J) SC phases at low-
temperature βJ = 200. We show both negative (left) and positive
(right) imaginary times τ .

we show the temperature dependence of � for B = 0. For
large α we find that � smoothly goes to zero at Tc, indicative
of a second-order transition, which is however not BCS-like
as shown from comparing with the self-consistent solution
of the BCS gap equations in the weak-coupling limit [1–3].
In particular, in BCS theory the following universal relations
hold (with kB = 1 and �0 the SC order parameter at T = 0):

�0 = 1.76Tc, �(T → Tc) = 3.06Tc

√
1 − T

Tc
. (6)

Here we find that neither relation is satisfied, highlighting
the strongly correlated nature of superconductivity. Further-
more, the data collapse near Tc suggests that the SC transition
becomes of first order when decreasing α. There is also a
significant gap ratio enhancement [20] with �0/Tc seemingly
diverging for small α, which can be traced back to the empiri-
cal observation that Tc ∼ α whereas �0 depends only weakly
on the interaction strength.

Equilibrium transport. We finally consider transport prop-
erties of the SC phases identified above. To do so we build a
lattice model out of spinful SYK building blocks, connected
by random hoppings similar to Ref. [18],

H =
∑

x

Hx +
∑
〈x,x′〉

∑
i jσ

t xx′
i jσ c†

iσxc jσx′ . (7)

Here Hx describe spinful SYK models, Eq. (2), with an inde-
pendent disorder realization on each site x. This ensures that
the effective action only features local Green’s functions and
self-energies. The hopping terms connect nearest-neighbors
〈x, x′〉 and are drawn from a Gaussian distribution with zero
mean and variance |t xx′

i jσ |2 = t2

N .
To drive a supercurrent in the system we consider a ring

geometry with L sites threaded by a magnetic flux . This
introduces Peierls phase factors in the hopping parameters
through t xx′

i jσ eiφ with φ = e
h̄

∫
A · dl = 2π

L

0

and the flux quan-

tum 0 = h
e . If the hopping parameters are taken to be

uncorrelated between the two spin components, the disor-
der average yields only the Green’s function Gx,τ which is
insensitive to the magnetic flux insertion. It is thus crucial
to require invariance of the hopping terms under the antiu-
nitary symmetry �—that is, t xx′

i j↑ = (t xx′
i j↓)∗. Combined with

a translation-invariant ansatz whereby Gx,τ = Gτ and Fx,τ =
Fτ , we obtain saddle-point equations (see the SM [42]) that
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FIG. 4. (Left) Temperature dependence of the superconducting order parameter � for various values of α and μ = B = 0. The weak-
coupling BCS scaling is shown by dashed lines. (Middle) Data collapse of �/�0 against

√
1 − T/Tc. There is a jump from a second- to a

first-order phase transition when the interaction strength α decreases. (The inset) The ratio �0/Tc increases as α → 0 and is greatly enhanced
compared to the BCS result (dashed line). (Right) Phase diagram showing � in the T -α plane with second-order (solid line) and first-order
(dashed line) phase transitions out of the gapped superconducting phase.

can be solved self-consistently. The free energy density F/L
is computed using the appropriate generalization of Eq. (4),
with the induced supercurrent

I = ∂F
∂

= 2e

h̄

∂

∂ϕ

(F
L

)
, (8)

where ϕ = 2φ is the phase carried by Cooper pairs when
tunneling between SYK dots.

The limit of weak hopping t corresponds to Josephson
tunneling between neighboring SC islands that are phase bi-
ased. Accordingly, we obtain sinusoidal supercurrent-phase
relations I (ϕ) = Ic sin(ϕ + δ) as shown in Fig. 5 for α = 0.5
and various values of B. In the gapped phase we find δ = 0
and the maximal supercurrent Ic ∼ t2/J , as expected in per-
turbation theory from the tunneling of Cooper pairs between
neighboring sites. For sufficiently large B the gapless SC
phase is stabilized (see also Fig. 2), which in transport is
manifest as a phase-shifted supercurrent relation with δ = π .
In other words, the system’s free energy is minimized for
a staggered order parameter �x with a π -phase difference

FIG. 5. Equilibrium transport properties of the two supercon-
ducting phases, here for α = 0.5. (Left) Supercurrent-phase relation
I (ϕ) [computed through Eq. (8)] in the lattice model for various
values of the Zeeman field B/J (color scale) and t/J = 0.01. The
jump to a π -shifted sinusoidal profile coincides with the first-order
transition between the gapped and gapless SC phases at the critical
Zeeman field Bc. (Right) The superfluid density ρ (in arbitrary units)
is independent of B in the gapped phase and shows a recovery after a
sudden drop at Bc.

between neighboring sites. The superfluid density ρ∼ ∂I
∂ϕ

|ϕ→δ

is independent of B in the gapped phase but interestingly
shows a recovery with B in the gapless phase, following a
sudden drop at the phase transition at Bc. The gapless SC
phase is also more fragile to competing energy scales as seen
from the rapid decrease in ρ/t2 as a function of t .

Discussion. In this Letter we introduced a simple “spinful
SYK” model for strongly correlated superconductivity. Its
exact solvability in the large-N limit allowed us to map the
model’s phase diagram which exhibits two different (gapped
and gapless) superconducting phases and show how their
behavior strongly deviates from BCS theory. The transport
properties of such phases, going beyond the equilibrium pic-
ture presented here, could be explored in future work. Indeed,
the lattice model in Eq. (7) hosts not only correlated SC
phases, but also a strange metal and a heavy Fermi liquid
(depending on the ratio t/J) in the limit α = 0 where it re-
duces to two decoupled (spinless) SYK chains [18]. It would
be interesting to study the thermal and electrical conductivity
across this rich phase diagram, which bears some resemblance
to the phenomenology of cuprates.

To summarize, this Letter adds to the growing body of lit-
erature on SYK superconductivity [25–34] by highlighting the
role of antiunitary symmetries in promoting SC instabilities.
Furthermore, the model’s simple structure and connections
to physical platforms where superconducting instabilities are
expected for repulsive electronic interactions raise the hope
of stimulating new experimental developments. An interesting
open question concerns the effect of (finite-N) fluctuations
away from the saddle point, which should restore the broken
U(1) symmetry at low energy in accordance with the Mermin-
Wagner theorem [14,45].
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