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We consider a problem of superconductivity coexistence with the spin-density-wave order in disordered
multiband metals. It is assumed that random variations of the disorder potential on short length scales render
the interactions between electrons to become spatially correlated. As a consequence, both superconducting and
magnetic order parameters become spatially inhomogeneous and are described by the universal phenomenologi-
cal quantities, whereas all the microscopic details are encoded in the correlation function of the coupling strength
fluctuations. We consider a minimal model with two nested two-dimensional Fermi surfaces and disorder
potentials which include both intra- and interband scattering. The model is analyzed using the quasiclassical
approach to show that short-scale pairing-potential disorder leads to a broadening of the coexistence region.
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Introduction. It is a well-known fact that generally disorder
is detrimental to superconductivity. Although a sufficiently
small amount of potential scatterers in superconductors with
an isotropic pairing wave function does not suppress the
critical transition temperature and energy gap, the key result
known as the Anderson theorem [1], Larkin and Ovchinnikov
have shown in their seminal paper [2] that even when time-
reversal symmetry is preserved the coherence peak in the
density of states can be smeared by disorder-induced inhomo-
geneities. Although this result seems counterintuitive at first
sight, one can understand it by observing that at the mean-field
level their model naturally contains an effective depairing pa-
rameter. As a result, changes in the pair-potential field as well
as single-particle correlation functions due to inhomogeneities
are of the same form as those found earlier by Abrikosov
and Gor’kov for the case of superconductors contaminated
with magnetic impurities [3]. Furthermore, the hard gap in the
spectrum gets also smeared due to optimal fluctuations of the
order parameter, thus leading to the Lifshitz-type tail [4] in the
subgap region. For refinements and extensions of the original
ideas to s- and d-wave superconductors, see Refs. [5–9] as
well as an extensive review [10] and references herein.

Iron-based superconductors serve as a prime example
[11,12] of complex materials in which disorder seems to play
a highly nontrivial role. These materials belong to a subclass
of composite superconductors in which superconductivity
with an isotropic s±-order parameter may develop on multiple
bands and it usually competes with magnetic order. There is an
extensive literature on the effect of impurities on the pairing
state in pnictides (see, e.g., Refs. [13–19]). Of specific interest
to the present Letter, it is in the context of the physics of these
materials that it was shown [20,21] that disorder may actually
boost superconductivity either by changing the corresponding
scattering rates or, as in the case of stoichiometric substitu-
tions, by varying the relative anisotropy of the Fermi pockets
[22,23].

Behind the physical interpretation of this effect is an idea
that disorder must suppress superconductivity (SC) slower
than it suppresses magnetic, in that case spin-density-wave
(SDW), order. Indeed, in these materials due to the s-wave
symmetry of the pairing amplitude, the Anderson theorem still
partially applies in a sense that only interband disorder affects
the SC state but SDW is affected by intraband scattering as
well. This means that in the temperature-doping (T -x) phase
diagram, a narrow region of concentrations of impurity atoms
must be present in which superconductivity would actually
be in coexistence with SDW order. In passing we note that
SC-SDW coexistence in iron-based superconductors actually
leads to a number of fascinating physical effects, such as
an anomalous temperature and doping dependence of the
heat capacity [24,25] and London penetration depth [26–28]
near the point where the SDW vanishes and quantum critical
fluctuations play a dominant role in determining their thermo-
dynamic and transport response functions at low temperatures
[29–32].

Almost proverbial antagonism between spin-singlet super-
conductivity and magnetism on one hand, and the possibility
of their coexistence due to different disorder scattering rates
on the other hand, brings up the question of whether allowing
for spatial inhomogeneities of the order parameters, for exam-
ple, would produce either the broadening of the coexistence
region or, on the contrary, the narrowing of it down. In this
Letter we address precisely this question and show that at
least within the limits of the two-band model [20,34] that we
will adopt in what follows, the spatial inhomogeneities lead,
in fact, to the broadening of the coexistence region and an
enhancement of SC critical temperature. Our main result is
presented in Fig. 1.

Model. The Hamiltonian for the model we study below is

Ĥ =
∫

�†(r)
(
Ĥ0 + Ĥmf + Ĥdis

)
�(r)d2r. (1)
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FIG. 1. Main panel: Schematic plot showing how the width of
the coexistence region between the superconducting (SC) and spin-
density-wave (SDW) orders varies as a function of the dimensionless
parameter ϕ0 describing the effects of spatial inhomogeneities in a
system [Eqs. (8) and (20)]. The width is given in the units of the δ�0

which determines the one of the coexistence region in the spatially
homogeneous system [34]. Inset: Phase diagram showing a region of
coexistence between SC-SDW orders as found from the mean-field
analysis of the Hamiltonian (1). The boundary line to the left of the
coexistence region represents the superconducting critical tempera-
ture Tc(M ) at finite values of magnetization while the line to the right
of the coexistence region represents the critical temperature Ts(�)
of the SDW transition at finite pairing amplitude. The temperatures
are given in the units of the superconducting critical temperature in a
clean system.

Here, we use the eight-component spinor in the Balian-
Werthammer representation [33], namely �†

p = (ĉ†
p↑,

ĉ†
p↓,−ĉ−p↓, ĉ−p↑, f̂ †

p↑, f̂ †
p↓,− f̂−p↓, f̂−p↑), which contains

spin-1/2 c- and f -fermionic fields with momentum p
and describe two (one electron- and one holelike) bands,
respectively [35]. Ĥ0 describes the single-particle states,
and Ĥmf is the interaction part taken in the mean-field
approximation

Ĥ0 = −ξ �∇ τ̂3ρ̂3σ̂0, Ĥmf = −�τ̂3ρ̂1σ̂0 + Mτ̂1ρ̂0σ̂. (2)

In the expressions (2) above, τ̂i, ρ̂i, and σ̂i are Pauli matrices
operational in the band, Gor’kov-Nambu, and spin subspaces,
respectively, ξ �∇ = −�∇2/(2m) − μ is the single-particle dis-
persion, μ is a chemical potential, � is the superconducting
order parameter, and M is the magnetization which we shall
take to be along the z axis, M = Mez. Lastly, the Hamiltonian
density, which introduces disorder scattering by randomly
distributed impurities in locations Ri, is

Ĥdis =
∑

i

[u0(τ̂0ρ̂3σ̂0) + uπ (τ̂1ρ̂3σ̂0)]δ(r − Ri ). (3)

The scattering potential u0 accounts for disorder scattering
within each band, while the second term uπ leads to the
interband transitions.

Quasiclassical theory. The ground state of the Hamiltonian
described by Eq. (1) can be studied using the relatively simple
system of Eilenberger equations [36], that for the model under
consideration can be cast into a single equation for the matrix
function Ĝ(ωn, n, r) [37],[

iωnτ̂3ρ̂3σ̂0; Ĝ
] − [

Ĥmfτ̂3ρ̂3σ̂0; Ĝ
] − [


̂ωτ̂3ρ̂3σ̂0; Ĝ
]

= ivF
(
n · ∇Ĝ

)
,

(4)

where ωn is the fermionic Matsubara frequency and [Â; B̂]
represents a commutator of two matrices in each term, respec-
tively. The self-energy part calculated to the leading accuracy
within the Born approximation reads


̂ω = − i�0τ̂3ρ̂0σ̂0Ĝτ̂0ρ̂3σ̂0 + �π τ̂2ρ̂3σ̂0Ĝτ̂1ρ̂3σ̂0, (5)

where �0,π = πnimpνF u2
0,π are corresponding disorder intra-

and interband scattering rates with nimp being the impurity
concentration. The matrix function Ĝ satisfies the normaliza-
tion condition Ĝ2 = τ̂0ρ̂0σ̂0. Equation (4) is supplemented by
the self-consistency conditions for the order parameters

iM

gm
= πT

8

�∑
ωn>0

Tr[(τ̂1 + iτ̂2)(ρ̂0 + ρ̂3)σ̂3Ĝ],

i�

gs
= −πT

8

�∑
ωn>0

Tr[(τ̂0 + τ̂3)(ρ̂1 + iρ̂2)(σ̂0 + σ̂3)Ĝ]. (6)

Here, gm, gs are the interaction constants and the trace over
the matrix products also includes the integration over all direc-
tions of the Fermi velocity vF = vF n. As usual, the UV-cutoff
� defines bare SC/SDW transition temperatures (Tc0, Ts0) ∼
�e−2/(gs,mνF ).

In a spatially homogeneous case (4) has a solution which
does not depend on coordinates. One finds that there exists
the region in the values of �0 where SC coexists with the
SDW state. We are interested in finding out what happens
to that region in the spatially inhomogeneous case. To find
a solution in a general case we use the phenomenological
method proposed by Larkin [38]: We assume that the coupling
constants are functions of the coordinate and write them as

1

νF gi(r)
=

〈
1

νF gi

〉
+ λi(r) (7)

(i = m,s). The averaging is performed over disorder distribu-
tions which we assume to be Gaussian and we also assume
that λi � 1. The inhomogeneities in the coupling constants
can be characterized by the following correlation function,

ϕi j (r − r′) = 〈λi(r)λ j (r′)〉, ϕk =
∫

ϕi j (r)e−ikrd2r. (8)

For simplicity we assume that the disorder correlators for the
spin-density-wave and pairing couplings are the same. Func-
tions ϕk describe the amount and size of the inhomogeneous
regions.

Our plan now consists in finding the solution of (4) by
perturbation theory. Since λi’s are small, we seek for the cor-
rection to the quasiclassical function due to inhomogeneities
in the form

Ĝ(ωn, n, r) = 〈Ĝ(ωn)〉 + δĜ(ωn, n, r). (9)
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This form implies that for the order parameters we also
write �(r) = 〈�〉 + δ�(r) and M(r) = 〈M〉 + δM(r). The
first term on the right-hand side (9) is determined by the
solution of the Eilenberger equation averaged over various
disorder configurations, i.e., in the spatially homogeneous
case, and is given by [20,32]

〈Ĝ〉 = gωτ̂3ρ̂3σ̂0 − fωτ̂0ρ̂2σ̂0 + sωτ̂2ρ̂3σ̂3. (10)

Given the normalization condition for the function Ĝ, up to
the linear order in Ĝ1 it follows

〈Ĝ〉δĜ + δĜ〈Ĝ〉 = 0. (11)

This expression imposes a constraint on the matrix form for
the function δĜ and we choose to write it as follows,

δĜ =iαx τ̂2ρ̂1σ̂3 − βx τ̂3ρ̂1σ̂0 − ςx τ̂1ρ̂0σ̂3

+ ax τ̂3ρ̂3σ̂0 + ibx τ̂0ρ̂2σ̂0 + iγx τ̂2ρ̂3σ̂3,
(12)

with the notation x = (ωn, n, r). Given Eqs. (10) and (11) the
functions in (12) must satisfy gωax − i fωbx + isωγx = 0 and
gωαx − isωβx − i fωςx = 0.

The first step towards obtaining our main result is to insert
expressions (9), (10), and (12) into (4) and average both parts
of the equation over the disorder distribution function keeping
the leading nonvanishing terms which contain nontrivial cor-
rections. There will be three resulting equations with one of
them being redundant due to the normalization condition. The
remaining two equations can be written compactly using the
components of the vector ��,

�z fω − �xgω = 〈axδ�〉, �zsω − �ygω = 〈axδM〉, (13)

where �x = 〈�〉 + �m fω, �y = 〈M〉 − �t sω, �z = ωn +
�t gω, and �t,m = �0 ± �π . The fact that only the interband
scattering rate �π enters into the first equation is a manifesta-
tion of the Anderson theorem, i.e., if we set �π → 0, then we
recover the corresponding equation for the BCS model [2].

In order to compute the local (disorder-induced) corre-
lation functions featured in Eqs. (13), we go back to the
Eilenberger equation (4) and keep the terms up to the first
order in the components of δĜ. The solution of the Eilenberger
equation can be conveniently found by going into the momen-
tum representation

ak = −�z[ fωδ�(k) + sωδM(k)]

(vF /2)2(nk)2 + ��2
,

ibk = �y fωδM(k) − δ�(k)(�zgω + �ysω )

(vF /2)2(nk)2 + ��2
,

iγk = −�y fωδ�(k) − δM(k)(�zgω + �x fω )

(vF /2)2(nk)2 + ��2
, (14)

where now k = (ωn; n, k). It is easy to check that these
relations satisfy the corresponding constraint condition. In
order to find the expressions which are valid for an arbitrary
values of kF l (kF is a Fermi momentum and l is the mean
free path), in (14) one needs to replace δ�(k) → δ�(k) −
i�m〈bk〉n − ( fω/gω )�t 〈ak〉n, δM(k) → δM(k) − i�t 〈γk〉n −
(sω/gω )�t 〈ak〉n (here, 〈· · · 〉n denotes the averaging over all
directions of n), and solve (14) for 〈ak〉n, 〈bk〉n, and 〈γk〉n after
averaging them over n. All these expressions can be found in
the closed form. Lastly, we note that the expressions for the

remaining three functions αk , βk , and ςk are of no importance
to us since they do not contribute to the self-consistency
equations for their averages over the directions of the Fermi
velocity vanish identically.

With the help of the first equation (14) we can now express
the disorder correlation functions (13) in terms of the order
parameter correlators. For brevity, we represent it in terms of
the two-component field �̂(r) = [δ�(r), δM(r)]:

〈�̂(r)�̂(r′)〉 =
∫

d2k
(2π )2

[
Dk Ck
Ck Mk

]
eik(r−r′ ). (15)

In their turn, the correlators (15) can be expressed in terms of
the correlators of the interaction constants (8) by solving the
following system of linear equations derived from the self-
consistency conditions:

πT
∞∑

ωn>0

(
gω

ωn + 2�t gω

+ χysω − �pω �χ
)

δM(k)

+ πT
∞∑

ωn>0

χy fωδ�(k) = −〈M〉λm(k),

πT
∞∑

ωn>0

(
gω

ωn + 2�πgω

+ χx fω − �pω �χ
)

δ�(k)

+ πT
∞∑

ωn>0

χy fωδM(k) = −〈�〉λs(k).

(16)

Here, functions χα are the components of the vector �χ =
(χx, χy, χz ) with χ j = (� j/| ��|)[(vF k/2)2 + ��2]−1/2 and
�pω = ( fω, sω, gω ).

In what follows, we are primarily interested in finding how
inhomogeneity-induced correlations influence the coexistence
region. For this purpose, we only need to analyze the critical
temperatures Tc(M ), which determines the onset of the SC
emerging from the preexisting SDW state, and Ts(�), which
sets the boundary between the coexistence region and purely
SC state in the temperature-doping phase diagram. Therefore,
we only need to analyze the expressions for the disorder
correlators when one of the order parameters is zero.

Results for Tc(M ) boundary. In this case 〈M〉 
= 0, 〈�〉 = 0,
and we also set δ� = 0, which means that the first equation
(13) is satisfied identically, while the second equation can be
parametrized as follows,

�zsω − �ygω = −ηm〈M〉gωsω, (17)

where we parametrized the correlator as 〈axδM〉 =
−ηm〈M〉gωsω. The expression for the parameter ηm which is
applicable for arbitrary values of kF l is

ηm = 〈M〉
∫ ∞

0

d2k
(2π )2

�pω �χMk

(1 + 2�tχz − �t �pω �χ )
, (18)

where we used the identity �pω �χ = χz/gω, introduced

Mk = ϕk

[
πTc

∞∑
ωn>0

(
gω

ωn + 2�t gω

+ χysω − �pω �χ
)]−2

,

(19)
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and rescaled Mk → 〈M〉2Mk. Without loss of generality, we
consider

ϕk = ϕ0e−(krc/2)2
, (20)

where ϕ0 and rc are the phenomenological parameters
characterizing the magnitude and scale of the inhomo-
geneities. Although both 〈M〉 and ηm must be solved for
self-consistently, from Eq. (17) we see that inhomogeneities
produce the shift in the scattering rate 2�t → 2�t + ηm〈M〉.
This means that at least at very small values of ηm, Tc(M ) must
increase compared to its value in the spatially homogeneous
case for suppression of 〈M〉. Qualitatively this implies a boost
for superconductivity. The actual magnitude of the parame-
ter ηm crucially depends on the correlation radius rc: When
the correlation radius kF rc ∼ 1 and rc � vF /〈�〉, we expect
ηm � 1.

Results for Ts(�) boundary. In this case 〈�〉 
= 0, 〈M〉 = 0,
and thus we have

�z fω − �xgω = −ηs〈�〉gω fω, (21)

where the dimensionless parameter ηs is given by

ηs ≈ 〈�〉
∫ ∞

0

d2k
(2π )2

�pω �χDk

(1 − � �pω �χ )
, (22)

and the rescaled Dk → 〈�〉2Dk correlator is

Dk = ϕk

[
πTs

∞∑
ωn>0

(
gω

ωn + 2�πgω

+ χx fω − �pω �χ
)]−2

.

(23)

We note that expression (22) acquires such a simple form only
when we assume that �π � �0 = �. This approximation is
not restrictive as �π is primarily responsible for bending the
SC dome of Tc(�π ) at larger dopings, and has a weaker influ-
ence of the physics near the coexistence region. In addition,
we observe again that inhomogeneities lead to an increase
in the interband scattering rate 2�π → 2�π + ηs〈�〉, so it
is not a priori clear whether it will yield the suppression or
boost of Ts(�). To resolve this question we need to employ a
self-consistent approach.

Self-consistent method. Parameters ηm,s are functions of
the Matsubara frequency and therefore Eqs. (18) and (22)
must be solved self-consistently with (17) and (21) along
with the equation for 〈�〉 and 〈M〉. However, in the case of
strong inhomogeneities the main contribution to the integral
comes from the region of momenta k ∼ r−1

c (rc is the disorder
correlation radius) and the frequency dependence of these pa-
rameters can be neglected. In Fig. 2 we show the results of the
self-consistent solution of the equations above for the critical
temperature Tc(M ) and Ts(�) correspondingly as functions of
parameter ϕ0. As we have expected, Tc(M ) increases with an
increase in the magnitude of inhomogeneities, while Ts(�)
decreases with an increase in ϕ0. This means that within
the linear approximation we have adopted, spatial inhomo-
geneities have a much more profound effect on the magnetic
transition than on superconductivity.

Summary and discussion. In conclusion, we have con-
sidered the impact of spatial pairing-potential correlations
induced by short-scale disorder fluctuations on the interplay
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FIG. 2. (a) Results of the self-consistent solution of Eqs. (17) and
(18) for the superconducting critical temperature inside the SDW
phase. (b) Results of the self-consistent solution of Eqs. (21) and
(22) for the SDW transition temperature inside the superconducting
phase. These results have been obtained by neglecting the depen-
dence of the parameters ηm,s on the Matsubara frequency.

of the SDW-SC competition in multiband metals. We found
that quantitative effects stemming from the physics of short
scales are the enhancement of superconducting Tc in the opti-
mally doped region and a widening of the coexistence phase.
These conclusions are rather robust and fairly universal as
a microscopic form of the disorder correlation function is
not essential. It is only the correlation radius and strength
of correlations that determine the relevant parameters of the
model.

The extent of the results presented in this Letter is limited
by two major factors. First, we considered only a minimal
two-band model. A more elaborate treatment will bring ad-
ditional features, most notably a possible disorder-induced
topological change of the superconducting gap structure
[39,40], the appearance of a narrow dome of s + is′ time-
reversal broken superconductivity separating the gapped and
nodal regions [41], as well as the effects of nematic corre-
lations [42]. All these phenomena have profound observed
experimental signatures. However, these complications do not
change the main conclusion of this work concerning the ef-
fect of short-range disorder fluctuations on the width of the
coexistence region. Indeed, the multiband character simply
brings additional renormalizations of �π , and thus a steeper
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suppression of Tc in the overdoped region, but has qualita-
tively the same weaker effect in the domain of optimal doping,
as supported by our numerical self-consistent analysis. These
details can be further tackled quantitatively based on the
quasiclassical theory of the three-band modeling of magnetic
order in iron pnictides [43] extended to superconducting sce-
narios. Second, we considered only weak impurities treated
at the level of the Born approximation, thus missing the
physics of the induced Yu-Shiba-Rusinov localized bound
or miniband subgap states [44–46] that can be captured

by a full T̂ -matrix analysis. This is still an open problem
to address in the context of SDW-SC coexistence and the
density of states subgap structure that we leave for further
investigation.
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