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In nonperturbative regimes, the superfluid instability in the two-dimensional (2D) Hubbard model can be
described by an emergent BCS theory with small effective pairing constants. We compute the effective couplings
using a controlled bold-line diagrammatic Monte Carlo approach, which stochastically sums all skeleton
Feynman diagrams dressed in the one- and two-particle channels to high expansion orders, and map out the
resulting superfluid ground-state phase diagram in a range of next-nearest-neighbor hopping 0 � t ′ � 0.3t ,
interaction strength 0 � U � 3t , and lattice filling 0 � n � 2. The phase diagram is dramatically transformed
in the hole-doped region and becomes particularly rich at larger doping and t ′. At t ′ = 0.3, the weak-coupling
picture with the dominant triplet pairing sharply peaked at n ≈ 0.73 due to the Van Hove singularity is replaced
by a plateau of the singlet dx2−y2 paring, while for U � 3t the effective couplings are consistent with the dx2−y2

high-temperature superconductivity in the hole-doped region near cuprates’ optimal doping.

DOI: 10.1103/PhysRevB.104.L020507

The fermionic Hubbard model [1–4] is the simplest micro-
scopic model of interacting electrons in solids:

H =
∑
k,σ

(εk − μ)c†
kσ

ckσ + U
∑

i

ni↑ni↓. (1)

Here μ is the chemical potential, k is the momentum, U is
the on-site repulsion strength, i labels the lattice sites, and the
(square lattice) dispersion is given by

εk = −2t[cos(kx ) + cos(ky)] − 4t ′ cos(kx ) cos(ky),

where t and t ′ are the nearest- and next-nearest-neighbor
hopping amplitudes (t = 1 in our units), respectively. It is a
workhorse of condensed matter theory, used for understanding
a plethora of macroscopic quantum phenomena, such as the
metal-to-insulator transition [5], ferromagnetism and antifer-
romagnetism [1,2], and high-temperature superconductivity
[3]. It is also the main testbed for novel computational ap-
proaches to correlated lattice electrons [6], and a rare example
of a paradigmatic model of many-body physics amenable to
precise experimental realization, in particular with ultracold
atoms in optical lattices [7–13].

The Hubbard model on the square lattice and its relation to
layered copper-oxide materials (cuprates) have been subject
to particular scrutiny, with the grand goal of shedding light
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on high-temperature superconductivity [3]. However, a close
competition between a multitude of superfluid and magnetic
orders makes it a major, largely still unsolved, problem.

A numerically exact phase diagram has been established
(semi)analytically at vanishingly small interactions and/or
low fillings [14–21]. In this picture, described by the gener-
alized BCS theory, the pairing instability develops in a Fermi
liquid due to a small Cooper-channel attraction resulting from
nontrivial momentum dependence of the scattering matrix on
the Fermi surface. The ground state near half filling (average
density per site n = 1) for all relevant t ′ (0 � t ′ � 0.5) was
found to be, similarly to cuprates, a dx2−y2 -wave superfluid,
while the phase diagram at larger dopings becomes remark-
ably rich with dxy-, p-, g-, and s-wave superfluids also realized
at different densities [20].

The regime of weak effective attraction in the Cooper chan-
nel extends to substantial values of U , where the calculation
of the scattering matrix becomes essentially nonperturba-
tive. It is the so-called emergent BCS regime, which has
recently become tractable with controlled accuracy directly in
the thermodynamic limit by means of diagrammatic Monte
Carlo techniques [22]. Without next-nearest-neighbor hop-
ping (t ′ = 0), the emergent BCS regime has been found to
extend at least up to U � 4 and n � 0.8, and a phase di-
agram has been obtained [22], which differs qualitatively
from the weak-coupling limit [17,18,20], while the dx2−y2

pairing at larger densities is robust. Evidence of dx2−y2 -wave
superconductivity with a particularly high Tc has been pro-
vided at intermediate to strong coupling (U � 3) by means
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of embedded quantum cluster methods [23–32] as well as
the functional renormalization group approach [33–35]. Yet,
recent studies by advanced tensor network and quantum
Monte Carlo methods have shown that, at least for U � 6 and
n � 0.8, high-Tc superconductivity is completely wiped out
by inhomogeneous magnetic (stripe) phases [36–38]. Thus,
the question of whether the two-dimensional (2D) Hubbard
model with t ′ = 0 supports high-Tc superconductivity at all
remains open.

On the other hand, a minimal tight-binding model of high-
Tc cuprates must feature a significant next-nearest-neighbor
hopping 0.1 � t ′ � 0.3 [39–41], which is known to essen-
tially alter the phase diagram already in the weak-coupling
limit [17,18,20]. Until now, however, a reliable phase di-
agram for nonzero values of t ′ and substantial couplings
has remained unknown. Moreover, at a nonzero t ′, the
Fermi surface for certain fillings n = nVH features a Van
Hove singularity in the density of states without being fully
nested. Such fillings could favor Cooper pairing and substan-
tially enhance the corresponding Tc, potentially explaining
its peak at optimal doping [42–47], but the effects of nVH

at nonperturbative interactions have not yet been reliably
understood.

Here we study the emergent BCS regime of the Hubbard
model on the square lattice in a range of next-nearest-
neighbor hopping 0 � t ′ � 0.3, interaction strength 0 � U �
3, and lattice filling 0 � n � 2, and obtain the effective
BCS couplings with controlled accuracy by the bold dia-
grammatic Monte Carlo (BDMC) technique [22,48,49]. In
our approach, introduced in Ref. [22], all Feynman dia-
grams for the irreducible in the Cooper channel vertex in
terms of the self-consistently determined fully dressed one-
and two-particle propagators are summed numerically ex-
actly up to a sufficiently high expansion order (defined as
the number of two-particle propagators in the diagram) un-
til convergence, while the irreducible vertex determines the
effective pairing constants λS in each symmetry sector S
(S = s, g, dxy, dx2−y2 , px, py on the square lattice). The result-
ing superfluid phase diagram, Fig. 1, which is also unbiased
under an additional natural assumption (to be discussed be-
low), transforms dramatically with t ′: the p-wave regions
with two different nodal structures expel the dxy phase on
the hole-doped side, while new s and g phases appear and
the region around nVH(t ′) with the highest pairing strengths
remains occupied by the dx2−y2 -wave superfluid which is
prevails for densities n > 0.55 regardless of the values of
t ′ and U . At t ′ = 0.3, most relevant for cuprates, we find
that the weak-coupling scenario [18,20]—in which the max-
imum of Tc with doping is due to the p-wave pairing that is
sharply peaked at n = nVH ≈ 0.73—is transformed already at
U ∼ 0.5: the dx2−y2 pairing becomes dominant and develops
a plateau at nVH that stretches to the vicinity of cuprates’
optimal doping n ∼ 0.8. A self-consistent diagrammatic ex-
pansion up to orders as high as 7 is necessary to capture with
controlled accuracy the correct behavior already at U ∼ 1,
demonstrating that the emergent BCS regime of the 2D Hub-
bard model is not amenable to perturbative treatment [50].
The largest (among all symmetry sectors) pairing constant
rises steeply with density, reaching ≈0.25 at n = nVH and
U = 3, where it corresponds to the dx2−y2 pairing, and mark-

FIG. 1. Superfluid ground-state phase diagram for multiple val-
ues of next-nearest-neighbor hopping t ′. The t ′ = 0 results are
adapted from Ref. [22]. In the gray-shaded regions the leading
pairing constants become large (�0.1), potentially violating the
condition λ∗

S ln(EF /ξ∗) � 1 and implying high Tc, while poor con-
vergence with diagram order suggests competing instabilities. The
red line is the antiferromagnetic ground state at t ′ = 0, dashed lines
mark nVH. Gray crosses are the points for which the calculations were
performed.

ing the regime of strong Cooper-channel coupling, consistent
with high-temperature superconductivity. At larger densities,
λdx2−y2 increases with diagram order without signs of satu-
ration, implying a competition between the superfluid and
magnetic instabilities.
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FIG. 2. The Bethe-Salpeter equation. Here pi ≡ (ξi, ki ) and sum-
mation over ξ3 and integration over k3 is assumed.

BDMC enables numerically exact calculation of the irre-
ducible in the particle-particle (Cooper) channel vertex �pp

directly as a sum of all possible four-point diagrams that
cannot be split into disconnected pieces by cutting two par-
ticle lines [51]. �pp drives the superfluid instability, which
is marked by divergence at Tc of the full four-point vertex
F pp according to the Bethe-Salpeter equation (BSE), shown
diagrammatically in Fig. 2. Here the solid lines are the
many-body Green’s functions G[p = (ξ, k)] in terms of the
Matsubara frequencies ξ and momenta k. A direct solution
of the BSE is not feasible because of its vast data content
and essential nonlinearity. Nonetheless, when �pp is small,
it becomes tractable semianalytically due to the separation
between the Fermi energy EF , the typical frequency scale
ξ∗ at which �pp varies, and temperature: T � ξ∗ � EF . It
comes from the requirement that, for small �pp, the divergence
of F pp in the BSE must come from a large contribution of
G(p3)G(−p3), which, being summed over frequencies, grows
at best logarithmically slowly with EF /T , provided G(p) is
that of a fully developed Fermi liquid. In this case, with
logarithmic accuracy, at T ∼ Tc, the BSE reduces to (see, e.g.,
Ref. [22])

F pp
k̂1,k̂2

≈ �
pp
k̂1,k̂2

+ ln
cEF

T

∫
�k̂1,k̂3

F pp
k̂3,k̂2

dk̂3, (2)

where all the functions are taken at vanishing frequencies
and projected onto the Fermi surface, e.g., F pp

k̂1,k̂2
≡ F pp(k1 =

kF (k̂1), ξ1 → 0; k2 = kF (k̂2), ξ2 → 0) (with kF the Fermi
momentum, k̂ = k/|k|), c is a constant of order unity, and
the matrix �k̂1,k̂1

is straightforwardly related to �
pp
k̂1,k̂2

via the
Fermi surface parameters (see Ref. [22] for details). Thus,
(block) diagonalizing the matrix �k̂1,k̂1

in the basis of the irre-
ducible representations of the point group of the lattice (see,
e.g., Ref. [20]), one finds that F pp diverges at Tc = cEF e−1/λS ,
where λS is the largest positive (attractive in these notations)
eigenvalue of �. The eigenvector corresponding to λS deter-
mines the spatial structure of the order parameter just below
the superfluid transition.

Note that Eq. (2) reduces the dependence of the BSE on
the full �pp(p1, p2) to its zero-frequency part and only on
the Fermi surface. This is a major simplification for practical
calculations, since only constants λS need to be computed
by BDMC, which allows us to achieve small statistical error
bars. Systematic relative corrections to the phase diagram
lines determined in this way are on the order of λ∗

S ln(EF /ξ∗)
[52], where λ∗

S is the typical variation with frequencies of the
full matrix �(ξ1, ξ2, k1, k2) projected onto the sector S. Since
computing the full frequency dependence of � in practice
requires unrealistic computational resources, here we can only
estimate the corresponding systematic error: In all S except
the nodeless s wave (for which the high-frequency effective

coupling reduces to the bare U ), λ∗
S ∼ |λS| since the effective

coupling vanishes at high frequencies. Given that the obtained
values of λS for the claimed superfluid phases do not exceed
a few percent, in view of Tc � ξ∗ � EF it is reasonable to
assume that λ∗

S ln(EF /ξ∗) � 1. Under this assumption, the
phase diagram in Fig. 1 is unbiased, except the gray-shaded
regions near nVH discussed separately.

In order to obtain numerically exact values for λS with
acceptable error bars we must ensure that the computed dia-
grammatic series can be reliably extrapolated to infinite order
within the diagram orders accessible by BDMC in reason-
able time. Because at the two-particle level the expansion
is renormalized only in the particle-particle channel, while
reducible diagrams in other channels are summed explicitly,
competing instabilities in other channels, such as, e.g., to-
wards antiferromagnetic or stripe phases, manifest themselves
as lack of convergence. Lack of convergence can also indicate
[53] proximity to the branching point of the Luttinger-Ward
functional [54], beyond which the skeleton series is not re-
liable. We were able to evaluate the series for �

pp
k̂1,k̂2

with
the fully self-consistent determination of the one- and two-
particle propagators up to order 7 with under a million CPU
hours available to us. We then obtained boundaries between
different states in Fig. 1 from linearly interpolating λS on a
mesh of calculated points.

Figure 1 shows the resulting ground-state phase diagram
for t ′ = {0.1, 0.2, 0.3} (three lower panels) along with the
t ′ = 0 data from Ref. [22] (upper panel) for comparison. We
denote the phases S(n), where n is the number of nodes in the
order parameter of the symmetry S, as exemplified in the top
row in Fig. 1. The singlet d (4)

x2−y2 superfluid near half filling
is a distinctive feature of the 2D Hubbard model found by
most calculations at larger U as well [23–31] in relation to
cuprates. On the electron-doped side (n > 1), changes with
increasing t ′ are minimal: the tiny p(6) region disappears al-
ready at t ′ = 0.1, as predicted from weak coupling [20], the
p(2) region near n = 2 shrinks noticeably towards higher U in
favor of d (4)

x2−y2 , while the boundary between d (4)
xy and d (4)

x2−y2

is curiously insensitive to t ′ or U . The p(2)-d (4)
xy boundary for

U → 0, n → 2 can be obtained analytically, as in the case of
t ′ = 0 [15,16], which is left for future work.

On the hole-doped side (n < 1), the boundary of the d (4)
x2−y2

phase shifts only slowly to lower dopings, but the neighbor-
ing dxy is gradually replaced by p(6), which grows along the
boundary from a tiny small-U region at t ′ = 0, eventually
expelling the dxy phase for all accessible U . New s(8) and
g(8) phases appear at t ′ > 0. Both have eight nodes in the
gap function but similarly to d (4)

xy and d (4)
x2−y2 belong to dif-

ferent irreducible representations of the D4 symmetry group
and can be obtained from one another by a π/4 rotation.
An s(8) region appears at t ′ > 0 wedging between p(6) and
dxy at larger U and its extent in the vertical (U ) direction
grows very rapidly with increasing t ′. Interestingly, the s(8)

phase appears only at essentially finite U and, as such, is
entirely nonperturbative. A region of g(8) grows with t ′ from
weakcoupling at small densities, remaining limited to U � 1.
The p(2)-wave phase spreads to higher densities with increas-
ing t ′ and U , which together with the growing p(6) squeezes
dxy out, so that by t ′ = 0.3 the triplet superfluid dominates
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FIG. 3. Left: Effective coupling strengths corresponding to different superfluid states for density values near nVH(t ′ = 0.3) = 0.726
(dashed, red) and interaction strengths U = {0.1, 0.5, 1.0}. Dotted lines represent second order bare perturbation theory results. Right: Partial
sums for effective coupling strengths as a function of inverse diagram order, for n = 0.73, t ′ = 0.3, and U = 1.0. Horizontal lines represent
results extrapolated to infinite expansion order.

the larger doping (n < 0.6) region of the diagram and dxy

disappears.
Near nVH = n(μ = 4t ′) ≈ 0.726, convergence of the dia-

grammatic series for �pp up to order 7 becomes slow at U >

1, with the effective couplings growing substantially with
diagram order. This behavior is consistent with the general
picture of the effects of the singular density of states on the
Fermi surface suggested by mean-field [55–58] and renor-
malization group studies [59–63], in which dx2−y2 pairing is
fuelled by the competition with commensurate or incommen-
surate magnetic (stripe) phases that win over at a larger U
[36–38]. This is the regime where the pairing constants are
typically the largest, potentially explaining the maximum of
Tc in cuprates [47]. We study it specifically at t ′ = 0.3 relevant
to cuprates. Figure 3 shows λS for U = {0.1, 0.5, 1.0} as well
as the typical dependence on diagram order. At U = 0.1 the
scenario is qualitatively similar to weak coupling [18,20]: the
d (4)

x2−y2 pairing experiences a dip around nVH while the p(6) one
is sharply peaked making it the leading instability. However,
already at U = 0.5, the leading state around nVH (at least
within our resolution δn = 0.001) is always d (4)

x2−y2 , the p(6)

pairing being still peaked but twice as low. The couplings

FIG. 4. (a) Rapid increase of the maximal effective coupling
λmax on approach to nVH at t ′ = 0.3; inset: the gap function type
for each point (n,U ) in the notations of Fig. 1. (b) Nature of the
series convergence at n = 0.72, U = 3 for the effective coupling in
the leading symmetry sectors, and the corresponding values obtained
by a linear extrapolation from the results with their error bars of
the two highest expansion orders with a conservative estimate of the
systematic error. (c) Slow convergence or divergence of the series at
U = 3 near cuprates’ optimal doping.

increase with U , but the qualitative shape of λdx2−y2 (n) is
robust: it grows with density and plateaus for n > nVH until
at least n ∼ 0.8.

Of special interest is the regime of U > 1, where {λS}
grow rapidly and become very large on approach to nVH

(gray-shaded regions in Fig. 1). Figure 4(a) reveals that the
maximal among all symmetry sectors effective coupling λmax

reaches ≈0.25 at U = 3 and n = nVH, where it is of the
dx2−y2 character. Remarkably, it grows steeply with the dia-
gram order [Fig. 4(b)], so that a low-order perturbation theory
would underestimate λmax by an order of magnitude, wrongly
concluding that U = 3 is a regime of weak correlations with
an exponentially small Tc. In contrast, the (emergent) BCS
estimate of Tc for the actual λmax ≈ 0.25 in a real system
is ∼200 K, consistent with dx2−y2 high-Tc superconductivity.
At larger densities, e.g., n = 0.8 [Fig. 4(c)], λmax does not
show saturation within the accessible diagram orders, which
only allows us to establish its lower bound λmax > 0.25. The
lack of convergence is consistent with a competing instability
towards a magnetic (antiferromagnetic or stripe) phase, which
is known to dominate over superconductivity at these densities
at least for t ′ = 0, U � 6 [36–38].

Our results thus suggest that dx2−y2 high-Tc supercon-
ductivity driven by strong magnetic fluctuations could be
realized at t ′ = 0.3 already at U as low as ∼3, and n � nVH

near cuprates’ optimal doping. The large values of the ef-
fective couplings almost certainly violate λ∗

S ln(EF /ξ∗) � 1,
meaning that the emergent BCS theory that relies solely
on λS , as well as the Fermi-liquid character of the normal
state, becomes questionable. The recently proposed implicit
renormalization approach [52] addresses this problem, which,
combined with accurate description of correlations near mag-
netic instabilities [64–66], could enable controlled studies of
superconductivity in this regime in the future.
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