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Shear modulus anomaly of unconventional superconductors in a symmetry breaking field
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Using Ginzburg-Landau formalism, we theoretically study the isothermal shear modulus anomaly of an uncon-
ventional superconductor with a two-component order parameter, where the superconducting transition is split by
a symmetry-breaking field. Experimental signatures are proposed for both chiral and nematic superconductors.
Particularly striking is the vanishing of C66 across the lower transition to a nematic superconducting state. Our
findings can guide future experiments and shed new light on materials such as Sr2RuO4 and MxBi2Se3.
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A superconductor described by a multicomponent order
parameter falls under the category of unconventional super-
conductivity [1]. In the presence of a symmetry-breaking field
(SBF) explicitly breaking the lattice symmetry, the supercon-
ducting transition is split into two branches [2,3]. UPt3 is the
earliest material that lead to the conception of this scenario,
where the SBF is an SDW order above superconductivity
[4–9].

Controversy abounds, however, around Sr2RuO4 and
MxBi2Se3, two other materials that may fit into this sce-
nario. The superconductivity of Sr2RuO4 appears to break the
time-reversal symmetry (TRS) [10]. Chiral superconductivity
seems a natural interpretation [11], but the associated edge
current has never been observed [12–15], casting doubt on the
scenario. Experiments with uniaxial strain (as an SBF) turn
out mixed results: no thermodynamic signature for split tran-
sitions is observed [16,17], yet in a μ-SR experiment [18,19]
the breaking of TRS occurs below the superconducting Tc,
indicating two branches of transitions.

The nematic superconductivity model of MxBi2Se3 [20]
necessitates a yet-unidentified pre-existing “pinning field”
[21] to explain the persistent nematic orientation of any
given sample in repeated experiments [22,23]. A small dis-
tortion of crystal lattice has been observed [22–24], and it
is suggested that this distortion accounts for the pinning
effect [22,23]. The current body of experimental evidence
supporting this so-called “nematic hypothesis” consists of
large twofold anisotropic responses incompatible with lattice
symmetry [25–33] emerging together with superconductivity.
However, this is not logically inevitable: the pinning field
alone already breaks the trigonal lattice symmetry and gives
a twofold direction, regardless of the nature of the order pa-
rameter itself. The pair of split transitions remains the most
definitive evidence for multicomponent superconductivity. To
our knowledge, none of the hallmarks [2,3,21] pertaining to
the split transitions have been tested for in existing experi-
ments.

Recent ultrasound experiments reveal a shear modulus
anomaly in Sr2RuO4 [34,35] across the superconducting tran-

sition in the absence of an SBF, supporting the hypothesis of
a multicomponent order parameter; ultrasound measurements
of the shear moduli can be a fruitful direction in the search
of split transitions. Taking Ginzburg-Landau (GL) theory of
a two-component order parameter as our starting point, we
examine the discontinuity in the isothermal shear modulus
across both branches of transitions. We find that, in particular,
one of the shear moduli vanishes at the lower transition of
MxBi2Se3. Such a drastic signal should be readily observed in
experiment. Prior results on UPt3 exists [36] but, as we will
presently explain, we disagree with their theoretical analysis.
In contrast, the order parameter of an s-wave superconductor
transforms trivially under any crystal symmetry, and shear
strains cannot couple linearly to the superconductivity. Thus
it would show none of the anomalies discussed in this paper.

We will start by introducing the GL theory of a two-
component order parameter and coupling it to the planar shear
strain and an SBF. Next, we evaluate the shear moduli, paying
particular attention to their qualitative behavior across each
of the split transitions. There are three separate cases: upper
transition, lower transition into the chiral phase, and lower
transition into another nematic phase. We then proceed to
introduce the modified GL theory that describe nematic super-
conductivity in a trigonal crystal (e.g., MxBi2Se3) and work
out the behavior of the shear moduli for the case. Finally we
discuss the implication of our result on the verification of split
superconducting transition in such materials.

Ginzburg-Landau theory. For the materials highlighted in
the introduction (UPt3, Sr2RuO4, and MxBi2Se3), the lattice
point groups are respectively D6h, D4h, and D3d . They all
admit two-dimensional irreducible representations. We as-
sume the (complex) superconducting order parameter �η =
(ηx, ηy) transforms under such representation. The most gen-
eral homogeneous GL free energy, invariant under the lattice
symmetry, is conventionally written as [37]

F0 = a|η|2 + b1|η|4 + b2

2
[(η∗

xηy)2 + (η∗
yηx )2] + b3|ηx|2|ηy|2.

(1)

2469-9950/2021/104(2)/L020506(7) L020506-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2479-2626
https://orcid.org/0000-0002-3542-5186
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.L020506&domain=pdf&date_stamp=2021-07-13
https://doi.org/10.1103/PhysRevB.104.L020506


PYE TON HOW AND SUNG-KIT YIP PHYSICAL REVIEW B 104, L020506 (2021)

This can be cast into an elegant alternate form. Let {σi, i =
1, 2, 3} be the usual Pauli matrices, and define 〈σ 〉i ≡
(�η†σi−1�η) (identifying σ1−1 = σ3). Each 〈σ 〉i forms a one-
dimensional representation of D4h. Under D6h and D3d ,
(〈σ 〉1, 〈σ 〉2) transforms like a headless vector in the basal
plane, while 〈σ 〉3 transforms trivially. The free energy be-
comes

F0 = a|η|2 + 1

2

3∑
i=1

�i〈σ 〉2
i ;

�1 = 2b1, �2 = 2b1 + 1

2
(b3 + b2),

�3 = 2b1 + 1

2
(b3 − b2).

(2)

Stability requires all �i > 0. D3d and D6h crystals are addi-
tionally constrained to �1 = �2. Throughout this paper, there
will be no summation over indices unless explicitly indicated.

The theory (2) has exactly one critical point at a = 0.
For a < 0, the equilibrium state is characterized by 〈σ 〉i �= 0
where i corresponds to the smallest �i; all other 〈σ 〉 j = 0.
The nematic state with a real �η requires i = 1 or 2, while i = 3
yields the complex chiral state.

We introduce a background SBF � to the free energy:

FSBF = −�〈σ 〉1. (3)

A positive (or negative) � explicitly favors η ∝ (1, 0) (or
(0,1)). We assume � > 0, and the opposite case is obtained
through trivial sign changes. This breaks the crystal symme-
try down to D2h (C2h for the D3d case). Reader’s attention
is drawn to the twofold axis parallel to (1,0): this twofold
symmetry characterizes the normal phase and will be referred
to as C ′

2.
This addition was first proposed to explain the split transi-

tions of UPt3 [5–7]. For MxBi2Se3, the reported pinning field
is along either the a or a∗ lattice direction for each individual
sample [23,38], and (3) is also appropriate. For Sr2RuO4, an
applied uniaxial strain may act as an SBF.

The (upper) critical temperature is now raised to au =
|�| > 0, and the order parameter is pinned along (1,0): this
orientation is symmetry-protected by C ′

2
1. However, the “nat-

ural preference” of the material is encoded in the quartic order
terms in (2), and this may not be compatible with (1,0). If that
is indeed the case, the competition drives a second transition
at a lower temperature [21].

Specifically, if �2 is the smallest, �η remains nematic but
tilts away from (1,0) below this lower transition, breaking
C ′

2. If �3 is smallest, �η becomes a combination of (1,0) and
an isotropic chiral component (1,±i), breaking the TRS but
preserving the D2h (with the C ′

2 redefined to be followed by
time reversal). If �i (i �= 1) is the smallest, the lower critical
temperature is

al = −
(

�i

�1 − �i

)
� < 0. (4)

1For � < 0, the (0,1) orientation is also protected by the same C ′
2.

All subsequent symmetry arguments apply equally.

Up to an overall phase, �η is parameterized as

�η = |η|
(

cos θ

eiχ sin θ

)
. (5)

In the upper phase au > a > al , we find the equilibrium solu-
tion:

|η̄|2 = � − a

�1
, θ̄ = 0, χ drops out. (6)

The over-bar quantities such as θ̄ denote the equilibrium solu-
tion. The associated specific heat discontinuity is

Cupper − Cnormal = (T0 + �)/�1, (7)

where T0 is the critical temperature of the single transition in
the absence of SBF. It is related to a by a = (T − T0).

For a < al , the lower phase solution is

|η̄|2 = − a

�i
, |η̄|2 cos 2θ̄ =

(
�

�1 − �i

)
,

χ̄ =
{

0 (i = 3, nematic)

±π/2 (i = 2, chiral)
. (8)

For this lower transition, θ can serve as an order parameter.
It exhibits the usual meanfield critical behavior θ̄ ∝ ±|a −
al |1/2 for a < al . The associated specific heat jump is

Clower − Cupper = (T0 + al )

(
1

�i
− 1

�1

)
. (9)

We next consider the coupling exclusively to shear strains
in the basal plane:

ε1 = εxx − εyy, ε2 = 2εxy. (10)

These form a 2D representation under D3d or D6h; under D4h

they are separate one-dimensional representations. One can
write down invariant combinations of these with (〈σ 〉1, 〈σ 〉2).
The strain part of the free energy is then

Fε = −g1ε1〈σ 〉1 − g2ε2〈σ 〉2 + c1

2
ε2

1 + c2

2
ε2

2 . (11)

Here, c1 and c2 are the shear moduli in the normal phase; c1 =
c2 and g1 = g2 for D3d and D6h.

The coupling to the strain renormalizes the quartic coeffi-
cients [34] when the strain is eliminated using GL equations.
The quartic coefficients in (1) must be replaced with the
“bare” ones: define

λ3 = �3; λi = �i + g2
i

ci
, i = 1, 2. (12)

We expect this correction to be quite small.2 However, it will
prove to be qualitatively important in the case of trigonal
crystal.

2The jumps of elastic moduli across the unsplit (or upper) transition
indicates the size of the renormalization effect (12) (cf. Eqs. (18),
and also Refs. [34–36]), and is usually found in the range of 10−4

[34–36]. In addition, the Testardi relation [44] misses this renormal-
ization [39], but still works fairly well: see Supplemental material of
Ref. [34].
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At the end, the full GL free energy is

F = a|η|2 − �〈σ 〉1 + 1

2

3∑
i=1

λi〈σ 〉2
i

+
∑
i=1,2

(
−giεi〈σ 〉i + 1

2
ciε

2
i

)
. (13)

One imposes ∂F/∂εi = 0 for strains at equilibrium:

ε̄i = gi

ci
〈σ 〉i, i = 1, 2. (14)

Equations (4)–(9) applies equally to the free energy (13).
For the trigonal and hexagonal cases (D3d and D6h), the

symmetry forces �1 = �2, g1 = g2 and c1 = c2. The free en-
ergy (1) becomes invariant under arbitrary rotation about the
principal axis. To describe the lower transition into nematic
phase for these crystals, the emergent O(2) symmetry needs
to be broken down to a hexagonal one by the addition of sixth
order terms in the free energy; this will be discussed later.

Upper transition. Let us first analyze the normal-to-
superconducting transition at a = �. To be precise, let
F (ε1, ε2) = F with the condition ∂F/∂�η = 0 enforced, and
define ci, j = ∂2F/∂εi∂ε j , to be evaluated at equilibrium.3 The
modulus ci, j can be expressed in Voigt notation as

c1,1 = 1
4 (C11 + C22 − 2C12),

c2,2 = C66,

c1,2 = 1
2 (C16 − C26). (15)

In the normal phase, c1,1 = c1, c2,2 = c2, and c1,2 = 0.
One needs to solve ∂F/∂�η for arbitrary ε1 and ε2 near equi-

librium. Given the equilibrium ε̄2 ∝ 〈σ 〉2 = 0 in the upper
phase, a small-ε2 expansion to leading order suffices. We use
tilde to denote solution in the presence of a fixed, externally
applied �ε:

|η̃|2 ≈ g1ε1 + � − a

λ1
; θ̃ ≈ g2ε2/2

g1ε1 + � − (λ1 − λ2)|η̄|2 ,

(16)

and χ̃ = 0. [While η̄2 admits correction at O(ε2
2 ), the con-

dition ∂F/∂|η| = 0 ensures that c22 is independent of this
correction term.] The shear moduli are found to be

c(u)
1,1 = c1 − g2

1

λ1
,

c(u)
2,2 = c2 − g2

2(� − a)

(λ2 − �1)(� − a) + �1�
.

(17)

The off-diagonal c(u)
1,2 = 0 since it is odd under C ′

2 symmetry.
The modulus c1,1 is discontinuous across the upper transi-

tion:

δuc1,1 ≡ c(u)
1,1 − c1 = −g2

1

λ1
, (18)

3See Ref. [39].

a0

1

aual

c1,1/c1

c2,2/c2

θ̄ = 0θ̄ = 0

FIG. 1. Qualitative behaviors of the dimensionless ci,i/ci across
the pair of split transitions, assuming the lower phase is chiral. If
the crystal is trigonal or hexagonal (e.g., UPt3), one has c1,1/c1 =
c2,2/c2 in the lower phase. Otherwise the relative heights of the low-
temperature plateaus are dependent on GL parameters.

but c2,2 remains continuous. However, in the limit of � → 0,
c2,2 develops a step, too: the presence of �1� in the denomi-
nator smooths out the would-be singular behavior.

Lower transition into the chiral phase. Assuming that �3 is
the smallest, the order parameter acquires a chiral component
when a < al . The equilibrium solution is (8). We carry out
the same procedure to extract the elastic moduli in the lower
phase. Given ε̄2 = 0, we again expand the solution only to
linear order in ε2 (picking the positive branch for χ ).

|η̃|2 = − a

�3
, |η̃|2 cos 2θ̃ =

(
g1ε1 + �

λ1 − �3

)
,

χ̃ = π

2
+ g2ε2

(�3 − λ2)|η̃|2 sin 2θ̃
. (19)

The lower chiral phase moduli are

c(c)
1,1 = c1 − g2

1

λ1 − �3
, c(c)

2,2 = c2 − g2
2

λ2 − �3
, (20)

and c(c)
1,2 = 0 again, as dictated by the D2h symmetry. Com-

pared with the upper phase result (17), at the lower transition
c1,1 is discontinuous and c2,2 is continuous with a kink:

δcc1,1 ≡ c(c)
1,1 − c(u)

1,1 = − g2
1�3

λ1(λ1 − �3)
. (21)

The behavior is plotted in Fig 1.
The above result is applicable to hexagonal crystal by

setting λ1 = λ2, g1 = g2 and c1 = c2 to meet the symmetry
constraint. Thalmeier et al. [36] attempted a similar analysis
for the hexagonal UPt3, but we disagree with their result
regarding C66 (c2,2 in our notation.) They theoretically found
a C66 discontinuity across the upper transition, while ours is
continuous. Directly below the lower transition, their result for
C66 translates to c2,2 = c2 − g2

2/λ3 in our notation, disagree-
ing with our (20). We point out that they themselves observed
no C66 discontinuity in the experiments [36].

Lower transition into the nematic phase: tetragonal case.
Now we assume that �2 is the smallest, and the lower phase
remain nematic. Note that �2 �= �1 is allowed only by a
tetragonal crystal. While this scenario is not immediately
relevant to Sr2RuO4, we still work out the detail, as the les-
son learned here is applicable to the D3d version relevant to
MxBi2Se3.
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a0

1

aual

c1,1/c1

c2,2/c2

c1,2/
√

c1c2

θ̄ = 0 θ̄ = 0

FIG. 2. Qualitative behaviors of the dimensionless ci, j/
√

cic j

across the pair of split transitions, assuming the lower phase is
nematic. The qualitative features at each critical point (kinks, dis-
continuity, zero, and the |δa|1/2 behavior of c1,2) are dictated by
symmetry, and shared by both tetragonal and trigonal/hexagonal
cases.

Before jumping into the calculation, we note that c(u)
2,2 from

(17) vanishes at a = al when i = 2 in (4). Specifically, let α =
a/al , and one has

c(u)
2,2 = c2

�2

�1
(�1 − �2)

c2

g2
2

|α − 1| + O((α − 1)2) (22)

directly above the lower transition. Shear strain ε2 becomes a
soft mode: we will comment on this shortly.

We follow the same procedure as above to calculate the
elastic moduli. The equilibrium solution is (8). It suffices to
compute the perturbed solution to first order in δεi ≡ (εi − ε̄i )
for both i = 1, 2. We will skip the intermediate expressions,
and directly quote the end results:

c(n)
1,1 = c1 − g2

1

λ1

[
1 + (α2 − 1)λ2�2

(α2 − 1)λ2(λ1 − �2) + λ1g2
2/c2

]
,

c(n)
2,2 = c2(α2 − 1)

�2(λ1 − �2)

�2(λ2 − λ1) + α2λ2(λ1 − �2)
.

c(n)
1,2 =

√
α2 − 1

�2g1g2

�2(λ2 − λ1) + α2λ2(λ1 − �2)
, (23)

valid for α > 1. Compared with (17), it is seen that all three
components are continuous at α = 1 (i.e., a = al ): c1,1 shows
a kink, c2,2 vanishes linearly with |α − 1| on either side of the
transition, and c1,2 grows as |α − 1|1/2 below the transition.
The general behavior of ci, j around α = 1 is sketched in
Fig. 2.

This asymptotic behavior is almost obvious in hindsight:
suppose one is oblivious to the superconducting aspect of the
problem, the strain part of the problem resembles a structural
phase transition where the C′

2 twofold symmetry is sponta-
neously broken, and similar problems have been mapped to
the transverse-field Ising model [40,41]. The asymptotic be-
havior of ci, j immediately follows from the well-known mean
field results [42], with ε2 being a soft mode at the critical point
[43]. We expect the vanishing of c2,2 to have a particularly
dramatic impact on the ultrasonic dispersion relation.

Also immediately recognizable from the Ising model
meanfield result is that the (1,1)-component of susceptibility

χ1,1 = (c−1)1,1 = 1/(c1,1 − c2
1,2/c2,2) has a discontinuous

step across the lower transition. This is easily confirmed with
(23).

This is a good place to comment on the thermodynamic
relation first due to Testardi [44], relating the discontinuities in
specific heat C and elastic modulus ci, j across a second-order
transition, if ∂Tc/∂εi and ∂Tc/∂ε j are also known:

δci, j = −δC

Tc

∂Tc

∂εi

∂Tc

∂ε j
. (24)

This relation holds approximately for both the upper transition
and the lower transition into chiral phase, albeit missing the
renormalization effect (12).4 Given the specific heat jump (9),
one is tempted to invoke the (24) and concludes that c1,1 is
also discontinuous for the present case. This contradicts (23).

The Testardi relation assumes the existence of a critical sur-
face Tc(�ε): all strain components must be invariant under the
broken symmetry. This is true for the two previous cases (the
gauge U(1) and TRS) but not true for the present case: ε2 �= 0
in the upper phase explicitly breaks the twofold rotational
symmetry and destroys the transition. The relation is therefore
not applicable. However, the critical line Tc(ε1) is well-defined
if one allows ε2 to reach equilibrium: ε2 = ε̄2(ε1). The Tes-
tardi relation would instead give the discontinuity in 1/χ1,1,
though it still misses the renormalization (12).

One interesting limit is g2 → 0. Since ε2 is decoupled from
the problem, c1,1 → 1/χ1,1 and become discontinuous at the
transition. This is indeed readily seen in (23). Mathematically,
λ1g2

2/c2 plays the some role as �1� did for c(u)
2,2 in (17),

smoothing out the singularity. Since the renormalization g2
2/c2

is likely to be small compared to λ2, in practice c1,1 would still
exhibit a “near-step”:

δnc1,1 ≈ −g2
1

λ1

�2

λ1 − �2
, (25)

and the width of this broadened step is of the order of

�α = 1

2

g2
2

c2λ2

λ1

λ1 − �2
. (26)

Trigonal nematic superconductor. The MxBi2Se3 crystal
has D3d symmetry that forces �1 = �2 ≡ �, c1 = c2 ≡ c and
g1 = g2 ≡ g. Without the SBF �, the free energy (13) appears
in-plane isotropic: it enjoys an emergent O(2) symmetry. We
assume � < �3 and the material prefers the nematic state.

If one goes beyond quartic order and writes down the most
general O(|η|6) free energy allowed by symmetry, the new
terms turn out to explicitly break the O(2) symmetry down
to sixfold [1,21]:

F6 = �1|η|6 + �2
(〈σ 〉3

1 − 3〈σ 〉2
2〈σ 〉1

)
. (27)

The coefficient �2 now dictates the “natural preference”: �2 <

0 favors �η ∝ (1, 0) and two other equivalent directions, while
�2 > 0 favors �η ∝ (0, 1) and the equivalent. The sign of �2 is
yet undetermined.

4See Ref. [39] for the modified formula that correctly accounts for
the renormalization. The original derivation [44] assumes a some-
what unphysical condition.
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The original GL theory (1) is self-consistent in that it
completely accounts for the leading O(a2) behavior of the free
energy. We demand that F6 ∼ O(a3) remains a small pertur-
bation, so the modified GL theory with (27) added remains
applicable. Specifically, let Dc = |η̄|2 at lower transition, we
demand �iDc � λ for i = 1, 2. Since the possible lower tran-
sition is caused by competition between F6 and �, it may
remain within the range of validity of our theory yet.

The SBF � breaks the crystal symmetry down to C2h,
and the aforementioned C ′

2 twofold axis is the only surviving
spatial symmetry. The sign of � determines the direction of
�η in the upper phase. If it does not match the preference
dictated by �2, a lower transition similar to the tetragonal case
takes place. The phase diagram has been thoroughly discussed
by the present authors [21]. Experimentally, the sign of �

has been reported to be sample-dependent [23,28,38]: some
samples must exhibit this lower transition automatically. It
what follows, we assume both �2 and � to be positive; other
cases are obtained by trivial sign flips.

The upper critical temperature is again au = �. The upper
phase equilibrium solution and moduli for trigonal crystal are

|η̄|2 = −� +
√

�2 − 12(�1 + �2)(a − �)

6(�1 + �2)
,

c(ut )
1,1 = c − g2

λ + 6(�1 + �2)|η̄|2 ,

c(ut )
2,2 = c − g2|η̄|2

� + (g2/c)|η̄|2 − 9�2|η̄|4 , (28)

and c(ut )
1,2 = θ̄ = χ̄ = 0. One sees that (28) and (17) coincides

when a → �−: the additional F6 is of no importance when
|η| is vanishingly small. In particular, the discontinuity in c1,1

is still given by (18). We also note that the renormalization
(12) must be kept in order to obtain a sensible answer for c2,2

in the � → 0 limit: without the renormalization c2,2 goes to
negative infinity below the transition (utterly unphysical), but
in (28), it merely becomes soft. The distinction between λ and
� cannot be ignored for the trigonal problem.

Unfortunately, analytic solution cannot be obtained for the
lower phase, and we resort to expanding in small δt ≡ (a −
al )/al . Full expressions at leading order can be obtained.5

But we will further invoke the condition �iDc � λ, and also
assume that the renormalized � is of the same order as the
bare λ. One then goes through similar calculation and obtains
in the lower nematic phase for trigonal crystal:

Dc = 1

3

√
�

�2
,

al = −1

3

[
�

√
�

�2
+ (�1 − 2�2)

�

�2

]
≈ −�Dc,

c(nt )
1,1 ≈ c

[
1 −

(
g2

c�2Dc

)(
�

λ

)(
g2/(c�) + 3δt/2

g2/(c�2Dc) + 36δt

)]
,

5See Ref. [39] for full expressions.

c(nt )
2,2 ≈ c

[
1 −

(
g2

c�2Dc

)(
�

λ

)(
λ/� + 3δt/2

g2/(c�2Dc) + 36δt

)]
,

c(nt )
1,2 ≈

(
g2

c�2Dc

)(
�

λ

)( √
3δt/2

g2/(c�2Dc) + 36δt

)
. (29)

The quantity g2/(c�2Dc) is the ratio between two charac-
teristic scales: g2/c for the strain renormalization, and �2Dc

characterizing the lower transition. We have required �2Dc �
λ, but typically the renormalization is also small: g2/c � λ.
Their ratio is undetermined and does not affect the validity
of the GL theory. Thus we are justified in retaining the ratio
in (29). However, if the renormalization effect is summarily
ignored, both c(nt )

2,2 and c(nt )
1,2 will diverge at the lower critical

point: again unphysical. We stress again that the renormaliza-
tion (12) must be kept.

Although the detailed expressions become quite compli-
cated, the qualitative physics of this lower transition is still
governed by the spontaneous breaking of the C ′

2 symmetry:
c1,1 exhibits a kink, c1,2 grows as

√
δt in the lower phase,

and c2,2 vanishes at the transition, as sketched in Fig. 2. The
(inverse) susceptibility 1/χ1,1 is discontinuous, and the step
height can be related to the specific heat discontinuity using
the Testardi thermodynamic (24), up to necessary corrections
(see footnote 2), but now there is no clear limit where it can
be identified with c1,1.

Our result has important implication to the supposed
nematic superconductivity in MxBi2Se3. The “nematic hy-
pothesis” was first proposed as the origin for the twofold
anisotropy responses that are incompatible with the lattice
symmetry and observed only in the superconducting phase
[20,25,26]. The persistence of the twofold direction, how-
ever, requires a pinning SBF that explicitly breaks the lattice
symmetry in the normal state [21,22]. If one accepts the ne-
cessity of an explicit SBF, the nematic superconductivity is
no longer mandated by symmetry of the problem. In addition,
ARPES result [45] confirms that the conduction band dis-
persion remains very similar to the undoped crystal [46,47],
and indicates that the normal state is a weakly interacting
Fermi liquid. One is left with a dilemma: either there is some
exotic phonon pairing mechanism that explicitly disfavors the
s-wave pairing [48–52] (cf. Ref. [53]), or the superconduc-
tivity is single-component (i.e., not nematic) yet unusually
susceptible to directional perturbations. To our knowledge, no
existing experiments is able to differentiate the two possibili-
ties, but the two scenarios suggest vastly different microscopic
models.

Two key signatures for the nematic scenario are proposed
here. First, the discontinuity in c11 across the upper transition
is unique to a multi-component order parameter. Moreover,
the existence of a lower transition constitutes a proof beyond
all doubt. The present authors suggested that the lower transi-
tion may be identified with calorimetric measurements [21],
but we concede here that the specific heat discontinuity is
proportional to

√
�, and may well be too small to be observed.

On the other hand, the vanishing of c2,2 at the lower transition
is a very dramatic signal, one that we hope would be easily
picked up by ultrasound experiments. As discussed above, the
sign of the SBF � varies sample to sample: some samples
must exhibit a lower transition without external manipulation.
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Conclusion. In this paper, we examine the shear mod-
ulus anomaly of an unconventional superconductor in the
presence of an SBF. Such systems exhibits a pair of split
superconducting transitions, and we work out the anomaly
for both the upper and lower transitions within the GL
theory.

For both Sr2RuO4 and MxBi2Se3, two materials that are
proposed to host unconventional superconductivity, the exper-
imental evidence of split transitions has been inconclusive, to
say the least. In light of recent ultrasound experiments, we

hope that the measurement of shear moduli will prove fruitful
in the experimental search of the lower transitions. This is
especially the case for MxBi2Se3, where we predict that one
of the shear modes must become soft (its modulus vanishes)
at the lower transition. We believe such a dramatic signature
cannot go unnoticed.
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