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Robustness of vortex-bound Majorana zero modes against correlated disorder
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We investigate the effect of correlated disorder on Majorana zero modes (MZMs) bound to magnetic vortices
in two-dimensional topological superconductors. By starting from a lattice model of interacting fermions with
a px ± ipy superconducting ground state in the disorder-free limit, we use perturbation theory to describe the
enhancement of the Majorana localization length at weak disorder and a self-consistent numerical solution to
understand the breakdown of the MZMs at strong disorder. We find that correlated disorder has a much stronger
effect on the MZMs than uncorrelated disorder and that it is most detrimental if the disorder correlation length �

is on the same order as the superconducting coherence length ξ . In contrast, MZMs can survive stronger disorder
for � � ξ as random variations cancel each other within the length scale of ξ , while an MZM may survive up to
very strong disorder for � � ξ if it is located in a favorable domain of the given disorder realization.

DOI: 10.1103/PhysRevB.104.L020505

Introduction. Topological phases of matter harbor exotic
nonlocal quasiparticles and have been proposed as a promis-
ing platform for fault-tolerant quantum computation [1,2].
In particular, topological superconducting systems, including
one-dimensional (1D) and two-dimensional (2D) heterostruc-
tures [3–8] as well as intrinsic 2D superconductors with
p-wave pairing symmetry [9], are predicted to host Majorana
zero modes (MZMs) [10–13], which can implement the Clif-
ford gate set via braiding. While most proposals for MZM
braiding have focused on 1D systems such as nanowire T-
junctions [14], MZMs bound to superconducting vortices in
2D systems have distinct advantages as the 2D geometry al-
lows a greater degree of freedom in the motion of the MZMs.

Due to their inherently nonlocal nature, MZMs are known
to be protected against infinitesimal local perturbations, in-
cluding random disorder. However, given that real-world
materials contain disorder in varying forms and strength, it is
also important to understand the robustness of MZMs against
disorder beyond the infinitesimal limit. For example, weak
disorder may make the MZMs less localized, leading to a
smaller qubit density and/or more gate errors, whereas strong
disorder may lead to a complete breakdown of the MZMs.
While there have been numerous studies along these lines,
most of them focus on 1D nanowires [15–25], while those
studying 2D superconductors do not consider vortex-bound
MZMs [26] or only concentrate on uncorrelated disorder
[27,28].

In this Letter, we consider a simple microscopic model of
interacting fermions with a px ± ipy superconducting ground
state [29,30] and study the effect of correlated disorder by
combining analytical and numerical approaches. Specifically,
we investigate vortex-bound MZMs in this model and under-
stand how their robustness depends on the correlation length
of the disorder. Our main result is that correlated disorder is
significantly more detrimental to the MZMs than uncorrelated

disorder. In particular, disorder has the most adverse effect
if its correlation length � is similar to the superconducting
coherence length ξ , while disorders with � � ξ and � � ξ

are both more benign, even though for completely different
reasons. Since our results naturally extend to the continuum
limit of the model and are expressed in terms of measurable
length and energy scales, they should apply universally for
px ± ipy superconductors and provide useful guidelines for
the realization of MZM braiding in realistic experimental
systems.

Model. We consider a tight-binding Hamiltonian of inter-
acting spinless fermions on the square lattice,

Ĥ = −
∑

r

μrc†
rcr −

∑
〈r,r′〉

(tr,r′c†
rcr′ + H.c.)

− g
∑
〈r,r′〉

c†
rcrc†

r′cr′ , (1)

where the three terms describe a site-dependent chemi-
cal potential, a nearest-neighbor hopping amplitude, and a
nearest-neighbor attractive interaction, respectively. In the
presence of a magnetic field, the hopping amplitude is spa-
tially modulated by the vector potential A(r) through the
Peierls substitution, tr,r′ = teiAr,r′ , where Ar,r′ = ∫ r′

r A(r̂) · d r̂.
We expand the chemical potential as μr = μ̄ + δμr, where μ̄

is a constant background, while δμr describes random dis-
order of strength δμ̄ that is correlated within a length scale
�. Mathematically, δμr are real Gaussian random variables
characterized by

δμr = 0, δμrδμr′ = δμ̄2e−|r−r′ |2/�2
, (2)

where the overline denotes averaging over many disorder
realizations. In practice, these real-space random variables
are generated through δμr = ∑

k Re[δμ̃keik·r] from the
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independent momentum-space complex variables δμ̃k
satisfying

δμ̃k = δμ̃∗
k = 0, δμ̃kδμ̃k′ = δμ̃∗

kδμ̃
∗
k′ = 0,

δμ̃kδμ̃
∗
k′ = 2N δμ̄2δk,k′e−�2|k|2/4, (3)

where the normalization constant is N = [
∑

k e−�2|k|2/4]−1 for
a large enough system size L � �.

In the absence of interactions (g = 0), disorder (μr = μ̄),
and magnetic field (tr,r′ = t), the tight-binding Hamiltonian
in Eq. (1) is quadratic and translation invariant. By means of a
Fourier transform, one then obtains a single fermion band with
energy-momentum dispersion εk = −μ̄ − 2t (cos kx + cos ky)
for a normalized lattice constant a = 1. For |μ̄| < 4t , the low-
energy physics is governed by a Fermi surface characterized
by εk = 0. In the following, we consider μ̄ = −4t + εF with
0 < εF < t to get an approximately circular Fermi surface
around k = 0. From an expansion to the lowest order in k, the
energy-momentum dispersion is then εk = −εF + |k|2/2m,
where m = 1/(2t ) is an effective mass. Thus, in this approxi-
mation, the Fermi surface is indeed circular with Fermi energy
εF and Fermi wave vector kF = √

2mεF = √
εF /t .

Bulk superconductivity. We first consider the Hamiltonian
in Eq. (1) with attractive interactions (g > 0) but without dis-
order (μr = μ̄) or magnetic field (tr,r′ = t). It has been shown
numerically [29] and analytically [30] that the ground state is
then a gapped px ± ipy superconductor, which spontaneously
breaks time-reversal symmetry. To describe this ground state
on the mean-field (i.e., saddle-point) level, we employ a stan-
dard Hubbard-Stratonovich decoupling in Eq. (1) to obtain a
quadratic Bogoliubov-de Gennes (BdG) Hamiltonian,

H = −
∑

r

μrc†
rcr −

∑
〈r,r′〉

(tr,r′c†
rcr′ + t∗

r,r′c†
r′cr )

−
∑
〈r,r′〉

(�∗
r,r′crcr′ + �r,r′c†

r′c†
r ), (4)

which must be solved self-consistently in terms of the super-
conducting pairing potentials,

�r,r′ = −�r′,r = g〈crcr′ 〉, (5)

where 〈O〉 means the expectation value of the operator O with
respect to the ground state of H . These pairing potentials can
generally be parameterized as

�x
r ≡ �r,r+r̂x =

∑
q

(�+
q + �−

q )eiq·r,

�y
r ≡ �r,r+r̂y = i

∑
q

(�+
q − �−

q )eiq·r, (6)

where r̂x = (1, 0) and r̂y = (0, 1) are the lattice vectors, and
the component �±

q corresponds to px ± ipy superconductivity
with a spatial modulation of wave vector q. In the absence of
disorder (μr = μ̄) and magnetic field (tr,r′ = t), the supercon-
ductivity is translation symmetric [29,30]. Assuming px + ipy

pairing symmetry without loss of generality, the components
in Eq. (6) then become

�+
q = �̄δq,0, �−

q = 0, (7)

corresponding to �r ≡ �x
r = −i�y

r = �̄. The constant �̄ can
be determined from a self-consistent solution of Eqs. (4) and
(5). In the universal continuum limit (kF � 1), we show in the
Supplemental Material (SM) [31] that �̄ satisfies

1 = g

N

∑
k

|k|2√
ε2

k + 4|k|2|�̄|2
≈ gν

∫
dε k2

F√
ε2 + 4k2

F |�̄|2
, (8)

where N is the number of lattice sites, and ν is the density of
states at the Fermi level. If we then choose �̄ to be real and
positive without loss of generality, it is approximately given
by the standard superconducting gap formula,

�̄ ∼ E

2kF
exp

(
− 1

2gk2
F ν

)
, (9)

where E is an energy scale governing the high-energy cutoff
(whose precise value is irrelevant), while 2gk2

F is an effective
interaction strength reflecting the p-wave symmetry of the
superconductivity. Importantly, because of the factor k2

F ∝ εF

within the exponential, the pairing potential �̄ strongly de-
pends on the Fermi energy εF [30].

Next, we include a weak disorder in the chemical potential
(δμ̄ � μ̄) and study its effect on the pairing potentials �r,r′

via perturbation theory. Formally, we restore μr = μ̄ + δμr in
Eq. (4) and modify Eq. (7) by writing �+

q = �̄δq,0 + δ�+
q and

�−
q = δ�−

q . We can then employ δμr = ∑
q δμ̂qeiq·r, where

δμ̂q = 1
2 [δμ̃q + δμ̃∗

−q], and obtain the self-consistent solution
of Eqs. (4) and (5) up to linear order in δμ̂q and δ�±

q . In the
continuum limit (|q| � kF � 1) of weak superconductivity
(ξ−1 � kF ), this approach gives (see the SM [31])

δ�+
q = f

(
ξ |q|

2

)
∂�̄

∂εF
δμ̂q,

δ�−
q = −h

(
ξ |q|

2

)
e2iϑq

∂�̄

∂εF
δμ̂q, (10)

where ξ = vF /(2kF �̄) = 1/(2m�̄) is the superconducting
coherence length, vF = kF /m is the Fermi velocity, ϑq is the
angle between q and r̂x, while f (x) and h(x) are dimensionless
functions with asymptotic forms

f (x) ≈
{

1 − x2

6 (x � 1),
1

ln x (x � 1),

h(x) ≈
{

x2

6 (x � 1),
1

2(ln x)2 (x � 1).
(11)

For q = 0, the disorder component δμ̂0 simply corresponds
to a shift in the Fermi energy εF , and the pairing potential
�̄ with px + ipy symmetry is renormalized accordingly. For
finite q, however, the disorder gives rise to reduced variations
in the px + ipy pairing due to f (ξ |q|/2) < 1 and also gener-
ates a finite px − ipy pairing due to h(ξ |q|/2) > 0. Both of
these effects are more pronounced if the disorder wave vector
q exceeds the inverse coherence length ξ−1. We note that,
while the mean-field results in Eqs. (10) and (11) may not be
quantitatively right for |q| � ξ−1, any corrections beyond the
mean-field level are expected to strengthen our main conclu-
sions by suppressing f (ξ |q|/2) and h(ξ |q|/2).
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Finally, we describe the real-space correlations in the pair-
ing potentials �r,r′ as a result of disorder. Since h(x) � f (x)
for all x, we neglect the components δ�−

q and use Eq. (6) to in-
troduce δ�r ≡ δ�x

r = −iδ�y
r = ∑

q δ�+
q eiq·r. From Eqs. (3)

and (10), the disorder correlations in δ�r are then

δ�rδ�r′ = Nα2δμ̄2Re
∑

q

e− 1
4 �2|q|2+iq·(r−r′ ) f 2

(
ξ |q|

2

)
,

(12)
where α = ∂�̄/∂εF and f 2(x) ≡ [ f (x)]2. Since f (x) depends
only logarithmically on its argument, it is a reasonable ap-
proximation to substitute f (ξ |q|/2) with f (ξ/�) in Eq. (12)
and work with the resulting simplified correlations,

δ�rδ�r′ = α2 f 2(ξ/�)δμ̄2e−|r−r′ |2/�2
. (13)

From a direct comparison with Eq. (2), this result has a simple
physical interpretation. For � � ξ , the local pairing potential
is determined by the local chemical potential via Eq. (9). For
� � ξ , the variations in the pairing potential still follow those
in the chemical potential, but the constant of proportionality
is reduced by a factor f 2(ξ/�) � 1.

Majorana localization length. We now consider a super-
conducting vortex hosting a MZM and understand the effect of
weak disorder on the localization length of the MZM. Taking
the continuum limit, cr → ψ (r), assuming a pure px + ipy

pairing symmetry, �r ≡ �x
r = −i�y

r → �(r), and including
a magnetic field, the BdG Hamiltonian in Eq. (4) takes the
form H = ∫

d2r ψ† · H · ψ, where ψ = (ψ,ψ†)T and

H = 1

2

[ 1
2m (−i∇ + A)2 − εF 2�(∂x + i∂y)

−2�∗(∂x − i∂y) − 1
2m (−i∇ − A)2 + εF

]
.

(14)

Focusing on a single vortex at the origin and using polar
coordinates, r = (r, ϑ ), the π magnetic flux of the vortex can
be represented by a vector potential with components

Ar (r) = 0, Aϑ (r) = 2πδ(ϑ ) − a(r)

2r
, (15)

where the term ∝ δ(ϑ ) corresponds to a Z2 flux string [1,32],
while a(r) ≈ 1 for r � λ and a(r) ∼ e−r/λ for r � λ in terms
of the London penetration depth λ. In this gauge, the pairing
potential �(r) does not have any angular winding and simply
takes its bulk value for r � ξ . The Hamiltonian matrix in
Eq. (14) can then be written in polar coordinates as

H = 1

2

[− 1
2m

(
D2

r + D2
ϑ,−

) − εF 2�eiϑ
(
∂r + i

r ∂ϑ

)
−2�∗e−iϑ

(
∂r − i

r ∂ϑ

)
1

2m

(
D2

r + D2
ϑ,+

) + εF

]
,

(16)

where D2
r ≡ ∂2

r + (1/r)∂r and Dϑ,± ≡ (∂ϑ ± ia/2)/r, while
the Z2 flux string induces antiperiodic boundary conditions,
ψ (r, 2π ) = −ψ (r, 0), in the polar angle ϑ . If we take � ∈ R
without loss of generality, search for the MZM in the form

γ =
∫

d2r φ(r)
[
ie−iϑ/2 ψ (r) − ieiϑ/2 ψ†(r)

]
, (17)

which naturally satisfies the antiperiodic boundary conditions,
and demand γ = γ † as well as [H, γ ] = 0, the radial MZM

wave function φ(r) must be a real solution of

1

2m

[
d2φ

dr2
+ 1

r

dφ

dr
− (1 − a)2φ

4r2

]
+ εF φ + 2�

[
dφ

dr
+ φ

2r

]

= 0. (18)

For large distances, r � λ, in the disorder-free limit, we can
set � = �̄ and neglect a(r) ∼ e−r/λ � 1. The exact general
solution of Eq. (18) then takes the form

φ(r) = C√
r

exp (−2m�̄r) cos
[√

2mεF − (2m�̄)2 r + ϕ
]

= C√
r

exp

(
− r

ξ

)
cos [qF r + ϕ], (19)

where C and ϕ are arbitrary constants, while ξ is the co-

herence length and qF =
√

k2
F − ξ−2 ≈ kF is the Fermi wave

vector for weak superconductivity. Importantly, the solution
in Eq. (19) is approximately valid even for ξ � r � λ as
the correction to Eq. (18) from a finite a(r) is subdominant
due to |φ/r2| � |d2φ/dr2| for any r � ξ . As expected, the
Majorana localization length is thus simply the coherence
length ξ in the disorder-free limit.

If we include a weak disorder in the chemical potential μ

(i.e., the Fermi energy εF ), it affects the decay of the MZM
wave function φ(r) and, hence, the localization length via
the pairing potential �. Ignoring the power-law prefactor, the
approximate disorder average of |φ(r)| from Eq. (19) is

|φ(r)| ∼ exp

(
−2m

∫ r

0
dr̂[�̄ + δ�(r̂)]

)

= exp [−2m�̄r]exp

[
−2m

∫ r

0
dr̂ δ�(r̂)

]
. (20)

Since O = 2m
∫ r

0 dr̂ δ�(r̂) is a Gaussian random variable
with vanishing mean, O = 0, it satisfies the standard identity
exp(−O) = exp(O2/2). Using the correlations of δ�(r̂) in
Eq. (13), the disorder average for large distances r satisfying
both r � � � k−1

F and r � ξ � k−1
F then becomes

|φ(r)| ∼ exp

[
−2m�̄r + 2m2

∫ r

0
dr̂

∫ r

0
dr̂′ δ�(r̂)δ�(r̂′)

]

≈ exp

[
− r

ξ
+

√
π

2
κ2 �r

ξ 2
f 2

(
ξ

�

)]
, (21)

and corresponds to an enhanced Majorana localization length

ξ ′ = ξ

[
1 −

√
π

2
κ2 �

ξ
f 2

(
ξ

�

)]−1

, (22)

where κ = δμ̄(∂�̄/∂εF )/�̄ is the relative change in the pair-
ing potential due to a shift δμ̄ in the Fermi energy.

According to Eq. (22), the localization length is more sen-
sitive to disorder with larger correlation length �. Indeed, for
� � ξ , the correction to the localization length is suppressed
as a result of �/ξ � 1 and f (ξ/�) � 1. It should be empha-
sized, however, that Eq. (22) is no longer relevant for � � ξ

as the corresponding disorder average is only appropriate for
r � �. Instead, for ξ � r � �, the behavior is entirely deter-
mined by the specific disorder realization. Since the chemical
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FIG. 1. (a) Two vortices centered at the yellow plaquettes with
separation R = R1 − R2 = (5, 2). The Z2 flux string (dashed line)
intersects several links denoted by thick lines. (b) MZM hybridiza-
tion energy ε as a function of the separation R = (R, 0) for a
50 × 30 system. The dotted line is a fit of Eq. (19) with ξ = 2.8 and
qF = 0.65.

potential only fluctuates on length scales larger than �, the
MZM is located within a region of size � with approximately
constant chemical potential. Therefore, the relevant localiza-
tion length, corresponding to ξ � r � �, is the same as in
a disorder-free system with the given chemical potential μ.
Interestingly, the localization length may then even decrease
if the MZM is located in a region with μ > μ̄.

Numerical solution. To qualitatively check the validity of
our results, we numerically obtain self-consistent solutions of
Eqs. (4) and (5) through an iterative procedure. Since MZMs
must appear in pairs for any closed system, we consider two
superconducting vortices centered at two square plaquettes
with positions R1,2 [see Fig. 1(a)]. In this case, the Z2 flux
string connects the two vortices, and the hopping amplitudes
in Eq. (4) become tr,r′ = tur,r′eiA′

r,r′ , where ur,r′ is −1 (+1)
if the Z2 flux string intersects (does not intersect) the link
〈r, r′〉, while A′

r,r′ is only nonzero within a radius λ of each
vortex. The precise form of A′

r,r′ and the details of the iterative
procedure are described in the SM [31,33].

We choose the parameters of Eq. (1) to be t = 1, μ̄ =
−3.5, and g = 5.0, which correspond to m = 0.5, εF = 0.5,
and kF ≈ 0.7. In the absence of disorder, the self-consistent
solution for a vortex-free system gives a bulk pairing poten-
tial �̄ ≈ 0.33 and a bulk fermion gap E0 ≈ 0.41. If we then
include two vortices with separation R = R1 − R2, we find
a low-energy fermion in the bulk gap whose energy exhibits
an oscillating exponential decay [34,35] as a function of the
distance R ≡ |R| [see Fig. 1(b)]. Since this fermion consists
of the two MZMs bound to the vortices, and its finite energy
results from a hybridization between the MZM wave func-
tions, we fit its energy ε with the functional form of Eq. (19)
to extract ξ ≈ 2.8 and qF ≈ 0.65. We note that these values
agree with 1/(2m�̄) ≈ 3.0 and kF ≈ 0.7 even though the
system is not in the continuum limit.

Finally, we include two vortices with R � 1 and investi-
gate how the energy ε of the lowest-energy fermion behaves as
the disorder strength δμ̄ is gradually increased. The disorder-
averaged results are shown in Fig. 2 for different disorder
correlation lengths, corresponding to (a) � = 0, (b) � < ξ , (c)
� ∼ ξ , and (d) � > ξ , respectively. In all cases, we find that
the energy ε increases by two orders of magnitude from the
MZM expectation, e−R/ξ ∼ 10−5, to the generic disordered
expectation, 1/N ∼ 10−3, which indicates a disorder-induced

FIG. 2. Disorder-averaged MZM hybridization energy ε against
disorder strength δμ̄ for (a) � = 0, (b) � = 1, (c) � = 3, and (d) � =
10 if the two vortices hosting the MZMs are separated by R =
(25, 15) inside a 50 × 30 system. Each data point is averaged over
25 disorder realizations, and its error bar shows the variation among
the individual realizations. The dashed line marks the expectation for
a generic disordered system, ε ∼ 1/N = 1/1500.

breakdown of the MZMs. This breakdown occurs at δμ̄ ∼ εF

for � � ξ and at δμ̄ > εF for � < ξ . In the former case, we
hypothesize that it results from a hybridization between the
MZMs and the gapless edge modes that are expected to sep-
arate topological superconducting regions with local εF > 0
and trivial insulating regions with local εF < 0.

Remarkably, the breakdown of the MZMs in Fig. 2 is
consistent with our weak-disorder results in at least three
different ways. First, in the case of � ∼ ξ , the breakdown
at δμ̄ ∼ εF roughly corresponds to κ ∼ 1 at which Eq. (22)
predicts a divergent localization length for �/ξ ∼ 1 and, cor-
respondingly, f (ξ/�) ∼ 1. Second, the MZMs can generally
survive stronger disorder for � < ξ . Third, the energy ε has
larger variations for � > ξ as the MZMs can survive up to
very strong disorder for certain disorder realizations.

Discussion. We have studied the effect of correlated disor-
der on vortex-bound MZMs in px ± ipy superconductors and
demonstrated that it is much more detrimental than uncorre-
lated disorder. The general picture is that disorder gradually
increases the MZM localization length until the MZMs even-
tually break down due to a divergent localization length.
However, according to Eq. (22), the correction to the local-
ization length strongly depends on the disorder correlation
length � and is suppressed for short-range-correlated disor-
der (� � ξ ) because random variations cancel each other
within the superconducting coherence length ξ . We note
that, while Eq. (22) is only valid for � � k−1

F , our numeri-
cal results confirm this effect even in the uncorrelated limit
(� → 0).
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For long-range-correlated disorder (� � ξ ), the MZM lo-
calization length from Eq. (22), which characterizes the decay
of the wave function φ(r) at large distances, r � �, is strongly
renormalized and rapidly diverges. However, the MZM is lo-
cated inside a large “disorder domain” of size � within which
the chemical potential μ is approximately constant due to the
correlated nature of the disorder. Thus, within this domain, the
wave function φ(r) decays as in a disorder-free system with
the same chemical potential μ. For μ > μ̄, the MZM then
survives even in the presence of strong disorder because its
wave function is already exponentially small, φ(�) ∼ e−�/ξ ,
at the boundary of the domain, r ∼ �. In this case, any actual
braiding of the MZMs is restricted to such favorable disor-
der domains, but effective braiding may still be achievable
through a measurement-only protocol [36,37].

Therefore, we conclude that disorder has the most adverse
effect on the MZMs if its correlation length is similar to the
superconducting coherence length. In this regime, all MZMs
are expected to break down as soon as disorder is strong
enough to induce topologically distinct regions surrounded
by gapless edge modes. We emphasize that, even though we
concentrate on a specific lattice model and only include dis-
order in the chemical potential, our results naturally extend to

the continuum limit and should be universally applicable to
disordered px ± ipy superconductors.
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