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We propose to boost the performance of the density matrix renormalization group (DMRG) in two dimensions
by using Gutzwiller projected states as the initialization Ansatz. When the Gutzwiller projected state is properly
chosen, the notorious “local minimum” issue in DMRG can be circumvented and the precision of DMRG can
be improved by orders of magnitude without extra computational cost. Moreover, this method allows one to
quantify the closeness of the initial Gutzwiller projected state and the final converged state after DMRG sweeps,
thereby shedding light on whether the Gutzwiller Ansatz captures the essential entanglement features of the
actual ground state for a given Hamiltonian. Kitaev honeycomb model has been exploited to demonstrate and
benchmark this method.
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Since its invention [1,2], the density matrix renormaliza-
tion group (DMRG) has been recognized as the most powerful
computational method for studying strongly correlated quan-
tum systems in one dimension [3–5]. Soon after that, it
was realized that DMRG can be formulated as a variational
method operating within the family of matrix product states
(MPSs) [6,7]. This discovery led to a deeper and coherent
understanding of the inner structure of the DMRG method,
as well as its potential and limitations [8,9]. For instance, it
became clear that DMRG is only moderately successful when
applied to two-dimensional (2D) quantum systems [10].

The sharply distinct performance of DMRG in one and
two dimensions originates from the different entanglement
scaling with respect to spatial dimensionality, dictated by the
so-called area law [11–13]. For 2D systems, the common
practice of DMRG is to consider lattices with cylindrical
boundary conditions and gradually increase the circumference
of the cylinder [10]. However, the convergence of DMRG is
not guaranteed due to the presence of local minima in the
energy landscape. As a result, the efficiency and accuracy of
DMRG highly depend on how the initial states are chosen. It
is expected that the performance of DMRG can be improved
by using some initial states that capture the essential physics.
Actually, Gutzwiller projected wave functions have long been
used as variational Ansatzë for strongly correlated systems
[14–17].

This raises a very natural question: Can one utilize
Gutzwiller projected wave functions to improve the perfor-
mance of DMRG? Very recently, it was proposed by us [18]
and co-workers [19] that a Gutzwiller projected state can

*hong-hao.tu@tu-dresden.de
†yizhou@iphy.ac.cn

be efficiently converted to an MPS by using the so-called
matrix product operator–matrix product state (MPO-MPS)
method. This completes the building block of initializing
DMRG with Gutzwiller projected states. The accuracy of the
MPO-MPS method has already been carefully examined for
various one-dimensional systems [18,19]. Along this line, the
present Letter focuses on (1) sorting out the subtleties of the
MPO-MPS method for 2D systems with cylindrical boundary
conditions and (2) analyzing the performance of DMRG ini-
tialized with Gutzwiller projected states.

The Kitaev honeycomb model [20], being a rare exactly
solvable example in two dimensions, is used for illustrating
our method. Our extensive analysis shows that the MPO-
MPS method, with several subtleties taken into account,
converts Gutzwiller projected states into MPSs with satisfac-
tory precision and the performance of DMRG is dramatically
improved when initialized with these MPSs. We also address
a controversial issue: With a magnetic field in the [111] di-
rection, the Kitaev honeycomb model (with antiferromagnetic
interactions) was claimed to support a disordered state at
intermediate field strength [21–23]. We use our method to
analyze several candidate wave functions [24,25] and found
that although some of them describe actual ground states
well in both small and large field limits, all of them seem to
fail for intermediate field strengths, thus calling for further
investigations on the nature of the field-induced disordered
state.

Method. Throughout this Letter, we consider spin-1/2
lattice systems and Gutzwiller projected states with singly oc-
cupied fermionic partons at each site [see Fig. 1(a)], whereas
generalizations to other systems are straightforward. Our
method consists of three main steps:

(1) Construct the Gutzwiller projected state as |�G〉 =
PG|�0〉, where |�0〉 is the ground (or excited) state of a
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FIG. 1. (a) Sketch of parton construction for a quantum spin-
1/2 system, where Gutzwiller projection keeps two single-occupied
states and removes other components locally. (b) Convert a
Gutzwiller projected wave function into an MPS by the MPO-MPS
method. (c) The MPS prepared in (b) serves as an initial state for
two-site DMRG.

quadratic Hamiltonian for fermionic partons and PG is the
Gutzwiller projector imposing single-occupancy constraint.

(2) Convert |�G〉 into an MPS by using the MPO-MPS
method [18,19] as illustrated in Fig. 1(b), and keep the bond
dimension of the resulting MPS up to D̃.

(3) Use the two-site DMRG algorithm [5] to optimize the
MPS obtained in step (2) with respect to the target Hamil-
tonian [see Fig. 1(c)], where the bond dimension of MPS is
gradually increased from D̃ to D.

Model. To demonstrate the performance of our method,
we first consider the Kitaev honeycomb model [20] in the
presence of three-spin interactions,

H3 =
∑

a

∑
〈 jk〉∈a

Jaσ
a
j σ

a
k + J3

∑
〈 jkl〉∈�

σ x
j σ

y
k σ z

l , (1)

where σ a
j (a = x, y, z) are Pauli matrices, 〈 jk〉 ∈ a denotes

a nearest-neighbor (NN) bond of type a [see Fig. 2(a)], and
〈 jkl〉 ∈ � refers to three sites around two types of triangles as
indicated in Fig. 2(a), as well as their translations to the whole
lattice.

We use Kitaev’s Majorana representation, σ a
j = ica

j c
0
j ,

where ca (c0) are so-called gauge (itinerant) Majorana
fermions. This representation enlarges the Hilbert space and
a local constraint Dj ≡ cx

jc
y
jc

z
jc

0
j = 1 has to be imposed to

restore the physical Hilbert space. Under this representation,
H3 becomes

Heff = −i
∑

a

∑
〈 jk〉∈a

Jau jkc0
j c

0
k − iJ3

∑
〈 jkl〉∈�

u jkuklc
0
j c

0
l , (2)

where u jk ≡ ica
j c

a
k lives on an a-type bond. Since [Heff , u jk] =

[u jk, ulm] = 0 for all different bonds, u jk are static Z2 gauge
fields taking their eigenvalues ±1. When the gauge field con-
figuration (denoted by {u}) is fixed, Heff becomes a quadratic
Hamiltonian of itinerant Majorana fermions, whose eigen-
states can be written as |φ({u})〉. Together with the state of
gauge Majorana fermions denoted by |{u}〉, the eigenstates of
Heff read

|�0〉 = |{u}〉 ⊗ |φ({u})〉. (3)

These states become (physical) eigenstates of the spin Hamil-
tonian H3 after performing the Gutzwiller projection, i.e.,

FIG. 2. (a) Kitaev honeycomb model on a cylinder geometry
with two basis vectors x̂ and ŷ, in which the x boundary is open
while the y boundary is periodic. Black dots and white circles stand
for A and B sublattices. x, y, and z denote three types of bonds.
The three-spin interactions in Eq. (1) are defined on two types of
triangles with vertices j, k, and l . The purple zigzag line indicates
a closed loop C along which the Wilson loop operator Wy is defined
[see Eq. (4)]. (b) Graphic representation of Kitaev’s four-Majorana
decomposition of spins. Solid bonds stand for the Z2 gauge field ujk .
Dashed bonds emanating from the x boundary indicate how to fix the
unpaired boundary modes.

|�G〉 = PG|�0〉 with PG ≡ ∏
j (1 + Dj )/2. Here, the projec-

tion onto the singly occupied subspace can be revealed by
combining Majoranas into complex fermions via f j,↑ = (cx

j −
icy

j )/2 and f j,↓ = (cz
j − ic0

j )/2, so that the local constraint

becomes
∑

σ=↑,↓ f †
j,σ f j,σ = 1. Accordingly, the ground state

is achieved by determining the gauge field configuration {u}
in Eq. (2) under which the resulting quadratic Hamiltonian of
itinerant Majoranas has the lowest energy.

MPO-MPS process. In correspondence with the common
practice in DMRG, we adopt cylindrical boundary conditions,
where the honeycomb lattice is embedded on a finite cylinder
with Lx (Ly) unit cells along the open (periodic) direction and
a total number of N = 2LxLy sites. The Hamiltonian H3 now
commutes with Wilson loop operators wrapping around the
cylinder, e.g., Wy = −∏

j∈C σ
y
j , with C being a closed loop

shown in Fig. 2(a). The eigenvalue of Wy is just the product of
the static Z2 gauge fields along the loop,

Wy|�G〉 = �y|�G〉, (4)

where �y = ∏
〈 jk〉∈C u jk = ±1.

The ground-state gauge configuration {u} in the �y = 1
sector can be chosen as ujk = 1 for all bonds, while for the
�y = −1 sector it is achieved by setting u jk = −1 for a row
of z bonds and u jk = 1 elsewhere [20]. Here, we use the
convention that j (k) belongs to the A (B) sublattice [see
Fig. 2(a)]. However, it is worth emphasizing that, for each
sector, there are still unpaired cy gauge Majorana fermions at
the leftmost and rightmost boundaries [see Fig. 2(a)], which
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do not enter into the Hamiltonian Heff and thus lead to extra
degeneracies.

The MPO-MPS method seeks to minimize the entangle-
ment growth, so we pair up these boundary gauge Majorana
fermions [see Fig. 2(b)] into complex fermions f〈〈 jl〉〉 ≡ (cy

j −
icy

l )/2 and require that these boundary modes are unoccupied
in the unprojected state |�0〉, i.e., f〈〈 jl〉〉|�0〉 = 0 for all such
boundary modes. Apparently, this manipulation is of great
help in suppressing entanglement [26].

With these prescriptions, we are ready to convert the
Gutzwiller projected state |�G〉 = PG|�0〉 into an MPS by
noticing that |�0〉 = ∏2N

m=1 d†
m|0〉, where |0〉 is the vac-

uum of fermionic partons ( f j,σ |0〉 = 0 ∀ j, σ ) and d†
m are

Bogoliubov–de Gennes (BdG) quasiparticle operators taking
the form d†

m = ∑N
j=1

∑
σ=↑,↓(Um, jσ f †

j,σ + Vm, jσ f j,σ ) and sat-
isfying d†

m|�0〉 = 0 [26]. This form of |�0〉 is particularly
suitable for utilizing the MPO-MPS method [18], whose basic
idea is summarized as follows [see Fig. 1(b)]: (1) View each
d†

m as an MPO and |�0〉 as a tensor network with 2N MPOs
acting on a product state (parton vacuum); (2) apply these
MPOs successively (with a proper order) and compress the
outcome in each intermediate step as an MPS with bond
dimension up to D̃, which yields an MPS approximating |�0〉;
(3) apply the Gutzwiller projector PG to obtain |�MPS(D̃)〉,
which is an MPS approximation of |�G〉. See the Supplemen-
tal Material [26] for further technical details.

At each intermediate step of the above MPO-MPS pro-
cedure, approximating the MPO-evolved MPS (with bond
dimension 2D̃) into an MPS (with bond dimension D̃) incurs a
truncation error. In order to estimate the accuracy of the final
MPS, the accumulated truncation error is defined by

εtrunc(D̃) = 1 −
2N∏

m=1

F (m)(D̃), F (m)(D̃) = 1 −
2N∑
j=1

ε
(m)
j (D̃),

(5)

where ε
(m)
j (D̃) is the sum of the discarded squared singular

values at the jth bond of the mth MPO-evolved MPS [5].
Notice that F (m)(D̃) is a rough estimate of the overlap between
MPO-evolved MPS and truncated MPS in the mth MPO-MPS
step.

Since the Hamiltonian H3 in Eq. (1) is exactly solvable,
we also quantify the errors, in both �y = ±1 sectors, by com-
paring the variational energy of the MPS |�MPS(�y, D̃)〉 with
the exact ground-state energy Eg(�y) via the relative energy
deviation,

δEg(�y, D̃) = 〈�MPS(�y, D̃)|H3|�MPS(�y, D̃)〉 − Eg(�y)

|Eg(�y)| .

(6)

To examine the accuracy of the MPO-MPS method, we
compute the truncation error εtrunc and the energy deviation
δEg for HamiltonianH3 on a cylinder with Lx × Ly = 10 × 4
and in the sector �y = −1. We take Jy = Jz = 1 and vary Jx

and J3 to study both gapped and gapless phases. The results
are summarized in Table I. For all these states, as increasing
D̃, the truncation errors εtrunc are significantly reduced. Nev-
ertheless, the truncation error for the gapless case (Jx = 1 and
J3 = 0) is clearly larger than those in the gapped phase. It is

TABLE I. The truncation error εtrunc and the energy deviation δEg

in the MPO-MPS process [see Eqs. (5) and (6)]. The MPO-MPS pro-
cedure is carried out for Hamiltonian H3 with Jy = Jz = 1, defined
on a cylinder with Lx × Ly = 10 × 4 and in the �y = −1 sector.

Jx = 1 Jx = 4

D̃ J3 = 0 J3 = 0.1 J3 = 0.2 J3 = 0

εtrunc 200 2.4 × 10−2 1.0 × 10−2 5.0 × 10−3 1.0 × 10−6

400 2.5 × 10−3 5.6 × 10−4 2.4 × 10−4 3.4 × 10−7

800 1.1 × 10−4 1.9 × 10−5 7.4 × 10−6 3.4 × 10−7

1000 3.4 × 10−5 6.8 × 10−6 2.9 × 10−6 3.4 × 10−7

δEg 200 1.1 × 10−3 4.9 × 10−4 1.8 × 10−4 6.8 × 10−8

400 8.8 × 10−5 2.4 × 10−5 9.2 × 10−6 4.9 × 10−8

800 4.4 × 10−6 9.3 × 10−7 3.3 × 10−7 4.9 × 10−8

1000 1.6 × 10−6 3.3 × 10−7 1.3 × 10−7 4.9 × 10−8

worth mentioning that, for the case with Abelian topological
order (Jx = 4 and J3 = 0), the MPO-MPS procedure yields
a highly accurate MPS approximation for the ground state.
These results give a hint that good MPS approximations of
Gutzwiller projected states could be obtained as long as the
entanglement has been treated properly.

We now perform DMRG optimization with MPSs prepared
from Gutzwiller projected states. For this we consider Hamil-
tonian H3 for the challenging gapless case (Jx = Jy = Jz =
1 and J3 = 0) [27]. For this particular model, we use the
MPO-MPS method to prepare the MPS approximations of the
ground states |�MPS(�y, D)〉 in both �y = ±1 sectors. For
comparison, we also randomly generate an MPS (with bond
dimension D̃) and optimize it with the two-site DMRG until a
converged MPS with bond dimension D is obtained.

As illustrated in Fig. 3, the relative energy deviation δEg is
reduced by two orders of magnitude with Gutzwiller projected
states PG|�0(�y = ±1)〉 being the initial Ansatz.

FIG. 3. The relative energy deviations δEg [Eq. (6)] vs num-
ber of sweeps in DMRG. The calculations are performed for the
Hamiltonian H3 in Eq. (1) on an Lx × Ly = 6 × 6 cylinder and with
Jx = Jy = Jz = 1 and J3 = 0. The truncation errors are kept to be
smaller than 10−9 during DMRG optimization. Red, green, and blue
lines stand for those with initial states of random MPS, PG|�0(�y =
−1)〉 and PG|�0(�y = 1)〉, respectively. Note that δEg initialized
with a random MPS is measured from the ground-state energy in the
�y = −1 sector. The final bond dimension after DMRG sweeps is
D = 8000 (D = 6500) for random MPS (Gutzwiller Ansatzë). Inset:
δEg vs inverse bond dimension 1/D.
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In addition to the substantial improvement of the DMRG
results, several remarks are in order: (1) A relatively small
bond dimension D̃ = 200 for the MPS prepared from PG|�0〉
is sufficiently good to initialize the DMRG process, despite
the larger truncation error (εtrunc ∼ 0.25) in the MPO-MPS
step. Meanwhile, the computational cost of preparing such
an MPS with D̃ = 200 is quite cheap. (2) During the DMRG
sweeps initialized with Gutzwiller projected states, the eigen-
value of the Wilson loop operator (�y = ±1) is preserved,
i.e., the MPS stays in the respective sector. This is very use-
ful for studying topologically ordered states with topological
degeneracy on the cylinder. (3) For the 6 × 6 cylinder, the
DMRG initialized with a random MPS always converges to
an MPS in the �y = −1 sector. However, exact results indi-
cate that for a finite cylinder, the ground-state energy in the
�y = −1 sector is higher than that in the �y = 1 sector. For
instance, the energy difference on the 6 × 6 cylinder is given
by Eg(�y = −1) − Eg(�y = 1) ≈ 0.084. This implies that
the DMRG with a random initial Ansatz gets stuck in a local
minimum [28]. (4) For DMRG initialized with a random MPS,
δEg measured from Eg(�y = −1) is still about two orders of
magnitude larger than those initialized from the Gutzwiller
projected state PG|�0(�y = −1)〉. These clearly show that a
properly chosen Gutzwiller projected state provides an ideal
initialization Ansatz for DMRG in two dimensions.

Diagnosis of parton wave functions. Now we turn to the
Kitaev honeycomb model in an external magnetic field along
the [111] direction,

H =
∑

〈 jk〉∈a

Jaσ
a
j σ

a
k − h

∑
j

(
σ x

j + σ
y
j + σ z

j

)
, (7)

with Jx = Jy = Jz = 1. With this model, we shall focus on
another function of our method, namely, diagnosing whether a
Gutzwiller projected state captures the essential entanglement
features of the actual ground state for a given Hamiltonian.

In order to diagnose the quality of a Gutzwiller projected
parton wave function PG|�Parton〉, we utilize the fidelity de-
fined by [29]

F = Tr
[√

ρ
1/2
D ρGρ

1/2
D

]
, (8)

where ρG and ρD, being two reduced density matrices for a
column of 2Ly sites in the middle of the cylinder, correspond
to the Gutzwiller Ansatz PG|�Parton〉 and the variational ground
state |�DMRG〉 obtained by DMRG, respectively. This fidelity
measures how close are the bulk parts of two wave functions,
while the boundary effects are precluded as much as possible.
For comparison, we also evaluate the wave-function fidelity
F̃ = |〈�DMRG|PG|�Parton〉|.

While several parton constructions have been suggested for
the Hamiltonian in Eq. (7) (see, e.g., Refs. [20,24,25]), we
shall restrict ourselves to four classes of Gutzwiller Ansatzë:
(1) Kitaev’s non-Abelian state with Chern number C = 1; (2)
fully polarized state with Chern number C = 0; (3) partially
polarized state with Chern number C = 1; and (4) U (1) spin
liquid state with a spinon Fermi surface [24]. See the Sup-
plemental Material [26] for further details of these states.
The fidelities F and F̃ between these Gutzwiller ansatzes
and the variational ground states obtained by DMRG (ini-

FIG. 4. The fidelities F as a function of the magnetic field h for
(1) the Kitaev’s non-Abelian state (green), (2) fully polarized state
(red), (3) partially polarized state (light blue), and (4) a U (1) spin
liquid state (dark blue) [26]. The DMRG calculations generate MPS
with bond dimension D = 2400 and truncation error εDMRG ∼ 10−8

(εDMRG ∼ 10−5 for 0.4 � h < 0.7). Inset: The wave-function fidelity
F̃ = |〈�DMRG|PG|�Parton〉|.

tialized with random MPSs) are shown in Fig. 4. It is seen
that state (1) agrees well with the DMRG-obtained ground
state at small h (0 < h < 0.35), while both states (2) and (3)
coincide with the ground state at large h (h > 1.25). For the
whole region of h, the U (1) spin liquid state (4) has neg-
ligible wave-function fidelity F̃ , although the corresponding
reduced-density-matrix fidelity F is finite. It is worth noting
that the two Gutzwiller projected states (2) and (3) have a
large overlap with each other, although their corresponding
(unprojected) parton states carry different Chern numbers.
For an intermediate magnetic field h (0.35 < h < 1), we have
observed that the DMRG cannot be boosted by any of the
four Ansatzë, which implies that none of them describes actual
ground states well.

Discussion. We have devised a method to boost the per-
formance of DMRG in two dimensions by using Gutzwiller
projected states as the initialization Ansatz. With the extensive
benchmarks, our method has shown clear advantages that
with a suitably chosen Gutzwiller Ansatz, local minima are
circumvented and much more accurate results are obtained
with no extra computational costs. For topological states,
DMRG initialized with a Gutzwiller Ansatz can preserve
topological sectors, which is very useful for characterizing
topological orders [30–33]. Our method also provides a diag-
nosis tool for analyzing the quality of the Gutzwiller Ansatz
for a given Hamiltonian. Actually, a number of important
strongly correlated systems have elusive ground states, albeit
numerous parton wave functions were proposed (see, e.g.,
Refs. [34–40]). It would be interesting to revisit these prob-
lems armed with our method.

Note added. Recently, we became aware of related works
[41,42] reporting results on converting Gutzwiller projected
wave functions into MPSs and/or using them to initialize
DMRG calculations.

Acknowledgments. We thank Qiang-Hua Wang, Yang Qi,
Hong Yao, Ying-Hai Wu, Urban Seifert, Yuan Wan, and
Zheng Zhu for helpful discussions. This work is supported
in part by National Natural Science Foundation of China

L020409-4



DENSITY MATRIX RENORMALIZATION GROUP BOOSTED … PHYSICAL REVIEW B 104, L020409 (2021)

(No. 11774306), National Key Research and Development
Program of China (No. 2016YFA0300202), the Strategic Pri-
ority Research Program of Chinese Academy of Sciences

(No. XDB28000000), and the Deutsche Forschungsgemein-
schaft (DFG) through project A06 of SFB 1143 (Project No.
247310070).

[1] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[2] S. R. White, Phys. Rev. B 48, 10345 (1993).
[3] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[4] K. A. Hallberg, Adv. Phys. 55, 477 (2006).
[5] U. Schollwöck, Ann. Phys. 326, 96 (2011).
[6] S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
[7] J. Dukelsky, M. A. Martín-Delgado, T. Nishino, and G. Sierra,

Europhys. Lett. 43, 457 (1998).
[8] F. Verstraete and J. I. Cirac, Phys. Rev. B 73, 094423 (2006).
[9] M. B. Hastings, J. Stat. Mech. (2007) P08024.

[10] E. Stoudenmire and S. R. White, Annu. Rev. Condens. Matter
Phys. 3, 111 (2012).

[11] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.
90, 227902 (2003).

[12] J. I. Latorre, E. Rico, and G. Vidal, Quantum Inf. Comput. 4, 48
(2004).

[13] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277
(2010).

[14] C. Gros, Ann. Phys. (NY) 189, 53 (1989).
[15] P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi,

and F. C. Zhang, J. Phys.: Condens. Matter 16, R755 (2004).
[16] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17

(2006).
[17] Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003

(2017).
[18] H.-K. Jin, H.-H. Tu, and Y. Zhou, Phys. Rev. B 101, 165135

(2020).
[19] Y.-H. Wu, L. Wang, and H.-H. Tu, Phys. Rev. Lett. 124, 246401

(2020).
[20] A. Kitaev, Ann. Phys. 321, 2 (2006).
[21] Z. Zhu, I. Kimchi, D. N. Sheng, and L. Fu, Phys. Rev. B 97,

241110(R) (2018).
[22] M. Gohlke, R. Moessner, and F. Pollmann, Phys. Rev. B 98,

014418 (2018).
[23] C. Hickey and S. Trebst, Nat. Commun. 10, 530 (2019).
[24] H.-C. Jiang, C.-Y. Wang, B. Huang, and Y.-M. Lu,

arXiv:1809.08247.
[25] M.-H. Jiang, S. Liang, W. Chen, Y. Qi, J.-X. Li, and Q.-H.

Wang, Phys. Rev. Lett. 125, 177203 (2020).
[26] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.104.L020409 for more details, which in-
cludes Refs. [43–48].

[27] The loop-gas state introduced in Ref. [49] would be a nice ini-
tialization Ansatz for DMRG. However, its MPS representation

has a bond dimension D = 7Ly , which, for Ly = 6, is beyond the
capacity of DMRG.

[28] We have performed DMRG sweeps with an unbiased set of
random MPS up to 36 times. Starting from the 24th sweep, the
variational energy no longer decreases and becomes fluctuating,
and the relative energy deviation δEg in the 36th sweep is
almost identical to the one in the 24th sweep (the difference
is about 10−8), indicating that the randomly initialized DMRG
gets stuck in a local minimum.

[29] I. McCulloch, arXiv:0804.2509.
[30] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A.

Vishwanath, Phys. Rev. B 85, 235151 (2012).
[31] L. Cincio and G. Vidal, Phys. Rev. Lett. 110, 067208

(2013).
[32] H.-H. Tu, Y. Zhang, and X.-L. Qi, Phys. Rev. B 88, 195412

(2013).
[33] M. P. Zaletel, R. S. K. Mong, and F. Pollmann, Phys. Rev. Lett.

110, 236801 (2013).
[34] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).
[35] S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Phys. Rev.

Lett. 109, 067201 (2012).
[36] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z.

Huang, B. Normand, and T. Xiang, Phys. Rev. Lett. 118, 137202
(2017).

[37] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, Phys.
Rev. X 7, 031020 (2017).

[38] Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett.
98, 117205 (2007).

[39] Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Phys. Rev. B
87, 060405(R) (2013).

[40] T. Li, arXiv:1807.09463.
[41] G. Petrica, B.-X. Zheng, G. K.-L. Chan, and B. K. Clark, Phys.

Rev. B 103, 125161 (2021).
[42] A. M. Aghaei, B. Bauer, K. Shtengel, and R. V. Mishmash,

arXiv:2009.12435.
[43] A. A. Abrikosov, Phys. Phys. Fiz. 2, 61 (1965).
[44] F. J. Burnell and C. Nayak, Phys. Rev. B 84, 125125 (2011).
[45] Y.-Z. You, I. Kimchi, and A. Vishwanath, Phys. Rev. B 86,

085145 (2012).
[46] X.-G. Wen, Phys. Lett. A 300, 175 (2002).
[47] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
[48] Y. Zhou and X.-G. Wen, arXiv:cond-mat/0210662.
[49] H.-Y. Lee, R. Kaneko, T. Okubo, and N. Kawashima, Phys. Rev.

Lett. 123, 087203 (2019).

L020409-5

https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1080/00018730600766432
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/10.1209/epl/i1998-00381-x
https://doi.org/10.1103/PhysRevB.73.094423
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1146/annurev-conmatphys-020911-125018
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.26421/QIC4.1
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1016/0003-4916(89)90077-8
https://doi.org/10.1088/0953-8984/16/24/R02
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/PhysRevB.101.165135
https://doi.org/10.1103/PhysRevLett.124.246401
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevB.97.241110
https://doi.org/10.1103/PhysRevB.98.014418
https://doi.org/10.1038/s41467-019-08459-9
http://arxiv.org/abs/arXiv:1809.08247
https://doi.org/10.1103/PhysRevLett.125.177203
http://link.aps.org/supplemental/10.1103/PhysRevB.104.L020409
http://arxiv.org/abs/arXiv:0804.2509
https://doi.org/10.1103/PhysRevB.85.235151
https://doi.org/10.1103/PhysRevLett.110.067208
https://doi.org/10.1103/PhysRevB.88.195412
https://doi.org/10.1103/PhysRevLett.110.236801
https://doi.org/10.1126/science.1201080
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.118.137202
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1103/PhysRevLett.98.117205
https://doi.org/10.1103/PhysRevB.87.060405
http://arxiv.org/abs/arXiv:1807.09463
https://doi.org/10.1103/PhysRevB.103.125161
http://arxiv.org/abs/arXiv:2009.12435
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.61
https://doi.org/10.1103/PhysRevB.84.125125
https://doi.org/10.1103/PhysRevB.86.085145
https://doi.org/10.1016/S0375-9601(02)00808-3
https://doi.org/10.1103/PhysRevB.65.165113
http://arxiv.org/abs/arXiv:cond-mat/0210662
https://doi.org/10.1103/PhysRevLett.123.087203

