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Here, by combining a symmetry-based analysis with numerical computations, we predict a different kind
of magnetic ordering—antichiral ferromagnetism. This term aims to reflect that spontaneous modulation of the
magnetization direction m(r) appears in a way that both types of chirality (handedness) exist simultaneously, and
alternate in space. Without loss of generality, we focus our investigation on crystals with full tetrahedral symme-
try where chiral interaction terms—Lifshitz invariants—are forbidden by symmetry. However, we demonstrate
that the leading chirality-related term leads to nontrivial smooth magnetic textures exhibiting antichirality. In
addition to the unconventional ground state, the revealed ordering gives rise to rich phenomena such as unique

magnetic domains and skyrmions.
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Chirality (handedness) and chiral textures is a cornerstone
concept in many fields of physics ranging from cosmology to
nuclear and elementary particle physics [1]. In many materi-
als, a chiral crystal structure results in a chiral ferromagnetic
ordering [2,3]. The chiral textures in magnetism attracted
renewed interest in recent decades owing to their potential
relevance to technological applications, including alternative
logic devices and racetrack memory where the information is
encoded by virtue of magnetic textures [4—7]. Interestingly,
some of the concepts developed so far are intended for the use
of materials that have ferromagnetic ordering at the atomistic
level, while at the mesoscale the direction of magnetization
m(r) is modulated. The corresponding basic types of modu-
lations are one dimensional and conventionally called cycloid
[Fig. 1(a)], helix [Fig. 1(b)], spiral, screw, to name a few [8,9].
Such textures, as well as arbitrary vector fields of constant
length, are characterized by geometrical invariants, the values
of which at any point are independent of the choice of the
coordinate frame. The chiral component of the texture can be
separated from the achiral component by means of two funda-
mental invariants: Rogers’s mean geodesic torsion [10,11],

p=m-(Vxm), ()
and streamline curvature [11],

k=m x (V xm)|. 2)
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For the cycloid in Fig. 1(a), p(r) = 0 and therefore each part
of this texture is achiral and can be superposed on its mirror
image, while for the helix and its reflection shown in Fig. 1(b),
the torsions are opposite in sign, p(r) = 27 /L, where L is
the period. Thus, the above helices have distinct chiralities.

The emergence of modulated ferromagnetic ordering may
appear due to competing symmetric interactions between
atoms in a lattice [12,13]. The multispin exchange inter-
actions, in particular four-spin interactions, also provide a
possible mechanism for the modulated texture stabilization
beyond a pairwise scenario [14]. Most naturally, multispin
exchange interactions can emerge in the form of two-site
biquadratic or four-site spin interactions [15,16]. The deli-
cate interplay between competing pairs and/or accounting for
multispin interactions, leading to the stabilization of different
magnetic textures, has been investigated both theoretically
and experimentally in Refs. [17-22]. By virtue of symmetry
of the above-mentioned and other symmetric interactions,
the reflection of modulated magnetic texture is defined by
degenerate energy states with opposite chirality, where a
certain chirality is a consequence of spontaneous symmetry
breaking.

An alternative mechanism of nucleation and stability of
modulated ferromagnetic textures may be attributed to the
presence of the pairwise Dzyaloshinskii-Moriya interaction
(DMI), which is responsible for an asymmetric spin exchange,
often discussed in magnetic systems where inversion sym-
metry is absent. Along with the magnetic ultrathin films and
multilayers where the inversion symmetry is broken by natural
means [5], the effect of DMI is pronounced in cubic crystals
with chiral point group symmetry 7, such as B20-type FeGe
and MnSi, in which a certain chirality of a magnetic helix
is dictated by one of two possible enantiomorphic forms of
the compound [23]. In this case, the corresponding magnetic
Hamiltonian includes the Lifshitz invariants [2,24], and the
chirality depends on the sign of their common factor.
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FIG. 1. Examples of periodic magnetic textures and their ge-
ometric reflections. (a) Cycloid, also known as Néel-type walls.
(b) Helix, also known as Bloch-type walls. (c) Antichiral modulation
found in the present work.

In this Letter, we predict a ferromagnetic ordering that is
fundamentally different from those discussed above which we
refer to as antichiral ferromagnetism. This term aims to reflect
(i) that the chiral component p(r) is significant, while the
handedness alternates giving (o(r)) = 0, and (ii) this mod-
ulation is spontaneous and no explicit symmetry breaking is
required for it.

Our analysis reveals that this magnetic ordering [see
Fig. 1(c)] naturally appears in a bulk ferromagnet with the
point group symmetry 7y owing to achiral crystal symmetry.
This is a class of crystals in which many minerals are formed
naturally [25,26].

Note that in systems with a ferromagnetic ordering dif-
ferent from the antichiral one, the spatial alternation of
handedness can be induced by an explicit symmetry breaking
(such as a magnetic field, impurities, etc.). The corresponding
magnetic textures are known as “fan,” transverse conical, and
others [8,19,27-30]. It is worth mentioning that the magnetic
systems may exhibit a spatial alternation of chirality-related
invariants other than p. For example, the so-called scalar spin
chirality, where the relevant continuum invariant is the normal
component of the vector of curvature [11], can alternate in
two-dimensional systems [30].

The macroscopic robustness of a magnetic configuration
is purely determined by its stability with respect to perturba-
tions that violate spatial uniformity. If, for instance, inversion
symmetry is broken, the spin alignment might gain a certain
chirality due to spin-orbit driven antisymmetric DMI that con-
tributes to the total energy with the terms linear with respect
to the first spatial derivatives of magnetization. In general, the
derivative linear contribution to the free energy of a ferromag-
net can be cast in the form

Hy = / dry " Qup(m)Vamp, 3)
ap

with the tensor ,4(—m) = —Q,s(m) being odd under

magnetization inversion [31], while «, 8 correspond to
e . . _ 1)

the spatial indices. By expanding Q,5(m) = ZV Qg 5, My +

> se Qsﬂ)y 5 My MM in powers of m and restricting to linear

and cubic contributions only, one arrives at

1 o
Hy = 5/‘”2 (D2 Velmamy) + D, L7]

afy
+ f dr Y Q) smy,msmeVamg, 4)
afyde

where for convenience we have separated the terms aris-
ing due to Q) into two parts, namely symmetric terms,
Va(mgm,, ), and terms given in the form of Lifshitz invariants,
L) = mpVam, — m,Vymp [32]. Note that as the symmetric
contribution can be expressed in terms of surface integrals via
Stokes’ theorem [31], its impact on the magnetic ordering in
bulk crystals can be discarded.

To proceed, we analyze (4) based on symmetry grounds
(see Appendix A). The solution for the 7y point group sym-
metry is trivial with respect to Lifshitz invariants, Dz,gy =0,
whereas in the case of Q) one can identify four independent
components with the corresponding invariants given by

Z/Va(mgmy—i—mlgmi), Z,Va(mozlm,gmy), (5a)

Z/ MampV, (m?), (5b)
mmy,m;V - m, (5¢)
where ), denote the sum over (a,B,y)E€

{(x,v,2), 0, z,x), (z,x,y)}. The invariant (5c) was first
reported by Ado er al. [33,34], whereas we derive the
complete set (5a)—(5c). After integrating by parts both
terms (5a) can be discarded for the same reasons as the
terms V,(mgm, ) in the above analysis. Note that within
the micromagnetic approach magnetization is described in
terms of a unit vector |m(r)| = 1 and thus the invariant (5b)
vanishes as well. Therefore we end up with (5¢) as the only
relevant term for Eq. (3).

We proceed with a microscopic analysis of the term (5c¢).
Due to anisotropy of the crystal, shown in Fig. 2(a), the mi-
croscopic Hamiltonian for classical spins s; must be equipped
with direction vectors. The possible term that corresponds to
such a contribution to the micromagnetic energy may be cast
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FIG. 2. (a) Sketch of bulk crystal with achiral point group sym-
metry T3. By virtue of rotoreflection S, invariants, the sign of the
phenomenological constant 3 alternates at 90° rotations of the coor-
dinate frame. (b) Possible structural building block, satisfying full
tetrahedral symmetry. The dashed line denotes the block arising
from the inversion, thereby emphasizing the lack of the inversion
symmetry.

in the form

4 4
H = ﬂ(z Si - h[) Z(Si : hi)3’ (6)
i=1 i=1

where unit vectors h; are aligned with the bonds connecting
the center of a tetrahedron and the corresponding vertex [see
Fig. 2(b)], while B represents the strength of the interaction.
Note that multispin interactions whose Hamiltonian contains
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direction vectors were recently discovered in B20-type cubic
chiral magnets [35]. Moreover, we expect that a certain insight
on the nature of pairwise and multispin interactions [36,37]
can be gained on the basis of first-principles calculations that
could clarify the microscopic origin of the term (5c).

We base our subsequent analysis on the minimal model of a
tetrahedral ferromagnet that contains an exchange interaction
and Ado interaction (5c¢),

H= /dr(A|Vm|2 + Bm,mym,V - m), (7

where A is the exchange stiffness. Additionally, where it
is specifically stated, we will take into account symmetry-
allowed cubic anisotropy with energy density in the form
K(mim; + mimZ + mimZ). Without loss of generality, we
assume B > 0, since the sign of this constant depends on
the choice of the coordinates (see Fig. 2). To identify the
lowest-energy state, as well as stable excited configurations,
we perform a numerical minimization of the energy (see
Appendix B for details).

In Figs. 3(b)-3(d) we provide relevant energy minimum
configurations that emerge from an initial guess with ran-
domly oriented spins, as depicted in Fig. 3(a). Interestingly,
the magnetic structure in Fig. 3(d) was found to be the en-
ergetically most favorable. Reducing the spatial dimension to
two, while increasing the size of the modeling area, we also
obtained that the type of modulations depicted in Fig. 3(d)
is the most energetically favorable configuration. Note that
the presence of cubic anisotropy leads to similar results, but
noticeably affects the optimal period of the observed modula-
tion [see Fig. 3(e)]. A closer inspection of the found magnetic
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FIG. 3. (a) Initial guess with chaotically oriented magnetization for the cube under periodic boundary conditions. (b)—(d) Typical numerical
solutions corresponding to an energy minimum: multidomain structure, modulations with edge dislocations, and perfect modulations,
respectively. (e) Dependence of the optimal period of the antichiral modulation on cubic anisotropy. (f) Torsion and curvature values, and
(g) magnetization projections plotted at each point along the modulation direction. For (f) and (g) the thicker line (green) corresponds to the
case of nonzero cubic anisotropy K = —0.01532 /A, for which a three-dimensional view is presented in Fig. 1(c).
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FIG. 4. (a)-(c) The torsion p(x,y) calculated for found excita-
tions: skyrmions having negative and positive topological charge,
and clusters composed by their pairs, respectively. The approximate
energy values of these states are 12.02, 12.02, and 23.58, respec-
tively. The energy is calculated relative to the global minimum in
units of 2A¢, where ¢ is the thickness in the z direction. (d), () Mag-
netization near the marked central region in (a) and (b), respectively.

ordering is visualized in Figs. 1(c) and 3(g). It can be clearly
seen that locally in space the magnetic spiral has distinct
chirality. The sign of the calculated torsion p varies in space
[Fig. 3(f)], resulting in a bichiral configuration that vanishes
when averaged over a modulation period. On this account we
label this state with alternating local chiralities as antichiral.
For data points and an analytical approximation of the ground
state, see Ref. [38] and Appendix C, respectively. The spatial
orientation of the texture is sixfold degenerate, since the mod-
ulation axis X can be parallel to any vector from the (110)
family. The polarity of modulation is twofold degenerate,
meaning that if, for example, X is parallel to [110], then the
vector (m(r)) is directed along either [110] or [110]. The
resulting 12-fold degeneracy should be spontaneously broken
in this model. In a finite sample, we expect that the significant
net magnetization and stray fields will favor the split into the
domains.

Having established the ground state we proceed with
the discussion on the possibility of stable excited con-
figurations, apart from those found by numerical energy
minimization from the random state. Notably, several classes
of magnets allow particlelike topological excitations, such
as magnetic skyrmions [5,7,32]. In order to resolve numeri-
cally whether the present system has similar type excitations
we use the vortexlike ansatz [32] as an initial guess, super-
imposing modulation mimicking the ground state discussed
above. This approach is justified since there are systems
where skyrmions are embedded in the modulated state
[39-41]. Our findings suggest that the model (7) possesses
stable localized states with an integer topological charge
Q= (4n)"! [dxdym-[d,m x dym] (see Fig. 4). Interest-
ingly, contrasting to their counterparts in chiral magnets,
skyrmions that we obtain in this model do not have a pre-
defined chirality, but instead, they have two spots with strong
left-handed and right-handed torsion.

We demonstrated that the magnetic ordering in crystals
with the Ty (tetrahedral class) point group can be of a dif-
ferent type, that we refer to as antichiral ferromagnetism. As
discussed in the Supplemental Material, there are many com-
pounds of this class containing magnetic elements (Cr, Mn,
Fe, Co, and Ni) [38]. Among the methods that may be used
to probe the predicted antichiral ordering, one can highlight
small-angle neutron scattering, spin-polarized scanning probe
microscopy [42], as well as the electron magnetic circular
dichroism technique [43].

Our numerical findings reveal that the antichiral ground
state has a set of stable topologically nontrivial excitations
in the form of edge dislocations and skyrmions. These exci-
tations are antichiral in contrast to their chiral counterparts
in systems with a Dzyaloshinskii-Moriya interaction. Their
properties pose an intriguing question that open up interesting
theoretical and experimental research directions.

Note added. Ado et al. report an independent study on
model (7) [44].
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APPENDIX A: SYMMETRY ANALYSIS METHOD

Given a point group symmetry with generators R, a
tensorial structure is dictated by the symmetry relations

.. R(M) Q(ﬂ)

(n) _ oW pw
Y =R R B1BaBu’

ooy a1p1” o B

(AD)

where R;’;) are orthogonal matrices of three-dimensional ir-
reducible representations for each element u of the group.
The corresponding matrices for the tetrahedral point group Ty
can be found, e.g., in Refs. [45-47]. Reduction of the linear
system (A1) identifies zero and nonzero components of the
tensor €2.

APPENDIX B: NUMERICAL ENERGY MINIMIZATION

The continuous model as yielded by Eq. (7) was discretized
using a rectangular grid under periodic boundary conditions.
We implemented a discretization scheme giving an eighth
order of accuracy by generalizing the approach of Donahue
and McMichael [48]. The typical number of grid points in
each dimension ranged from 140 to 160. For minimization
we used a GPU-parallelized nonlinear conjugate gradient al-
gorithm [49], while the constraint |m| = 1 was satisfied by
means of the special use of stereographic projections (see,
e.g., Supplemental Material in Ref. [50]).

L020406-4



ANTICHIRAL FERROMAGNETISM

PHYSICAL REVIEW B 104, L020406 (2021)

APPENDIX C: ANALYTICAL APPROXIMATION OF
THE GROUND STATE

Cycloid [Fig. 1(a)], helix [Fig. 1(b)], screws, and cones
[8,19,29,41] are analytically described by the Rodrigues’ ro-
tation formula with an r-dependent angle,

m(r) = vcosf(r)+ (p x v)sin6(r)
+p(p-v)[1—cosO(r)], (C1)

where p and v are some unit vectors. Despite its versatility,
expression (Cl) is rather unsuitable for approximating the

antichiral states found here. The following approximation is
noticeably more accurate,

my ~ asin(2nX/L), mz =~ bcos(2nX/L),

myz,/l—m)z(—m%, (C2)

where the parameters a and b are subject to optimization (for
example, for K = 0, a = 0.54, b = 0.5), and period L can be
taken from Fig. 3(e). For XYZ coordinates, see Fig. 1(c). It is
important to note that the elliptic conical approximation (C2),
although better than (C1), deviates from the true texture in a
noticeable manner for some K values.
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