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We reexamine the Kosterlitz-Thouless phase transition in the ground state |�0〉 of an antiferromagnetic
spin- 1

2 Heisenberg chain with nearest- and next-nearest-neighbor interactions λ from a different perspective:
After defining winding number (topological charge) W in the basis of resonating valence bond states, the
finite-size scaling of 〈�0|W |�0〉, 〈�0|W |∂λ�0〉, 〈∂λ�0|W |∂λ�0〉 leads to the accurate value of critical coupling
λc = 0.2412 ± 0.0007 and to the value of subleading critical exponent ν = 2.000 ± 0.001. This approach should
be useful when examining the topological phase transitions in all systems described in the basis of resonating
valence bonds.
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Introduction. At a quantum phase transition (QPT) prop-
erties of the ground state of the quantum system change
drastically due to quantum fluctuations, which are most
clearly pronounced at zero temperature. Although many ap-
proaches have been proposed to examine QPTs, to locate
critical points, and to calculate the values of critical expo-
nents, an important question still remains: Is it possible to
explore the critical behavior of a system at QPT by examin-
ing the change of its ground state |�0〉 in a critical region,
especially when there is no possibility to identify an order
parameter nor to establish a pattern related to symmetry
breaking? Still, there exists a quest for new approaches, based
on scaling and renormalization to search for and characterize
QPTs.

Recently, mostly due to the interplay between information
theory and quantum many-body physics, new possibilities
have emerged for the study of QPTs. One of the latest observa-
tions was that the fidelity f , understood as an overlap between
the system ground states calculated for the slightly shifted
values of the parameter λ whose change leads the system to-
wards QPT, may be used to find it; see, e.g., Refs. [1,2]. Later
on, this approach was extended to the fidelity susceptibility,
χF = 〈∂λ�0|∂λ�0〉, and the phase transition was to be seen as
a shift of the maximum in the dependencies of f and χF on
the parameter λ. However, some difficulties were encountered
with finite-size scaling (FSS) of the fidelity susceptibility χF

for topological QPTs: It was unclear whether the maxima
of χF obey FSS, and some attempts were made to interpret
the emerging discrepancies [3] as logarithmic corrections to
scaling. It turned out recently [4] that the maximum of χF

is shifted relative to the Kosterlitz-Thouless (KT) quantum
critical point λc by a universal constant B2

36 towards the gapped
phase in which the correlation length ξ falls exponentially,
ξ (λ) ∼ exp(B/

√|λ − λc|). For this reason, the maximum in
question does not scale with the system size L as expected—
see, e.g., Eq. (5) in Ref. [5] or Eq. (7) in what follows—and
the change of its position with the change of the system size
L cannot be used to find the critical properties of the system

within FSS of fidelity susceptibility. On the other hand, the
exponential decay of the correlation length near the critical
coupling λc causes the numerical investigation of KT transi-
tion to be hard, since one has to examine rather large system
(hundreds of spins) to avoid finite-size effects.

In this Letter, we address the problem of precise determi-
nation of the critical coupling and some critical exponents
at a topological quantum phase transition and show that the
FSS method may be used for small systems to locate such a
quantum critical point and to determine the critical exponents,
despite the shift of the maximum mentioned earlier.

The model under consideration and its essential properties.
Our answer to the question posed in the Introduction is based
on the reexamination of the quantum phase transition in the
known [6–8] one-dimensional (1D) spin- 1

2 Heisenberg anti-
ferromagnet with nearest-neighbor interactions, set equal to
1, and next-nearest-neighbor interactions, set equal to λ. The
Hamiltonian reads

H =
∑

i

SiSi+1 + λ
∑

i

SiSi+2. (1)

The ground state of this system depends on λ: for λ < λc =
0.241167 it is similar to the ground state of a 1D antiferromag-
net with nearest-neighbor interactions (spin liquid phase), i.e.,
it is critical with the correlation function decaying in a power-
like way, ∼√

ln(r)/r, where r stands for spin-spin separation.
Excitations are gapless: the finite-size triplet gap scales like
1/L (also with logarithmic correction). For λ > λc, the sys-
tem displays a different ground state (dimerized phase): the
correlation function decays exponentially, ∼ exp[−r/ξ (λ)],
with the distance, and the triplet gap remains open in the
thermodynamic limit. The transition between these phases is
known to be of Kosterlitz-Thouless type.

Resonating valence bond (RVB) basis and winding num-
bers. Using the RVB basis sheds additional light on the critical
properties of the considered system. Recall then, briefly, the
essential features of RVB approach [9,10] to quantum spin- 1
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FIG. 1. Examples of calculating the winding numbers for two
states |cl〉 [blue, (a)] and |ck〉 [red, (b)] with respect to the reference
state |cR〉 [black, (c)] in a 12-spin system. The system with periodic
boundary conditions is represented as a line. The winding number
WlR = 0 is assigned to the transition graph 〈cl |cR〉 (d) since the
number of singlets cut by green line modulo 2 is equal to 0 (see
text). In (e) the number of singlets modulo 2 crossed by the green
line equals 1 and consequently WkR = 1.

systems: Matrix elements of the Hamiltonian are calculated
not in the Ising basis but in the (complete) nonorthogonal
basis |ck〉 taken from an overcomplete set of singlet coverings:

〈ck| Si · S j |cl〉 = (−1)d
( ± 3

4

)〈ck|cl〉; (2)

〈ck|cl〉 = 2N (ck ,cl )−Ns with N (ck, cl ) being the number of
loops arising when the coverings 〈ck| and |cl〉 are drawn
simultaneously on the same lattice (“transition graph”) and
Ns= L

2 stands for the number of singlets in the system. All
singlets belonging to |ck〉 are oriented; d denotes the number
of disoriented ones one meets while moving along the loop
in 〈ck|cl〉 containing i and j. Finally, + 3

4 is taken if there is
an even number of dimers between i to j, − 3

4 in the opposite
case. To find the ground state of Hamiltonian (1), one solves
the generalized eigenproblem H |�0〉 = E0C|�0〉, with C be-
ing the matrix formed from the scalar products 〈ck|cl〉.

The procedure of finding the ground state in the nonorthog-
onal RVB basis has an advantage that can be seen when one
uses periodic boundary conditions and maps the periodicity of
the Hamiltonian onto a regular polygon. The L (even number)
vertices of this polygon represent L interacting Heisenberg
spins 1

2 and the L edges represent interactions between spins.
Such a bipartite system of spins has CL

L/2/( L
2 + 1) linearly in-

dependent RVB basis states—see, e.g., Ref. [9]—and each of
them may be characterized by its topological winding number
W (topological charge). To accomplish this, one chooses any
basis state |cR〉 as a reference state, as noticed in Ref. [11]
(see definition on page 3) and obtains the winding number
assigned to any other basis state |cl〉 from the transition graph
〈cl |cR〉 [11] in the following way. The polygon, representing
the spin system (vertices denote spins, edges denote inter-
actions between them) divides the plane into two disjoint
areas; one draws lines (green dashed in Fig. 1) connecting
these areas and crossing each edge of the polygon. Eventually,
after drawing the transition graph 〈cl |cR〉 on the polygon, one
counts how many singlets are cut by the green-dashed lines
connecting the inside and outside of the polygon (see Fig. 1).
Note that the number of singlets cut by any green-dashed
line modulo 2 equals 0 for Fig. 1(d) and 1 for Fig. 1(e). We
therefore assign WlR = 0 and WkR = 1 to the basis states |cl〉

and |ck〉 with respect to the state |cR〉. Taking other basis states
as reference states and carrying out the similar procedure, one
finds the matrix of winding numbers Wpq between all basis
states.

The set of all basis states, after applying this definition,
splits into two disjoint subsets (sectors) A and B regardless
of the choice of the reference state |cR〉: Each of the linearly
independent basis states belongs to one of them. For indices
which number basis states within one sector it holds that
Wαα′ = Wββ ′ = 0, while for different sectors one has Wαβ =
Wβα = 1 for α, α′ ∈ A and β, β ′ ∈ B. This division leads to
the block antidiagonal form of the matrix Wkl ; see an example
for L = 8 in the Supplemental Material [12]. The basis states
belonging to the same sector can be transformed into each
other by a sequence of local singlet moves. The transition
graph resulting from a local move does not wind around the
entire system with periodic boundary conditions. The basis
functions from different sectors are not topologically equiv-
alent: one can not pass from a basis state belonging to one
topological sector to a basis state belonging to another sector
by making only local singlet moves; at least one move is
required for which the transition graph winds around the entire
system. It means that the resonances between basis states from
different sectors extend throughout the whole system (they are
global ones), whereas for basis states from the same sector
only local resonances exist. The global resonances are not
topologically equivalent to the local ones.

In what follows, we apply the above observation to exam-
ine resonances present in the ground state of the system under
consideration and show that their change from global to local
ones while changing λ makes it possible to determine λc and
critical exponents after applying the FSS technique. For this
purpose, we consider how the following quantities depend on
λ for systems of various sizes L:

(i) ηT (λ) = 〈�0(λ)|W |�0(λ)〉 (topological charge),
(ii) χt (λ) = χT (λ)

L = 1
L 〈∂λ�0(λ)|W |∂λ�0(λ)〉 (we will

henceforth call it topological fidelity susceptibility), and
(iii) βt (λ) = βT (λ)

L = 1
L 〈�0(λ)|W |∂λ�0(λ)〉 (we will

henceforth call it topological connection).
The mean value of the Hermitian operator W (topological

charge) informs us how large is the component of the vector
W |�〉 along |�〉, i.e., what part of the state |�〉 is composed of
the basis functions belonging to different topological sectors.
If there were present only local (global) resonances in this
state, this value would be 0 (1). If, however, local and global
resonances are present, this value will be between 0 and 1.
Similarly, the value of χT (λ), being the inner product between
|�λ〉 and W |�λ〉, tells us what amount of W |�λ〉 points in the
direction of |�λ〉, i.e, what part of the fidelity susceptibility
〈∂λ�|∂λ�〉 is composed of the basis functions belonging to
different topological sectors. Eventually, βt reveals what part
of the change of |�〉, with lambda remaining parallel to |�〉
itself, is composed of basis functions belonging to different
topological sectors. Thus, the change of ηT , χT , and βt with λ

enables the examination how the proportion changes between
the basis states belonging to different topological sectors in a
given state of the system. This is equivalent to the change of
the ratio between local and global resonances in this state. As
we will see further, ηT , χT , and βt are subject to the finite-size
scaling laws.
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FIG. 2. Topological charge ηT dependence on λ above the transi-
tion (λc = 0.2411) before (left) and after (right) rescaling, according
to Eq. (5), for systems up to 24 spins.

Finite-size scaling of the topological charge and calculation
of the critical coupling in the system. Expressing the ground
state in the RVB basis |ci〉 and taking into account that for the
system under consideration all the coefficients αi(λ) in this
expansion may be chosen to be real numbers, we find that

ηT (λ) =
∑
k,l

αk (λ)αl (λ)Wkl〈ck|cl〉. (3)

Let us now assume that ηT (λ, L) calculated for finite systems
approaches, similarly to the spin stiffness (see Ref. [8] page
52 and Ref. [13]), its infinite size value with a logarithmic
size correction, i.e.,

ηT (λc, L) = ηT (λc,∞)
(

1 + 1

2 ln(L) + C

)
, (4)

and C is a system dependent parameter. Subsequently, using
the FSS hypothesis and taking into account that above the
transition correlation length ξ does not fall in a power-like
manner, but rather exponentially [ξ (λ) ∼ exp(B/

√|λ − λc|)],
leads [8] to the conclusion that

ηT (λ, L)
(

1 + 1

2 ln(L) + C

)−1
= �

(
ln(L) − B√

λ − λc

)
,

(5)
with � being some universal scaling function. In Fig. 2 it is
shown that the scaling given by Eq. (5) does occur: we observe
the collapse of ηT (λ) calculated for different values of L onto
a single curve for λc = 0.2411, B = 2.901 and C = 0.3512.
The value of B is related to the KT transition width. The
transition in the considered system is much broader than that
undergoing in the 1D Bose-Hubbard model (B = 0.261), in
the XXZ spin- 3

2 model (B = 1.61) [4], or in the 2D XY model
(B = 1.5) [14]. This is also the reason why the maximum of
χT is shifted quite far from λc.

Finite-size scaling of topological fidelity susceptibility.
One can calculate the topological fidelity susceptibility
〈∂λ�0(λ)|W |∂λ�0(λ)〉 from Eq. (3) by replacing the coeffi-
cients αk and αl by their numerical derivatives with respect
to λ. Its dependence on λ in systems up to L = 24 spins is
shown in Fig. 3 (top left). Notice the two gray areas in this
figure marked by A1 and A2.

The enlarged A1 area (right top of Fig. 3) shows the
maximum of χT /L for 24 spins. From the position of this
maximum, we can independently determine the numerical
value of parameter B for the second time using the main
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FIG. 3. Top left: Topological fidelity susceptibility for systems
up to 24 spins versus λ. Top right: Enlarged maximum for 24 spins
(grey area A1). Red squares: calculated values of χT /L; black line: fit
to Eq. (6). Bottom: Enlarged grey area A2 shows topological fidelity
susceptibility before (left) and after rescaling (right) for systems with
L = 16–24 spins. The scaling collapse leads to the optimal values of
λc and exponent ν. The errors were estimated by finding the collapse
several times, taking the numerical data with Gaussian noise with
standard deviation equal to the accuracy of numerical differentiation
while calculating χT .

result of Ref. [4]: The maximum of fidelity susceptibility χF

should be shifted with respect to λc by the universal constant
B2

36 . To prove this, the authors of Ref. [4] assumed that the
singular part of the fidelity 〈�0(λ1)|�0(λ2)〉 near the critical
point is a homogeneous function with respect to ξ (λ1) and
ξ (λ2) and scales as [4] 〈�0(λ1)|�0(λ2)〉 = b−1�( ξ (λ1 )

b ,
ξ (λ2 )

b ),
with � being some universal function and b a scaling factor.
From the definition of fidelity susceptibility, from this form of
the scaling hypothesis, and from the exponential dependence
of ξ (λ), it follows that close to the critical point the fidelity
susceptibility χF /L is given by

χF (λ)/L = A
exp(−B/

√|λ − λc|)
|λ − λc|3 . (6)

Let us now assume that χT , being a part of χF , is subjected
to the same scaling. Then we can find B for the second time
by fitting the calculated values of χT /L for 24 spins near its
maximum to Eq. (6). The continuous line (in black) resulting
from this fitting is shown on the right top of Fig. 3. The nu-
merical value of B = 2.900 determined by this method agrees
well with the B value obtained from topological charge scaling
(B = 2.901). The slight difference of the last digit may be due
to the fact that the system of 24 spins was treated as if it were
an infinite one.

If we look more closely at the A2 area (left bottom of
Fig. 3), we will see the crossing of χT /L calculated for sys-
tems from L = 14 to L = 24 spins for some value of λc. To
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FIG. 4. Left: The topological connection 1
L 〈�0(λ)|W |∂λ�0(λ)〉

versus λ before rescaling. Right: The value of the function
B(λ, λm, L) defined by Eq. (8) versus L1/ν (λ − λm ) for system sizes
L = 14–24. As expected from the finite-size scaling ansatz, the data
for different system sizes collapse on a single curve for ν = 2.003
(right). The error is estimated as explained in the caption of Fig. 3.

find this value and the critical exponent ν, one takes into ac-
count the argument that the topological fidelity susceptibility,
χT (λ), after appropriate rescaling of arguments and function
values, for different system sizes should collapse onto the
same curve. Let us assume that the topological fidelity sus-
ceptibility χT (λ) at the critical point scales as the fidelity
susceptibility χF (λ) [1,5,15]:

χT (λ)/L = L2/ν−1
(L1/ν (λ − λc)), (7)

with 
 being a universal scaling function. The data from the
left bottom of Fig. 3 have been plotted on the right side using
rescaled values of each of the arguments L1/ν (λ − λc) and
the function χF (λ)L−2/ν . Collapse occurs for λc = 0.2412 ±
0.0002 and ν = 2.000 ± 0.001. The singular part of χT (λ)
should scale as |λ − λc|ν−2 [5,15]. Since ν = 2, this scaling
behavior is subleading and the presence of χT peak is a result
of the dependence ξ (λ) ∼ exp(B/

√|λ − λc|). The value of
ν = 2 also results directly from Eq. (7), because then χT /L

does not depend on L, which leads to the crossing of χT curves
for different L at the critical point.

Topological connection scaling. Let us now determine
the subleading exponent ν for the second time from the
FSS of the topological connection 1

L 〈�0(λ)|W |∂λ�0(λ)〉 =
1
L

∑
k,l αk

∂αl
∂λ

Wkl〈ck|cl〉. The topological connection depen-
dence on λ displays a well-marked peak for some λm(L) > λc.
This maximum shifts towards λc with increasing L [see Fig. 4
(left)], and the value of βt (λm) diverges logarithmically with
L: βt (λm) ∝ 0.170 ln L. Similar dependence was reported [16]
for the phase transition in the ground state of the quantum
XY chain. This logarithmic divergence suggests [17] that it is
possible to extract a critical exponent ν from the scaling of the
function

B(λ, λm, L) = (1 − eβt (λ(L))−βt (λm (L)))

∝ L1/ν[λ(L) − λm(L)]; (8)

λm(L) stands for the peak position for a given L (Fig. 4 left)
and βT (λ(L)) for the topological connection near λc for a
given L. All data for systems with different L collapse onto
a single curve as shown in Fig. 4 (right), after taking λc =
0.2411 for ν = 2.003 ± 0.009.

Summary. The topological charge ηT , the topological sus-
ceptibility χT , and the topological connection βt obey the
finite-size scaling. The scaling occurs for relatively small
systems. Treated as a test, this made it possible to determine
accurately the critical coupling λc and subleading exponent
ν in a well-known topological phase transition in a spin- 1

2
Heisenberg chain with nearest- and next-nearest-neighbor in-
teractions. We hope that the presented results will stimulate
further exploration of topological critical phenomena in other
resonating valence bond systems in which there is no possi-
bility to define an order parameter.
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