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In this Letter, we introduce a paradigm to realize magnetomechanical metastructures inspired by multilayer
two-dimensional materials, such as graphene bilayers. The metastructures are intended to capture two aspects of
their nanoscale counterparts. One is the multilayer geometry, which is implemented by stacking hexagonal lattice
sheets. The other is the landscape of weak interlayer forces, which is mimicked by the interactions between
pairs of magnets located at corresponding lattice sites on adjacent layers. We illustrate the potential of this
paradigm through a three-layer prototype. The two rigid outer lattices serve as control layers, while the thin
inner layer is free to experience flexural motion under the confining action of the magnetic forces exchanged
with the outer ones, thus behaving as a lattice on an elastic foundation. The inner layer is free to rotate relative to
the others, giving rise to a rich spectrum of interlayer interaction patterns. Our objective is to determine how the
dynamical response can be tuned by changing the twist angle between the layers. Specifically, we demonstrate
experimentally that switching between different stacking patterns has profound consequences on the phonon
landscape, opening and closing band gaps in different frequency regimes.
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Two-dimensional (2D) heterostructures are layered nanos-
tructures consisting of stacks of 2D materials that are
characterized by strong in-plane bonding and weak van
der Waals interactions between the layers [1]. A prototyp-
ical example is graphene bilayers, which consist of two
stacked layers of graphene [2–6]. Because of the inter-
layer interaction, bilayers feature a more complex set of
functionalities compared to their monolayer counterparts.
For example, if the layers are free to undergo a relative
twist, a moiré interference pattern appears and special stack-
ing configurations [AA, AB/BA, and saddle point (SP)]
with distinctive mechanical characters can be identified.
Additionally, twists at the so-called magic angles lead to
a series of unique behaviors, including superconductivity,
formation of insulating states, and electronic nematicity. Re-
cently, acoustical and mechanical analogs of twisted bilayer
graphene have been proposed and their dynamic properties
at the magic angle have been theoretically and numerically
investigated [7,8].

The objective of this Letter is to introduce a class of multi-
layer mechanical metastructures qualitatively inspired by the
morphology and interlayer mechanisms of graphene bilayers,
and determine how their dynamical response can be tuned by
the relative twist of the layers. In recent years, a plethora of
elastic metastructural designs has been proposed to achieve a
variety of unconventional static and dynamic functionalities.
Most two-dimensional configurations involve a single solid
layer in which periodicity is induced through voids, as in
cellular lattices [9,10], stubs or other surface elements [11,12],
or inclusions [13–16], or by folding structural components,
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as in origami and kirigami metamaterials [17–19]. Fewer
concepts have fully embraced the opportunities offered by
the interaction of multiple layers. Notable examples include
recent works exploring the mechanics of bilayers of pillars
[12,20], the interaction of layers of scatterers forming reso-
nant dipoles [21], the mechanics of bistable domes [22], and
stacked origami structures [23].

Realizing mechanical analogs of nanoscale bilayers in-
volves the nontrivial task of mimicking their geometric and
kinetic characteristics at the macroscale. From a geometry
perspective, we need to be able to stack multiple periodic
layers. Additionally, the force landscape must entail strong
intralayer forces between neighboring lattice sites within each
layer, and weak interlayer forces between adjacent layers. At
the macroscale, the role of the graphene layers can be played
by thin hexagonal lattice sheets undergoing flexural deforma-
tion. To mimic the weak interlayer interactions, we can resort
to pairs of magnets placed at corresponding lattice sites on
adjacent layers. While magnets have been used in phononics
applications, either as particles of discrete lattices [24], or as
a tool to endow structural lattices with programmable nodal
mass [25] or to promote multistability [26], their use as a
source of interlayer interaction is less charted. In principle,
an arrangement of two structural layers featuring nodal in-
teraction should fully capture the morphology and kinetics
of a graphene bilayer. However, a two-layer configuration
involving repulsive magnets would be met with a practical
limitation. Under the action of the repulsive forces and in the
absence of any confining action, the layers would warp and
settle on a deformed configuration that represents the equi-
librium point between the magnetic forces and the stiffness
of the layers. In these conditions, the remaining magnetic
interactions would cease to yield an appreciable signature on
the layers’ dynamics.
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FIG. 1. Magnetomechanical multilayer analog of graphene bi-
layer. (a) Three-layer sandwich stacking. (b) Equivalent spring model
for the magnetic interactions. (c) Inner layer modeled as a single
layer on an elastic foundation.

To overcome this limitation, we consider the three-layer
configuration shown in Fig. 1. The inner layer, with magnets
on both sides, is sandwiched between two outer layers, which
also feature magnets on their internal side. The resulting re-
pulsive magnetic forces, exerted symmetrically by the outer
layers, keep the inner one in equilibrium. By design, the outer
layers are much thicker than the inner one and can therefore
be treated, for all intents and purposes, as rigid. As a result,
the interactions between pairs of magnets can be modeled
as equivalent springs that connect points on the inner layer,
which can experience out-of-plane motion, to fixed points at
corresponding locations on the outer layers, thus behaving
as an elastic foundation. In essence, even if three layers are
practically involved, the system can be effectively modeled as
a single honeycomb layer on an elastic foundation, with the
outer layers serving uniquely as a control function.

It is convenient to shape the layers as circular disks, so
that the inner layer can rotate concentrically relative to the
outer ones, resulting in a continuous spectrum of stacking
patterns. We also provide the layers with a solid rim through
which they can be constrained to one another, upon selection
of the desired stacking pattern, and fixed to ground. Four
configurations, corresponding to four values of the twist angle
θ , are shown in Fig. 2. For θ = 0◦, the system is in AA
stacking [Fig. 2(a)], where both lattice sites of each unit
cell feel magnetic forces. For θ = 60◦, the system is in AB
stacking [Fig. 2(b)], where only one lattice site per unit cell
interacts magnetically. For intermediate angles, two of which

Moiré pattern Moiré pattern

FIG. 2. Schematic illustration of the opportunities for reconfigu-
ration available via twisting. (a) AA stacking for twist angle θ = 0◦

and perfectly overlapping layers (two lattice sites overlapping per
unit cell). (b) AB stacking for θ = 60◦ with one lattice site overlap-
ping per unit cell. (c),(d) Examples of moiré patterns obtained with
intermediate twist angles.

are shown in Figs. 2(c) and 2(d), we observe the formation of
moiré patterns and the emergence of new length scales in the
lattice. The question is whether different twisted configura-
tions can display different dynamic behavior. Specifically, we
are interested in whether the band-gap characteristics of the
inner layer can be tuned by twisting. In this Letter, we focus on
AA and AB stacking, for which we have been able to achieve
experimental realizations using our current prototype, as dis-
cussed later; for completeness, in the Supplemental Material,
we report the transmissibility plots obtained numerically for a
few intermediate twist angles [27].

Using the equivalent spring model, we can effectively
explore the effect of different stacking patterns by perform-
ing a series of Bloch analyses on unit cells with different
foundation spring arrangements. For this illustrative example,
we select a set of geometric and material properties (whose
values are not binding to obtain the results discussed in the
following) that resemble, as much as possible, those of the
specimens discussed later in the Letter. For material prop-
erties, we assume standard values for stainless steel type
304: Young’s modulus E = 190 × 109 N/m2, Poisson’s ratio
ν = 0.265, density ρ = 7850 Kg/m3. The cell beams feature
node-to-node length 3.72 cm, in-plane thickness 6.7 mm, and
out-of-plane thickness 1 mm.

We start from the baseline case of a single layer, whose unit
cell is shown in Fig. 3(a) with its mesh. To obtain a meaningful
“apples-to-apples” comparison with the multilayer case, the
inertia of the inactive magnets is modeled by adding lumped
masses (m = 1 × 10−3 Kg) at the lattice nodes. The band
diagram of Fig. 3(a) features classical in-plane (blue) and out-
of-plane (red) modes of hexagonal lattices, with a Dirac cone
at the K point, as expected for lattices with sixfold symmetry.

We then proceed to study the effect of AA stacking by
adding, to the unit cell, two foundation springs, as shown
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FIG. 3. (a) Evolution of band diagram upon changes in twist
angle and interlayer distance. (a) Baseline case of single layer:
FEM model of unit cell; band diagram with in-plane (blue) and
out-of-plane (red) modes, featuring Dirac cone at K point of the
Brillouin zone. (b) Unit cell with elastic foundation (AA stacking
case shown). (c) AA stacking with large interlayer distance (weak
magnetic forces), with up-shifting of the flexural mode and opening
of a foundation band gap. (d) AA stacking with smaller interlayer
distance (stronger magnetic forces), resulting in increase of the
foundation band-gap width. (e) AB stacking with weak magnetic
forces, resulting in reduction of the foundation band-gap width.
(f) AB stacking with strong magnetic forces, resulting in increase
in foundation band-gap width and opening of finite-frequency band
gap due to space inversion symmetry (SIS) breaking.

in Fig. 3(b). For the equivalent spring constant, here we as-
sume keq = 3 × 102 N/m; the characterization of the actual
magnetic interaction observed in a physical prototype will
be further discussed later in the context of our experimental
setup. The corresponding band diagram is given in Fig. 3(c),
where we see that the elastic foundation lifts the flexural
modes, opening a low-frequency foundation band gap. If we
repeat the analysis assuming a larger spring stiffness (here,
keq = 3 × 103 N/m), to model a reduction in interlayer dis-
tance, the width of the foundation band gap increases, as
shown in Fig. 3(d). In Figs. 3(e) and 3(f), we study the case
of AB stacking, modeled by removing one foundation spring.
It is important to note that this operation changes the symme-
try landscape of the unit cell, relaxing the sixfold symmetry
and space inversion symmetry (SIS) while preserving three-
fold symmetry. The effects on the band diagram are twofold.
For weak magnetic forces (large interlayer distance), the

foundation band gap shrinks, to account for the fact that the
cell feels the interlayer interaction from only one magnet
[Fig. 3(e)]. For stronger magnetic forces (smaller interlayer
distance), the signature of symmetry breaking becomes dis-
tinct, with the lifting of the degeneracy at the Dirac point
and the opening of a finite-frequency band gap. We note that
the SIS relaxation is one of the ingredients required to de-
sign mechanical quantum valley Hall effect (QVHE) analogs
used to realize nontrivial waveguides [25,28,29]. Interestingly,
while in most QVHE analogs the symmetry is broken through
physical changes in the cell, here the effect is obtained in a
contactless fashion through the interaction with the control
layers, and is therefore fully reversible.

To test the tuning capabilities, we designed and assembled
the prototype shown in Fig. 4. The three layers are cellu-
lar disks with identical diameter and lattice constant, and a
solid rim with overlapping slots designed to enable fastening
while allowing for adjustable twist. The inner layer, shown
in isolation in Fig. 4(a), and the outer layers are water-jet
cut from a 0.15-mm-thick sheet of stainless steel (type 304,
with parameters provided above) and from a 6-mm-thick
slab of aluminum (treated as rigid), respectively. We glue
Neodymium N-42 permanent magnets on both sides of the in-
ner layer, as shown in Fig. 4(b), and on one side of each outer
layer, such that opposing magnets on adjacent layers have
opposite polarizations. The magnets on the inner and outer
layers have diameters of 1/4 in and 3/8 in, and thicknesses of
1/8 in and 1/16 in, respectively. Finally, we stack the lattices
as to establish repulsive magnetic interactions between each
layer pair, as shown in Fig. 4(c). The layers are separated by
washers and fastened through the rim slots. Thus, the strength
of the magnetic interaction can be tuned in discrete increments
by controlling the spacing (number of washers) between the
layers.

By rotating the inner layer, we can establish different stack-
ing patterns. Although in principle all twist angles can be
achieved, in this prototype, only θ = 0◦ and θ = 60◦, corre-
sponding to AA and AB stacking, respectively, lead to stable
configurations. This is a side effect of the magnets, which
are repulsive axially but attract each other side by side. For
small twist angles, some magnet pairs are displaced such that
they start feeling strong in-plane attraction despite living on
different layers—a phenomenon that is accentuated at small
interlayer distances. The in-plane forces may occasionally
result in magnets being stripped from the lattice; they can
force the ligaments of the inner layer to warp macroscopically,
altering the layer shape, or they can cause the layers to come
into contact, ultimately collapsing the structure. For these
reasons, here we focus on the dichotomy between the extreme
stacking scenarios AA and AB.

The experimental setup is shown in Fig. 4(d). A scan-
ning laser doppler vibrometer (SLDV, Polytec PSV-400-1D)
is used to measure the out-of-plane response of the inner layer.
The specimen is placed vertically and clamped at the bottom.
The out-of-plane excitation is imparted at the center of the
inner lattice through an electrodynamic shaker (Bruel & Kjaer
Type 4809) powered by a Bruel & Kjaer Type 2718 amplifier.
Note that the shaker stinger engages the inner layer through
an opening in the rear outer layer; see inset of Fig. 4(d).
Using this setup, we excite harmonically, sweeping the
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FIG. 4. Experimental prototype and setup. (a) Inner layer with solid rim and curved slots for bolts allowing for adjustable twist. (b) Detail
of the inner stainless steel layer, showing double magnet arrangement and thin ligaments. (c) Detail of the trilayer sandwich structure showing
coaxial interaction between pairs of magnets. (d) Setup showing base clamp, point excitation provided via electromechanical shaker, and
scanning laser Doppler vibrometry (SLDV) scan.

frequency of excitation. For each frequency, we measure, with
the vibrometer, the velocity of a lattice site, implementing
several averages to filter out noise. We acquire and average
velocity values from multiple scan points to obtain a single
scalar output measure. Finally, we construct a transmissibility
metric by dividing this average output velocity by the velocity
of the excitation point.

The transmissibility is plotted against frequency in
Figs. 5(a)–5(d). Figures 5(a) and 5(b) refer to AA stacking, for
interlayer distance D = 7.42 mm and D = 6.34 mm, respec-
tively. We observe a large foundation band gap, whose width
increases as the interlayer distance decreases, in accordance
with the model. Surprisingly, we note that the band gap does
not start at 0 Hz. While a combination of factors probably con-
cur to produce this deviation from the model, the most likely
explanation lies in the nonideality of the boundary constraints
in the experimental setup. A band gap starting at 0 Hz requires
a perfect foundation, with springs connecting the structure to
fixed points. While the trilayer sandwich is held in place by
firm clamps, the possibility for these clamps to slide slightly
on the table surface (especially at low frequencies where the
imposed displacements are large) makes the physical realiza-
tion of the foundation imperfect. The peaks below the band
gap are likely to capture these very low-frequency vibrational
modes. The results for AB stacking, for the same pair of
interlayer distances, are shown in Figs. 5(c) and 5(d). The first
thing to notice is the conspicuous shrinking of the founda-
tion gap, in accordance with the theory. The second effect
is the appearance of an interval where the transmissibility
dips around 270 Hz. This effect is pale for D = 7.42 mm in
Fig. 5(c) but becomes more pronounced for D = 6.34 mm in

Fig. 5(d) and can be, in part, ascribed to the emergence of
band-gap conditions due to the symmetry breaking predicted
by the model at finite frequencies.

We accompany the experiments with full-scale finite ele-
ment (FE) simulations of the entire lattice disk. The FE model
is implemented with fixed boundary conditions by effectively
constraining the magnet nodes located on the ring boundary.
The results are shown in Figs. 5(e)–5(h). To estimate the
equivalent stiffness of the foundation springs, one could rely
on manufacturers and charts. However, these are only accurate
if the magnets are perfectly coaxial and are very sensitive to
the intermagnet distance. In the experiment, even small warp-
ing of the inner layer results in partially tilted magnets that
lose coaxiality and in a nonuniform landscape of distances.
For these reasons, we prefer to leave the equivalent magnets
stiffness as a free calibration parameter. The calibration is
performed such that the width of the foundation band gap for
AA stacking matches the one observed in the experiments, as
shown in Figs. 5(e) and 5(f). The predictive quality of the cal-
ibrated model can then be tested by comparing the frequency
responses for AB stacking in Figs. 5(g) and 5(h) against
their experimental counterparts. The shrinking of the founda-
tion gap is well captured. The opening of a finite-frequency
band gap due to symmetry breaking is also predicted, al-
though slightly upshifted compared to the experiments. The
establishment of clear band-gap conditions in the simulations
indirectly corroborates an interpretation of the shallower dips
observed in Figs. 5(c) and 5(d) (in the same frequency range)
also in terms of symmetry-breaking mechanisms.

In conclusion, we have demonstrated experimentally that
we can tune the band-gap response of a magnetomechanical
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FIG. 5. Experimental results. (a)–(d) Transmissibility vs frequency plots obtained from vibrometry data for (a),(b) AA stacking and
(c),(d) AB stacking, for different interlayer distances. The plots revel a foundation band gap, whose width depends on the interlayer distance
and can be tuned by twist. For sufficiently strong interlayer interactions, a second band gap associated with symmetry breaking is switched
on by twisting the layers from AA to AB stacking. (e)–(h) Transmissibility plots obtained from full-scale simulations for the same stacking
conditions and interlayer distances, correlating well with the experimental results.

multilayer metastructure by controlling the relative twist be-
tween the layers. While, in this Letter, we have focused on AA
and AB stacking, the analysis can be conceptually extended to
intermediate configurations corresponding to a full spectrum
of moiré patterns.
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