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Topological fluctuating electron-hole Cooper pairs in graphene-GaAs heterostructures
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Fluctuating Cooper pairs formed by spatially separated electrons and holes are precursors of their equilibrium
condensation. Their presence strongly impacts transport phenomena and interlayer tunneling in double-layer
systems above the transition temperature. Here, we consider a hybrid graphene/quantum-well double-layer
system and focus on the dynamics of fluctuating Cooper pairs formed by conventional electrons and Dirac
holes. We demonstrate that the chiral nature of Dirac holes is manifested in the presence of two (almost)
degenerate competing pairing channels, which are intertwined by effective pseudospin-orbit interactions. We
argue that the spectrum of the Ginzburg-Landau Hamiltonian describing the energetics of fluctuating Cooper
pairs is geometrically nontrivial and can be characterized by the half-integer topological Chern number. We
derive a kinetic equation for fluctuating Cooper pairs and demonstrate that their nontrivial geometries generate
two anomalous velocities of distinct geometrical origins. These velocities are intricately connected with the Berry
curvature and the quantum metric for the Ginzburg-Landau Hamiltonian, respectively. The resulting anomalous
contributions to conductivity are singular at the transition temperature, and we discuss possible setups for their
experimental observation.
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I. INTRODUCTION

Over the past decades, there has been a growing interest
in the geometrical Berry phase for electrons in solids. The
presence of the phase has a profound effect on material prop-
erties and is responsible for a variety of phenomena, such
as polarization, orbital magnetism, and various (quantum,
anomalous, or spin) Hall effects (see reviews in Refs. [1–3]
and references therein). Additionally, the corresponding Berry
curvature, which functions as an analog of a magnetic field in
reciprocal space, is a cornerstone concept for the topologi-
cal classification of solids [4]. The spatial distribution of the
Berry curvature in reciprocal space distinguishes topological
insulators, semimetals, superconductors, and electron-hole su-
perfluids from their topologically trivial counterparts [5–7].

Superfluids formed by closely spaced electrons and
holes in bilayer systems (e.g., semiconductor GaAs/AlGaAs
quantum-well (QW) systems [8–13], heterostructures formed
by monolayer materials [14–26], and topological insulator
thin films [27,28]) are close relatives of superconductors.
These superfluids can maintain phase coherence via a Cooper
pair (CP) condensate and support dipolar superfluidity, which
is potentially useful for various applications. Thus far, the
nontrivial geometry of electron-hole superfluids has been
considered only as a feature of Bogoliubov quasiparticles.
The spectrum of these quasiparticles is shaped by the in-
terplay between the band geometry of electrons and holes
and the momentum distribution of the static order parameter
describing the equilibrium CP condensate. Here, we argue
that there is another geometrical aspect of electron-hole su-
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perfluids (as well as superconductors) that has been previously
overlooked.

Above the transition temperature for electron-hole CP
condensation, Gaussian fluctuations of the order parameter
occur, which are usually interpreted as partly coherent fluc-
tuating CPs [29]. The presence of these fluctuations results
in the strong enhancement and critical behavior of interlayer
tunneling [30,31] and the Coulomb drag resistance [32–35]
reminiscent of the Aslamazov-Larkin effect and related ef-
fects in superconductors [36–40]. The behavior consistent
with the presence of these fluctuations has been reported
in double-bilayer graphene [41], MoSe2-WSe2 heterostruc-
tures [42], conventional semiconductor QWs [43–45], and
hybrid graphene-GaAs bilayers [46]. Here, we demonstrate
that nontrivial geometries of electrons and holes pass on to the
fluctuating CPs and that their spectrum can also be classified
as topological.

In the present paper, we consider the hybrid graphene-
GaAs bilayer reported in Ref. [46] and sketched in Fig. 1.
We focus on the dynamics of fluctuating CPs formed by
conventional electrons and Dirac holes. We demonstrate that
the chiral nature of Dirac holes is manifested in the pres-
ence of two (almost) degenerate competing pairing channels,
which are intertwined by effective pseudospin-orbit interac-
tions. We argue that the spectrum of the Ginzburg-Landau
(GL) Hamiltonian for fluctuating CPs is geometrically non-
trivial and can be characterized by the half-integer Chern
number. We derive a kinetic equation for fluctuating CPs
and demonstrate that their nontrivial geometries generate
two anomalous velocities, which are intricately related to
the Berry curvature and quantum metric for the GL Hamil-
tonian, respectively. The resulting anomalous contributions
to conductivity are singular at the transition temperature,
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FIG. 1. Schematics of the hybrid graphene-GaAs bilayer. A
graphene sheet is deposited on the surface of a semiconductor
AlGaAs, underneath which a GaAs quantum well hosts a two-
dimensional electron gas. Carriers in the two layers are induced
by gating or by a doping layer [46] (not shown in the sketch)
and have independent contacts (dark blue) required for transport
measurements). (b) The low-energy band structure of the hybrid
graphene-GaAs bilayer includes a conduction band with conven-
tional electrons and a pair of valence bands (K and K′ valleys) with
Dirac holes.

and we discuss possible setups for their experimental
observation.

The remainder of the paper is organized as follows. In
Sec. II, we present a low-energy model describing the hybrid
graphene-GaAs double-layer system. In Sec. III, we discuss
the Cooper instability and classify the pairing channels. In
Sec. IV, we introduce the GL Hamiltonian and discuss the
nontrivial geometries of its spectrum. In Sec. V, we derive
a kinetic equation for fluctuating CPs. The temperature de-
pendence of the anomalous paraconductivity is presented in
Sec. VI, and different experimental setups for its detection are
overviewed in Sec. VII. Section VIII is devoted to discussions
and conclusions.

II. MODEL

The hybrid graphene-GaAs bilayer and its low-energy band
structure are sketched in Fig. 1(a). Following the experi-
mental setup [46], we assume that a graphene sheet with
excess of holes is deposited on the surface of a semiconductor
AlGaAs, underneath which a GaAs quantum well hosts a
two-dimensional electron gas. The physics of electron-hole
bilayers formed by monolayer materials is very rich and has
been considered in a number of recent papers [14–26,47–49]
(see Ref. [13] for a review) aiming to provide realistic pre-
dictions of the density-temperature phase diagram. Here, we
follow a different route and consider a minimal phenomeno-
logical model that properly accounts for the chiral nature of
Dirac holes.

The nature of correlations in the hybrid electron-hole bi-
layer depends on three dimensionless parameters. The first
two are the Wigner-Seitz interaction strength parameters re

s =
mee2/h̄pFκe and rh

s = e2/h̄vκh that scale the ratio of in-
teractions and kinetic energy in GaAs QWs and graphene,
respectively. The third parameter, pFd/h̄, scales the interlayer
Coulomb interactions with respect to the intralayer one. Here
me is the electron mass in a GaAs QW and pF is the Fermi
momentum; v is the velocity of Dirac holes in graphene; κe

and κh are the effective dielectric constants for each layer in
the considered multilayer heterostructure and d is the sepa-
ration distance between electrons and holes. If re(h)

s � 1 and
pFd/h̄ � 1 the system is in the weak-coupling regime with

pairing correlations only in the vicinity of the Fermi level
for electrons and holes. This regime can be described by the
Bardeen-Cooper-Schrieffer (BCS) theory. Its range of the ap-
plicability in the considered hybrid bilayer also extends to the
moderate coupling strength regime, re(h)

s ∼ 1 and pFd/h̄ ∼ 1,
and is wider compared to the conventional QW bilayers. The
reason is that the gapless nature of the Dirac spectrum [50]
does not allow the bilayer to host interlayer excitons. As a
result, the strong-coupling regime, re(h)

s � 1 and pFd/h̄ ∼ 1,
is not the Bose-Einstein condensate of indirect excitons, but
is anticipated to be a multiband BCS-like paired state [47–49]
where pairing correlations also span to remote bands (empty
conduction band in graphene). In reported hybrid graphene-
GaAs bilayers [46] the above-listed controlling parameters
can be estimated as re

s ∼ 1.1 and rh
s ∼ 0.3 and pFd/h̄ ∼ 2.6.

That is why the system is in the weak-to-moderate-coupling
regime and can therefore be described by the phenomenolog-
ical weak-coupling BCS theory we develop below.

Electrons in the QW can be described by the field operator
er, and their kinetic energy is given by

Ĥe =
∫

dr e†
r

(
p̂2 − p2

F

2me

)
er. (1)

The spin degree of freedom is of little importance here
and does not need to be treated explicitly. The low-energy
electronic states in graphene are concentrated near two in-
equivalent valleys (K and K′), which are labeled by the index
ζ = ±1. These states are described by the spinor field oper-
ator hr = (hA

r , hB
r ), and their pseudospin corresponds to the

sublattice (A and B) degree of freedom of the honeycomb
lattice. The kinetic energy of the Dirac states is given by

Hh =
∫

dr ĥ†
r

(
δ + εh

F v(ζ p̂x − i p̂y)
v(ζ p̂x + i p̂y) −δ + εh

F

)
ĥr. (2)

Here εh
F is the Fermi energy. A small energy asymmetry

between sublattices δ � εh
F can be induced by substrate en-

gineering. As shown in Fig. 1(b), asymmetry opens the gap
2|δ| between the partly filled valence band and the empty
conduction band, which has a massive Dirac dispersion ±εh

p

with εh
p = (v2p2 + δ2)1/2. We will refer to the empty states

in the valence band as holes; however, it is instructive to
not perform the formal particle-hole transformation [51]. In
the weak-to-moderate-coupling regime, electron-hole correla-
tions occur only within the vicinity of the Fermi level, and the
empty conduction band can simply be truncated. The chiral
nature of Dirac holes is encoded in their spinor wave function,
which is given by

|p〉h =
(

ζ sin
( θp

2

)
e−i

ζφp
2

− cos
( θp

2

)
ei

ζφp
2

)
. (3)

Here, φp is the polar angle for vector p and cos(θp) =
δ/εh

p . It is instructive to introduce the compact notations
cp ≡ cos(θp/2) and sp = sin(θp/2). The important feature of
Dirac holes is their geometrically nontrivial spectrum [1].
The geometry is characterized by the Berry connection Ah

p =
ih〈p|∇p|p〉h, and the Berry curvature �h

p = [∇p × Ah
p]z. The
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latter is valley dependent and is given by

�h
p = ζv2δ

(v2p2 + δ2)3/2
, Ch =

∫
dp
2π

�h
p = ζ δ

2|δ| . (4)

The low-energy spectrum around each of the two valleys can
be characterized by the half-integer Chern number and is
therefore topologically nontrivial. When the total Chern num-
ber of the two valleys is zero, the large momentum separation
between the valleys provides partial topological protection
and results in a number of phenomena (e.g., helical states at
edges and domain walls, where the asymmetry energy δ flips
its sign) known for topological insulators.

We further assume that the Fermi momentum of Dirac
holes matches the momentum pF for electrons in a QW. This
is the most favorable regime for electron-hole Cooper pairing
driven by an attractive Coulomb interaction. Being effectively
screened by charge carriers in both layers, the attractive inter-
actions can be approximated by the contact pseudopotential
with momentum-independent Fourier transform V . If we ne-
glect intervalley scattering, the interactions can be described
by the following Hamiltonian:

Hint =
∫

dr Ve†
r ĥ†

r · ĥrer. (5)

Due to the presence of the pseudospin degree of freedom for
Dirac holes, the contact interactions drive the Cooper instabil-
ity in multiple pairing channels.

III. COOPER PAIRING CHANNELS

To analyze possible pairing channels, we assume that the
CP condensate is at rest. The condensate can be described by
the order parameter 
v

p = −V 〈h†
pvep〉, where hpv is the annihi-

lation operator for the valence-band states in graphene. Within
the mean-field theory, the pairing channels can be addressed
with the help of the linearized self-consistent equation for the
order parameter 
v

p, which can be written as


v
p = V

∑
p′

�pp′
th

( ξ e
p′

2T

) + th
( ξ h

p′
2T

)
2
(
ξ e

p′ + ξ h
p′
) 
v

p′ . (6)

Here, ξ e(h)
p = ve(h)(p − pF) is the dispersion of electrons

(holes) linearized in the vicinity of the Fermi momentum
pF. The overlap of the spinor wave functions �pp′ = h〈p′|p〉h
reflects the chiral nature of Dirac holes and is given by

�pp′ = spsp′e−i
ζφpp′

2 + cpcp′ei
ζφpp′

2 . (7)

Here, φpp′ is the angle between momenta p and p′. The
presence of the factor �pp′ reorganizes the Cooper pairing
channels and plays a very important role. If we approximate
cp and sp by their values at the Fermi level, cF and sF, the
order parameter 
v is momentum independent and Eq. (6)
becomes algebraic. As clearly shown, there are two competing
channels with orbital quantum numbers l = ±1/2, and the
corresponding dimensionless coupling constants are given by

λ− ζ

2
= s2

FV ν0 = V ν0

2

(
1 − δ

εh
F

)
,

λ ζ

2
= c2

FV ν0 = V ν0

2

(
1 + δ

εh
F

)
. (8)

The coupling constant λl determines the transition tempera-
ture in the corresponding channel as

T 0
l = 2ε0eC

π
e− 1

λl . (9)

Here, C = 0.577 is the Euler constant, ν0 = pF/π h̄2(ve + vh )
is the effective density of states at the Fermi level, and ε0 =√

vevh p0 is determined by the momentum cutoff p0. In the ab-
sence of sublattice asymmetry, δ = 0, the coupling constants
match each other, λ1/2 = λ−1/2, and two channels are there-
fore degenerate. (We demonstrate below that in this regime
the system is unstable towards the finite momentum Cooper
pairing.) Due to the exponential dependence of the transition
temperature on the coupling constant, the degeneracy is ef-
fectively lifted even in the presence of a very small sublattice
asymmetry δ � εh

F.
The presence of two (almost) degenerate competing

Cooper pairing channels is a unique feature of this hybrid bi-
layer [52] that clearly distinguishes this system from QW-QW
and graphene-graphene bilayers. In the former case, �pp′ →
1, and the contact interactions drive Cooper pairing only in
the s-wave channel. For the case of a graphene-graphene
bilayer with a gapless spectrum, δ = 0, the factor must be
modified as �pp′ → �2

pp′ [53]. As a result, there are three
channels l = 0,±1, and the corresponding coupling constants
are λ0 = ν0V/2 and λ±1 = ν0V/4. In a similar manner as for
the QW-GaAs bilayer, the s-wave channel is the dominant
Cooper pairing channel.

The origin of two competing channels can be tracked
to the presence of the pseudospin degree of freedom for
Dirac holes. In the sublattice basis, the order parameter 
̂p =
{
A

p ,
B
p } has two components: 
A

p = −V 〈hA†
p ep〉 and 
B

p =
−V 〈hB†

p ep〉. These components describe selective Cooper
pairing with correlations only at one of two sublattices. These
components are related to the order parameter 
v

p introduced
above, as follows:


v
p = sp


A
p e−i

ζφp
2 + cp


B
p ei

ζφp
2 . (10)

The order parameter in the sublattice picture has the only
s-wave component and is therefore momentum-independent

̂. As a result, there is a one-to-one correspondence between
channels in the band basis and components of the order pa-
rameter in the sublattice basis. The relation between them is
valley dependent and can be presented as


v
−ζ/2 = sF


A, 
v
ζ/2 = cF


B. (11)

The basis choice is a matter of convenience, and in the remain-
der of the paper, we will deal only with the order parameter in
the sublattice basis.

Thus far, we have considered only the instability toward
Cooper pairing with zero momentum, q = 0. As we demon-
strate below, the chiral nature of Dirac electrons results in
intertwining between 
A and 
B at finite q.

IV. GINZBURG-LANDAU HAMILTONIAN

Above the transition temperature, the order parameter van-
ishes, but Gaussian fluctuations remain, which are usually
interpreted as fluctuating CPs. These fluctuations are de-
scribed by the dynamical bosonic field 
̂tr = {
A

tr,

B
tr}, and
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their energetics are determined by the GL functional FGL[
],
which is derived in Appendix A. After a proper rescaling [54],
FGL[
] can be presented as

FGL =
∫

dr 
†
trĤGL
tr. (12)

The dimensionless Hermitian matrix ĤGL is the GL Hamilto-
nian. This matrix describes two bosonic modes (
A

tr and 
B
tr)

intertwined by effective pseudospin-orbit interactions as

ĤGL =
(

εA + ξ 2q2 −ξ�(ζqx − iqy)
−ξ�(ζqx + iqy) εB + ξ 2q2

)
. (13)

Each mode has a temperature-dependent energy gap εA(B) =
ln[T/T 0

A(B)]. The gap vanishes at the transition temperature
T 0

A(B) given by Eq. (9) [combined with the channel labeling
rule, Eq. (11)], which signals Cooper instability in the cor-
responding channel. The largest of them, T0 = max[T 0

A , T 0
B ],

determines the critical temperature of electron-hole Cooper
pairing. The lengths

ξ =
√

7ζ (3)

2

h̄vevh

2π (ve + vh)T
, ξ� = h̄ve

4λ(ve + vh)pF
, (14)

scale the quadratic kinetic energy of the modes and
their pseudospin-orbit interactions, respectively. Here, λ =
max[λA, λB] is the coupling constant in the leading chan-
nel. The ratio of scales ξ�/ξ ∼ T0/λvh pF is small; thus, the
contribution of the effective pseudospin-orbit interactions to
the kinetic energy is small compared with the quadratic
term.

The effective pseudospin-orbit interactions mix and inter-
twine components of the order parameter, 
A

q and 
B
q . The

spectrum of the GL Hamiltonian HGL has two eigenmodes
(γ = ±1) and is given by

εγ q = εs + ξ 2q2 + γ dq, dq =
√

ε2
z + ξ 2

� q2. (15)

Here, εs = (εA + εB)/2 is the average energy of the modes,
and εz = (εA − εB)/2 can be interpreted as the effective Zee-
man term in the GL Hamiltonian HGL. These terms are given
by

εs = ln

⎛
⎝ T√

T 0
A T 0

B

⎞
⎠, εz = 1

2
ln

(
T 0

B

T 0
A

)
. (16)

The average energy εs smoothly decreases with temperature,
but the effective Zeeman term εz is temperature independent.
Its sign and magnitude

εz = λB − λA

2λAλB
≈ 1√

λAλB

δ

εh
F

(17)

are given by the sublattice asymmetry δ and vanish if δ = 0.
If the effective Zeeman term is smaller (εz < εM) than

εM = ξ 2
� /2ξ 2, the effective spin-orbit interactions reshape the

parabolic lower eigenmode ε−,q into a Mexican-hat shaped
curve, as presented in Fig. 2(a). A minimum occurs at finite
momentum qM with an energy gain of 
εM with respect to

FIG. 2. Dispersion relation for fluctuating CPs at (a) εz = 0 and
(b) εz = 0.1 for ξ�/ξ = 0.08. The dashed black lines correspond
to the spectrum without pseudospin-orbit interactions, ξ�/ξ = 0.
For a small asymmetry (εz < εM) between sublattices, the effective
pseudospin-orbit interactions reshape the lower parabolic eigen-
mode into a Mexican-hat shaped curve. As a result, the system
is unstable toward the Cooper pairing state with finite momentum
(Fulde-Ferrell-Larkin-Ovchinnikov state).

ε−,q at q = 0, as follows:

ξqM = ξ�

ξ

√
ε2

M − ε2
z

2εM
, 
εM = − (εM − |εz|)2

2εM
.

As a result, the electron-hole bilayer is unstable toward
Cooper pairing with finite momentum (Fulde-Ferrell state
[55]) or a nonuniform state (Larkin-Ovchinnikov state [56]).
The nature of the condensed state can be addressed within the
GL theory (with quartic terms in the free energy functional
FGL), but such an analysis is beyond the scope of the present
paper, which focuses on fluctuating CPs. It should be noted
that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases are
stabilized solely by the pseudospin-orbit interactions and do
not require the electron-hole density imbalance [57,58]. Since
contribution of effective pseudospin-orbit interactions to the
kinetic energy is small compared with the usual quadratic
term, this regime εz < εM is realized only at vanishingly small
energy asymmetry δ between graphene sublattices.

If the effective Zeeman term is sufficiently large (εz > εM),
the effective pseudospin-orbit interactions impact the slope of
the dispersion curves εγ q presented in Fig. 2(b), but do not
reshape them.

The intertwining between 
A
tr and 
B

tr is manifested in the
nontrivial geometry and topology of the HGL spectrum. The
nontrivial geometry is intricately related to the momentum
space texture for the unit vector nq = hq/|hq| defined within
the parametrization of the GL Hamiltonian HGL(q) = 1̂ · h0

q +
σ̂P · hq in terms of Pauli matrices σ̂P. The vector nq follows
the topological momentum space meron texture. Depending
on the sign of εz, the vector points up or down at the mo-
mentum origin q = 0. For a large momentum q, the vector nq
lies in the horizontal plane and follows the vortexlike texture.
Being projected to the Riemann sphere, the vector field spans
the half that dictates the topological Chern number to be a half
integer, |CC

γ | = 1/2.
In formal mathematics, the nontrivial geometry of the

HGL spectrum can be characterized by the generalized Berry
connection Âq, which also includes the off-diagonal matrix
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elements, as follows:

Aγ γ ′
q = C〈γ q|i∇q|γ ′q〉C, T αβ

γ q = Aγ γ̄
qαA

γ̄ γ

qβ . (18)

Here, we have also introduced the quantum geometric tensor
T̂γ q for fluctuating CPs with α and β as Cartesian indices (x
and y) [59–61]. The real part of the tensor defines the quantum
metric Ĝγ q = Re[T̂γ q], which allows one to measure distances
between eigenstates |γ q〉C in momentum space. The quantum
metric for fluctuating CPs is given by

Ĝγ q = 1

8d4
q

[
ξ 4
� q2

[
σ z

P cos(2φq) + σ x
P sin(2φq)

]
− ξ 2

�

(
d2

q + ε2
z

)]
. (19)

The second term is independent of the direction of momentum
q, and the first term has quadrupole symmetry. The imaginary
part of the quantum geometric tensor for fluctuating CPs de-
fines their nontrivial Berry curvature �C

γ q = −2εαβzIm[T̂ αβ
γ q ],

which matches with another definition, �C
γ q = [∇q × Aγ γ

γ q ]z.
The Berry curvature has the opposite sign for two eigenmodes,
is valley dependent, and is given by

�C
γ q = ζγ εz

d
3
2

q

, CC
γ =

∫
dq
2π

�C
γ q = ζγ εz

2|εz| . (20)

Being inherited from the Dirac holes, the band geometry
is also characterized by the half-integer Chern number CC

γ .
Therefore, we interpret the hybrid electron-hole fluctuating
CPs to be topologically nontrivial.

The nontrivial geometries of fluctuating CPs closely follow
the geometry for Dirac holes in graphene. However, there are
two major differences between Dirac holes and fluctuating
CPs. First, the pair of massive Dirac bands is separated by
the global gap (i.e., present for all momenta), which is not the
case for fluctuating CP eigenmodes. Besides the existence of
bands with nontrivial Chern numbers, the stability of the edge
modes at boundaries and domain walls also requires a global
energy gap (in the Discussions section, we discuss approaches
to overcome this obstacle). However, the absence of this gap
is not an obstacle for anomalous transport phenomena, which
rely on the nonzero Berry curvature of eigenmodes and will be
considered in the following sections. Second, fluctuating CPs
are not bosonic quasiparticles (with Hermitian Hamiltonian
dynamics) but overdamped bosonic modes. For this reason,
the corresponding anomalous transport phenomena are out-
side the range of present theories [3,62–64].

V. KINETIC EQUATION

The dynamics of fluctuating CPs are governed by the time-
dependent GL (TDGL) equation (see Ref. [38] and Appendix
C). Components of fluctuating CPs have opposite charges
and are spatially separated. For these reasons, coupling with
electric potentials in both layers (φe

tr and φh
tr ) can be intro-

duced via the Peierls substitution ∂t → ∂t + ieφeh
tr with φeh

tr =
φe

tr − φh
tr. As a result, the TDGL equation can be presented as

follows:

τ ∗(∂t + ieφeh
tr

)

 = −ĤGL
 + ηtr,

〈ηtrη
†
t ′r′ 〉 = 2T τ ′ 1̂ δtt ′δrr′ . (21)

Here, τ = τ ′ + iτ ′′, where τ ′ = π h̄/8T gives the dissipation
rate of fluctuating CPs and τ ′′ = h̄/λ(ve + vh)pF weights the
Hermitian part of their dynamics. The external complex field
ηtr = {ηA

tr, η
B
tr} is the Langevin noise. Its presence is dictated

by the fluctuation-dissipation theorem, and the correlation
function 〈ηtrη

†
t ′r′ 〉, which is free of temporal and spatial cor-

relations (white noise), is proportional to the relaxation rate
τ ′ but does not depend on τ ′′. In the considered weak-to-
moderate Cooper pairing regime, their ratio is small, τ ′′/τ ′ ∼
T/λ(ve + vh)pF; hence, the dissipation of fluctuating CPs is
an essential component in their dynamics. These CPs cannot
be interpreted as bosonic quasiparticles, but are instead over-
damped bosonic modes.

The contribution of fluctuating CPs in transport phe-
nomena can be addressed by applying the linear-response
approach to the TDGL equation. These calculations are pre-
sented in Appendix B. In the main part of this paper, we follow
another route. As it is presented in Appendix C, the TDGL
equation, Eq. (21), can be transformed into a kinetic equa-
tion for the distribution function of fluctuating CPs, nγ (R, q),
which is given by

∂t nγ + eEeh∂qnγ + τ ′′

|τ |2
(
∂qεγ q + u�

γ q + uG
γ q

)
∂Rnγ

= −2εγ qτ
′

|τ |2 (nγ − n0
γ ). (22)

Here n0
γ q = T/εγ q is the equilibrium classical distribution

function for fluctuating CPs. We have introduced two distinct
anomalous velocities u�

γ q and uG
γ q, which are generated by

the nonzero Berry curvature �γ q and quantum metric Ĝγ q,
respectively. Their explicit expressions are given by

u�
γ q = �γ q[ez × eEeh]

τ ′′(εγ q − εγ̄ q)2|τ |2
|εγ qτ ∗ + εγ̄ qτ |2 ,

uG
γ q = Ĝγ q · eEeh

τ ′(ε2
γ q − ε2

γ̄ q

)|τ |2
|εγ qτ ∗ + εγ̄ qτ |2 . (23)

The nontrivial Berry curvature is known to generate an
anomalous velocity in fermionic and bosonic systems [1]. The
presence of an additional anomalous velocity uG

γ q is a unique
feature of fluctuating CP dynamics and is intricately related to
their dissipative nature. If we omit the dissipation and rescale
the time (τ ′ = 0 and t → τ ′′t), the TDGL equation reduces
to a Schrodinger-like equation, i∂t
 = ĤGL
. At this limit,
the additional term uG

γ q = 0 vanishes, and the conventional
expression u�

γ q = �γ q[ez × eEeh] for the anomalous velocity
is recovered.

The derived kinetic equation for fluctuating CPs, Eq. (22),
is the main result of this section and is a key to the anoma-
lous transport phenomena mediated by fluctuating CPs. In
Appendix C, we demonstrate that resulting predictions agree
with ones derived by applying the linear-response approach to
the TDGL equation.

VI. PARACONDUCTIVITY

Due to the spatial separation of electrons and holes forming
fluctuating CPs, their motion induces electric currents in both
layers. These currents have opposite directions but the same
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magnitude (as well as the same conductivity and transcon-
ductivity, which is defined as the response of an electric
current in one layer to an electric field in another layer). The
electric field difference Eeh shifts the distribution function
n0

γ q → n0
γ q + n1

γ q and induces electric currents in both layers
as

Je(h) = ±
∑
pγ

∂qεγ qn1
γ q, n1

γ q = −|τ |2Eeh∂qn0
γ q

2τ ′εγ q
. (24)

The electric currents are parallel to Eeh, and the corresponding
contribution to the longitudinal conductivity represents the
sum of conventional Aslamazov-Larkin paraconductivities for
two pairing channels. Besides, the electric field difference Eeh

induces an additional contribution via the anomalous veloci-
ties as

Je(h) = ±
∑
γ q

(
u�

γ q + uG
γ q

)
n0

γ q. (25)

These two terms can be interpreted as anomalous Aslamazov-
Larkin paraconductivities. The velocity u�

γ q is perpendicular
to the electric field difference Eeh and is responsible for the
anomalous contribution to the Hall conductivity. The velocity
uG

γ q has both components, which are perpendicular or parallel
to the electric field difference Eeh. However, the off-diagonal
elements of the quantum metric Ĝγ q given by Eq. (19) have
quadrupole symmetry and vanish over angle integration. As
a result, only the second term in Eq. (19) survives, and the
quantum-metric-induced anomalous velocity uG

γ q provides an
additional contribution only to the longitudinal conductivity.
An explicit evaluation of the different contributions to the con-
ductivity is presented in Appendix B. To the leading order in
ξ�/ξ and τ ′′/τ ′ (it should be noted that within this approxima-
tion the effect of the effective pseudospin-orbit interactions at
the dispersion of fluctuating CPs is neglected), the expressions
(σL ≡ σxx and σH ≡ σxy) are given by

σ AL
L = e2

2π h̄
FAL, σ G

L = e2

2π h̄

(
ξ�

ξ

)2

FG,

σ�
H = ζ

e2

2π h̄

(
ξ�

ξ

)2
τ ′′

τ ′ F�. (26)

The temperature behaviors of these terms are governed by
dimensionless functions F ≡ F (εA, εB). The latter terms de-
pend only on εA = ln[T/T 0

A ] and εB = ln[T/T 0
B ] and are

given by

FAL = π

32

(
1

εA
+ 1

εB

)
,

FG = π

8(εA − εB)2
ln

[
(εA + εB)2

4εAεB

]
,

F� = π

8(εA − εB)

{
ln [εA/εB]

εA − εB
− 2

εA + εB

}
. (27)

Without loss of generality, we can assume that T 0
A > T 0

B . It is
instructive to introduce the dimensionless temperature T/T 0

A
and the relation of transition temperatures for two channels,
T 0

B /T 0
A . The corresponding dependence for the F functions is

presented in Fig. 3.

FIG. 3. Dependence of the F functions introduced in Eq. (27)
on temperature T/T 0

A and the ratio between transition temperatures,
T 0

B /T 0
A , for two competing pairing channels. Both conventional and

anomalous contributions to the conductivity tensor exhibit critical
behavior and diverge at the transition temperature.

The factor FAL represents a sum of two independent terms
describing the conventional Aslamazov-Larkin effect for each
of two competing channels. This factor reaches a maximum
when two channels are degenerate (T 0

A = T 0
B ), and the cor-

responding result is two times larger than that for the case
in which only one channel is present (e.g., T 0

B /T 0
A → 0). In

the vicinity of the transition temperature T0, the factor FAL ∼
(T − T0)−1 exhibits critical behavior, which, for the case of
degeneracy, can be presented as

FAL = π

16

1

ln [T/T0]
→ π

16

T0

T − T0
, (28)

and diverges at the transition temperature.
The term FG relies on the channel intertwining and also

reaches a maximum when the two channels are degenerate. In
this case, the expression for FG has a stronger divergence,

FG = π

32

1

ln2 [T/T0]
→ π

32

( T0

T − T0

)2

, (29)

than the value FAL given by Eq. (28). As a result, FG exceeds
FAL in the broad parameter range around the degeneracy point.
However, the corresponding term σ G

L in Eq. (26) has a small
prefactor (ξ�/ξ )2, which causes the anomalous contribution
σ G

L to be small compared with the conventional contribution
σ AL

L .
The factor F� also relies on channel intertwining, but van-

ishes when the two channels are degenerate, F� = 0. The
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FIG. 4. Possible experimental setups with different connections
to an external circuit. As discussed in the main text, setups (a) and
(c) directly probe the transverse anomalous Aslamazov-Larkin para-
conductivity mediated by fluctuating CPs, but this is not the case for
setup (b).

Berry curvatures for fluctuating CPs have opposite signs for
the two modes, and their contributions vanish when the two
modes have the same thermal population. As a result, the
factor F� reaches a maximum for finite but small splitting
between transition temperatures for two channels.

VII. TRANSPORT PHENOMENA

The interplay of the conventional Aslamazov-Larkin effect
and the effect of Coulomb drag due to momentum transfer
between layers has already been discussed in detail. Here,
we discuss possible experimental setups that can be used to
observe the anomalous Aslamazov-Larkin contributions to
the conductivity (and transconductivity) tensor mediated by
fluctuating CPs with nontrivial geometries.

First, we recall that the anomalous contribution σ G
L , which

originates from the quantum geometric tensor for fluctuating
CPs, is small compared with σ AL

L ; thus, this contribution is dif-
ficult to observe unless ξ� is comparable to ξ . For this reason,
we focus on the transverse anomalous contribution σ�

H that
arises from a nonzero Berry curvature for fluctuating CPs. The
sign of the contribution is valley dependent, and no current
appears [65] until the symmetry between valleys is broken.
In this section, we consider a regime of ultimate asymmetry,
in which holes from only one of two valleys participate in
fluctuating CPs. We discuss possible approaches to achieve
this regime in the Discussions section.

Second, we note the presence of single-particle con-
tributions to the Hall conductivity of graphene (σ h

xy =
ζe2δ/2π h̄|εh

F| per valley in the absence of valley asymmetry).
This contribution can easily exceed the small contribution
mediated by fluctuating CPs. For this reason, we consider only
experimental setups with a voltage probe in a semiconductor
QW layer, where electrons are free of nontrivial geometries.
The three possible setups are sketched in Fig. 4.

The transport phenomena in an electron-hole bilayer can
be described by utilizing a generalized conductivity ma-
trix σ̂ , which connects currents Ĵ = σ̂ Ê in two layers J =
{Je

x , Je
y , Jh

y , Jh
y } with the corresponding electric fields E =

{E e
x , E e

y , Eh
y , Eh

y }. If we recall that fluctuating CPs are excited
by an electric field difference Eeh and their motion generates
opposite currents in two layers, the conductivity matrix can be

FIG. 5. Dependence of length ξ�/ξ and time τ ′′/τ ′ scale ratios
on the dimensionless coupling constant λ. Being small at λ � 1,
the ratios grow drastically with coupling strength. However, being
derived within the weak-coupling theory, the values for the scale
ratios at λ ∼ 1 can only be used for guidance.

presented as

σ̂ =

⎛
⎜⎜⎜⎜⎝

σ e
L + σ C

L −σ C
H −σD − σ C

L σ C
H

σ C
H σ e

L + σ C
L −σ C

H −σD − σ C
L

−σD − σ C
L σ C

H σ h
L + σ C

L −σ h
H − σ C

H

−σ C
H −σD − σ C

L σ h
H + σ C

H σ h
L + σ C

L

⎞
⎟⎟⎟⎟⎠.

Here, σ
e(h)
L is the conductivity of the electrons (holes), and σD

is the contribution to the transconductivity due to momentum
transfer between layers. σ h

H is the anomalous conductivity of
Dirac holes, which is nonzero if the symmetry between valleys
is broken. σ C

L = σ AH
L + σ G

L and σ C
H = σ�

H are contributions of
fluctuating CPs in the conductivity tensor. It is instructive to
discuss the setups sketched in Fig. 4 separately.

For the setup shown in Fig. 5(a), an electric current is
induced in the semiconductor QW. The corresponding Hall
resistance of the QW is given by

ρee
H = E e

y

Ie
x

= − σ C
H(

σ e
L

)2 , (30)

which is proportional to the anomalous Aslamazov-Larkin
paraconductivity mediated by fluctuating CPs. Importantly,
this scheme represents a smoking gun experiment, but does
not require independent electrical contacts for the two layers
(which are essential for Coulomb drag measurements). Ap-
parently, the anomalous Hall effect in a semiconductor QW is
induced by nonperturbative interlayer correlations with chiral
Dirac electrons in graphene.

For the setup shown in Fig. 4(b), the electric
current is induced in graphene. At first glance, this
setup appears to be convenient for probing transverse
anomalous paraconductivity, but this is actually not
the case. The corresponding Hall drag resistance is
given by

ρ̄he
H = E e

y

Ih
x

= σ C
H

σ e
Lσ h

L

− σD

σ e
Lσ h

L

σ h
H

σ h
L

, (31)
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which has an additional term with the opposite sign. This
term is nonzero even in the absence of fluctuating CPs. This
resistance originates from the interplay between the anoma-
lous Hall effect in graphene and the conventional longitudinal
Coulomb effect due to momentum transfer between layers.
The former results in transverse charge accumulation and
momentum flow in graphene, while the latter induces a current
in the semiconductor QW.

The transverse accumulation of charge carriers at graphene
sides can be avoided by applying a shortcut, as shown for the
setup in Fig. 4(c). As a result, the Hall drag resistance

ρhe
H = E e

y

Ih
x

= σ C
H

σ e
Lσ h

L

(32)

has a single term, which is proportional to the anomalous Hall
paraconductivity mediated by fluctuating CPs. It should be
noted that this term has the same temperature dependence (up
to a prefactor) as the Hall resistivity of QWs, given by Eq.
(30). Observations of consistent temperature behavior would
be strong evidence of an anomalous Hall response mediated
by fluctuating CPs with nontrivial geometries.

VIII. DISCUSSIONS

For estimations, we use a set of parameters that are
relevant for the hybrid graphene-GaAs bilayer reported in
Ref. [46]. We chose different densities for electrons, ne ≈
1.2 1011 cm−2, and holes, nh ≈ 2.4 1011 cm−2, because holes
have an additional valley degree of freedom. As a result,
the Fermi momenta pF for charge carriers in both layers are
the same, but the Fermi energies (εh

F ≈ 57 meV and εe
F ≈

3.8 meV) and Fermi velocities (ve ≈ 1.5 × 107 cm/s and
vh ≈ 1 × 108 cm/s) are drastically different. For the transi-
tion temperature T ≈ 1 K and p0 = 0.5pF, the dimensionless
coupling constant λ can be estimated as λ ≈ 0.27. The result-
ing ratios of the spatial scale ξ�/ξ = 0.022 and time scale
τ ′′/τ ′ = 0.028 are quite small. If we approximate the con-
ductivities by the values 1/σ e

L ≈ 0.3 k� and 1/σ h
L ≈ 0.18 k�

measured in the experiment, the order of magnitude for the
transverse resistivities can be estimated as ρee

H ∼ 51 μ� and
ρhe

H ∼ 30 μ�, which can be probed by state-of-the-art trans-
port experiments.

The ratios of length ξ�/ξ and time τ ′′/τ ′ scales are
expected to grow dramatically with coupling strength λ.
According to microscopic theories [23,47–49], electron-hole
bilayers experience the crossover from the weak-coupling
regime to the strong-coupling regime as the density of charge
carriers decreases. In the QW-QW bilayers with the con-
ventional spectrum, the strong-coupling regime corresponds
to the Bose-Einstein condensate (BEC) of indirect excitons
that represent a bound state of electron and hole [68]. In the
systems with the gapless Dirac spectrum the strong-coupling
regime corresponds to the multiband BCS-like paired state
[47–49] where pairing correlations also span to remote bands
(valence band in the layer with excess of electrons and
conduction band in the layer with excess of holes). The strong-
coupling regime for the hybrid graphene-GaAs bilayers has
not been addressed microscopically yet. For the sake of esti-
mations, we fix the charge carrier concentrations and treat λ

as an independent parameter. The corresponding dependence
of the ratios is presented in Fig. 5. The ratio ξ�/ξ is much
smaller than τ ′′/τ ′ due to the small factor ve/(ve + vh) in front
of ξ�. Its small magnitude reflects the fact that the electron
velocity is much smaller than the velocity of Dirac holes. As
a result, the Cooper pair momentum is mostly carried by the
electron, which is free of nontrivial geometries. However, it
should be stressed that the calculations presented in Fig. 5 are
based on the weak-coupling BCS theory with a contact pseu-
dopotential and can be used only for guidance. For λ ≈ 0.8
the ratios of scales are ξ�/ξ = 0.08 and τ ′′/τ ′ = 0.32. As a
result, the order of magnitude for the transverse resistivities
can be estimated as ρee

H ∼ 8.9 m� and ρhe
H ∼ 5.3 m�.

The anomalous Hall current in semiconductor QWs re-
quires the symmetry between two valleys in graphene to be
broken. The selective formation of fluctuating CPs involving
holes only from one of two valleys can be achieved in the
presence of a circularly polarized light-induced population
imbalance of Dirac holes [69–71]. Due to the exceptional sen-
sitivity of CP condensation in the weak-to-moderate-coupling
regime to the electron-hole imbalance [57,58], even a small
asymmetry δεF ∼ T0 is sufficient to suppress correlations with
one of two valleys.

The presence of two Dirac cones with opposite chirali-
ties can be avoided in hybrid double-layer systems formed
by magnetic topological insulator films (e.g., MnB2Te4) and
semiconductor QWs. Recently discovered magnetic topo-
logical insulators [72–75] have already been successfully
incorporated in different heterostructures, and these hybrid
double-layer systems are within present technological capa-
bilities.

In the present work, we have focused on the Aslamazov-
Larkin effect, which describes the direct contribution of fluc-
tuating CPs to the conductivity tensor. The Maki-Thompson
contribution also exists [32–34], originating from the Andreev
scattering of electrons and holes for fluctuating CPs. However,
the interplay between the nontrivial geometry of fluctuating
CPs and Andreev scattering is beyond the scope of the present
paper.

The absence of a global gap in the spectrum of the
GL Hamiltonian does not permit topologically stable edges
or domain wall modes. In other systems with intertwined
modes and no global gap (e.g., topological exciton-polaritons
[76,77]), this obstacle is usually overcome by applying an
external periodic potential with triagonal (or hexagonal) sym-
metry. Hexagonal periodic textures of sublattice asymmetry
δ(r) can be easily engineered via a small twist between
graphene and its substrate and follow the resulting moiré
pattern. However, the physics of fluctuating CPs and the pos-
sibility of edge modes in this regime are beyond the scope of
the present paper.

In recent years, the Cooper pairing of spin-orbit-coupled
fermions has attracted much attention [78,79]. In particu-
lar, research has shown that nonzero quantum metrics of
fermionic states result in an additional contribution to the
superfluid density and are also manifested in other phenom-
ena [60,80–83]. Moreover, the additional contribution to the
superfluid density is dominant if the fermion dispersion is
sufficiently flat. While there are some mathematical connec-
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tions between these results and the anomalous contribution to
paraconductivity σ G

L derived in this paper, there is an essential
difference between these phenomena. In our paper, σ G

L is
intricately related to the quantum metric characterizing the
spectrum of the GL Hamiltonian, but not the spectrum of
Bogoliubov quasiparticles in a state with an equilibrium CP
condensate.

Fluctuating CPs formed by electrons and holes are the pre-
cursors of their equilibrium condensation. The demonstrated
presence of two (almost) degenerate competing channels and
the instability toward Cooper pairing with a finite center-
of-mass momentum suggest that the physics of equilibrium
hybrid electron-hole condensates are very rich and unconven-
tional. We leave further investigations of this aspect for future
work.

To conclude, we have demonstrated that the spectrum of
fluctuating electron-hole CPs in a hybrid graphene-GaAs bi-
layer is topologically nontrivial. Their nontrivial geometries
are manifested in anomalous Aslamazov-Larkin contributions
to the longitudinal and transverse conductivities. The con-
tributions exhibit critical behavior and are singular at the
transition temperature, and we have discussed possible setups
for their experimental observation.
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APPENDIX A: FIELD-THEORETICAL APPROACH FOR FLUCTUATING COOPER PAIRS

1. The model

This Appendix presents the quantum field theory approach to describe fluctuating Cooper pairs (CPs) in the hybrid
graphene/quantum-well bilayer. Following the reported experimental setup [46], we assume the presence of excess electrons
in the quantum well (QW) and their deficit in graphene. The electrons can be described by a quantum field eτr and their
thermodynamic action represents an integral over the imaginary Matsubara time τ and is given by

Se =
∫ β

0

∫
dr e†

τr

(
∂τ + p2 − p2

F

2me

)
eτr. (A1)

Electrons have the conventional quadratic dispersion with the mass me and pF is their Fermi momentum. In the weak-to-
moderate-coupling regime the electron-hole correlations span only in the vicinity of the Fermi level. As a result, the spectrum of
electrons can be linearized and their Green’s function can be approximated as

Ge(iωn, p) = 1

iωn − εe
p
, εe

p = ve(p − pF), ve = pF/mh. (A2)

Here ωn = (2n + 1)πT is the fermionic Matsubara frequency. The low-energy electronic states in graphene are concentrated
near two inequivalent valleys (K and K′), which are labeled by the index ζ = ±1. They are described by the spinor field operator
hr = (hA

r , hB
r ) and their pseudospin corresponds to the the sublattice (A and B) degree of freedom of the honeycomb lattice. We

will assume the deficit of electrons in graphene and refer to the valence-band states as holes; however, it is instructive not to
perform the transformation to field operators of holes. As a result, the corresponding contribution to the action is given by

Sh =
∫ β

0

∫
dr

[
h†

τr

(
∂τ + v(ζ pxσx + pyσy) + δσz + εh

F

)
hτr

]
. (A3)

Here v is their velocity and εh
F is the Fermi energy. The small energy asymmetry between sublattices, δ � εh

F, can be induced by
the substrate engineering. The empty conduction band in graphene can be just truncated, while the energy and the spinor wave
function for the valence-band electrons are given by

εh
p = −

√
(vp)2 + δ2, |p〉h =

(
sin (θp/2)e−iζφp/2

−ζ cos (θp/2)eiζφp/2

)
. (A4)

Here φp is the polar angle for vector p and cos(θp) = δ/εp. The chirality of the pseudospin-momentum coupling for Dirac
electrons is valley dependent but not their dispersion. We further assume that the Fermi momentum of electrons matches with
the one pF for holes, that is the most favorable regime for their Cooper pairing. As a result, the Green’s function for holes can
be approximated as

Ĝh(iωn, p) = |p〉h h〈p|
iωn − εh

p
, εh

p = vh(p − pF), vh = v2 pF/ε
h
F. (A5)

Here we have linearized the spectrum of Dirac holes and the matrix |p〉h h〈p| is given by

|p〉h h〈p| =
(

sin2 (θp/2) − ζ

2 sin (θp)e−iζφp

− ζ

2 sin (θp)eiζφp cos2 (θp/2)

)
= 1

2εh
p

(
εh

p − δ −v(ζ px − ipy)
−v(ζ px − ipy) εh

p + δ

)
. (A6)
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The phase intertwining between sublattices is the signature of the nontrivial band geometries for Dirac holes, which has been
discussed in the main text and is passed on to the fluctuating CPs. Fluctuating CPs are formed due to the attractive Coulomb
interactions between electrons and holes. Being effectively screened, the interactions can be approximated by the contact
pseudopotential with momentum-independent Fourier transform V . We also neglect the scattering between two valleys since
they are well separated in momentum space. The resulting contribution to the action is given by

Sint =
∫ β

0

∫
dr Ve†

τrh†
τrhτreτr →

∫ β

0

∫
dr

[
1

V

†

τr 
τr + e†
τr
τrhτr + h†

τr

†
τreτr

]
. (A7)

Here we have performed the Hubbard-Stratonovich transformation. It eliminates interactions, but introduces the bosonic field

τr = {
A

τr,

B
τr}, which describes the selective Cooper pairing with Dirac holes only at one of two sublattices (A or B). The

action of the model S = Se + Sh + Sint is the starting point for the derivation of fluctuating CP dynamics, which is presented in
the next section.

2. Fluctuating Cooper pairs

We further assume that the system is above the transition temperature. As a result there is no equilibrium Cooper pair
condensate 〈
〉 = 0, but there are its Gaussian fluctuations, which are usually interpreted as fluctuating CPs. Integrating fermions
out and expanding the resulting action up to the quadratic order in 
τr results in

S
 = T
∑
pnq


̄pnq

(
1

V
− �̂(ipn, q)

)

pnq. (A8)

Here pn = 2πnT is the bosonic Matsubara frequency. �̂(ipn, q) is the single-step pair propagator in the Cooper ladder sum and
is given by

�̂(ipn, q) = T
∑
ωn,p

Ĝe(iωn, p)Gh(iωn − ipn, p − q) = −
∑

p

|p〉e e〈p| tanh
( ξ e

p

2T

) + tanh
( ξ h

p−q

2T

)
2
(
ipn − ξ e

p − ξ h
p−q

) . (A9)

It is instructive to shift the momenta p and p − q as follows:

p → p + αeq, αe = vh

ve + vh
,

p − q → p − αhq, αh = ve

ve + vh
. (A10)

The momenta q is the total momentum for fluctuating CPs and p can be interpreted as their relative one. The dispersion relations
in Eq. (A9) are modified as

ξ e
p+αeq ≈ ξ e

p + v∗qp
2p

, ξ h
p−αhq ≈ ξ h

p − v∗qp
2p

, ξ e
p+αeq + ξ h

p−αhq ≈ 2v0(p − pF). (A11)

Here we have introduced v0 = (ve + vh)/2 and v∗ = 2vevh/(ve + vh). After the momentum shift, Eq. (A10), the denominator in
Eq. (A9) becomes independent on momentum q. As a result, the expansion of �̂(ipn, q) in pn and q becomes straightforward
and results in

�̂(ipn, q) =
(

s2
F�0(ipn, q) ζcFsF

αeqe−iζφq

4pF
�0(0, 0)

ζcFsF
αeqe−iζφq

4pF
�0(0, 0) c2

F�0(ipn, q)

)
. (A12)

The factors

c2
F = 1

2

(
1 + δ

εF

)
, s2

F = 1

2

(
1 − δ

εF

)
, (A13)

give the probability to find the Fermi level hole at sublattice A or B, respectively. �0(ipn, q) can be interpreted as a single-step
pair propagator in the Cooper ladder sum of a bilayer system without the pseudospin degree of freedom and is given by

�0(ipn, q) = ν0

[
ln

(
2eCεC

πT

)
− |pn|τ ′ − ipnτ

′′ − ξ 2q2

]
, τ ′ = π

8T
, τ ′′ = ln

( 2eCεc
πT

)
2v0 pF

, ξ 2 = 7�(3)v2
∗

32π2T 2
. (A14)

Here ε0 = √
vevh p0 is determined by the momentum cutoff p0. C = 0.577 is the Euler constant, �(x) is the zeta function, and

ν0 = pF/2π h̄2v0 is the density of states defined with respect to the average Fermi velocity of electrons and holes. If we rescale
the bosonic fields as 
A → 
A/

√
ν0sF and 
B → 
B/

√
ν0cF, the action describing fluctuating CPs [Eq. (A8), S
], simplifies

as

S
 = T
∑
pnq


̄pnqL̂−1(ipn, q)
pnq, (A15)

245436-10



TOPOLOGICAL FLUCTUATING ELECTRON-HOLE COOPER … PHYSICAL REVIEW B 104, 245436 (2021)

where L̂−1(ipn, q) is the inverse dimensionless CP propagator given by

L̂−1(ipn, q) = |pn|τ ′ − ipnτ
′′ + ĤGL, ĤGL =

(
εA + ξ 2q2 −ξ�(ζqx − iqy)

−ξ�(ζqx − iqy) εB + ξ 2q2

)
. (A16)

The Hermitian matrix ĤGL can be referred to as the Ginzburg-Landau Hamiltonian. It describes two dissipative bosonic modes
(
A and 
A) that are intertwined by the effective pseudospin-orbit interactions with strength parametrized by the length ξ� =
αe ln(2eCεc/πT )/4pF. Each mode has a temperature-dependent energy gap:

εA(B) = ln

[
T

TA(B)

]
, TA(B) = 2eCe

− 1
λA(B)

π
, λA = s2

Fν0V, λB = c2
Fν0V. (A17)

The gap vanishes at the transition temperature εA(B) = ln[T/T 0
A(B)] of the Cooper pair condensation with zero center-of-mass

momentum. It should be mentioned that coefficients τ ′′ and ξ� can be rewritten as τ ′′ = 1/2λv0 pF and ξ� = 1/4λpF, where
λ = max[λA, λB] is the coupling constant of the leading channel.

3. The spectrum of Ginzburg-Landau Hamiltonian

Eigenvalues for ĤGL are labeled by γ = ± and are given by

εγ q = εs + ξ 2q2 + γ dq, dq =
√

ε2
z + ξ 2

� q2, εs = 1
2 (εA + εB), εz = 1

2 (εA − εB). (A18)

They can be interpreted as energies for fluctuating CP eigenmodes and their dispersion is discussed in detail in the main part of
the paper. The fluctuating CPs with finite center-of-mass momentum q represent a superposition of 
A and 
B as

|+, q〉C =
(

cos (ϑq/2)
−ζ sin (θq/2)eiζφq

)
, |−, q〉C =

(
ζ sin (ϑq/2)e−iζφq

cos (ϑq/2)

)
, cos (ϑq) = εz√

ε2
z + ξ 2

� q2
. (A19)

They are intertwined with the valley-dependent phase factor e−iζφq , which reflects nontrivial geometries for fluctuating CPs.
The derived expressions, Eqs. (A18) and (A19), allow to perform the spectral decomposition of the CP propagator L(ipn, q)

and its retarded (advanced) LR(A)(ω, q) counterparts as

L̂(ipn, q) =
∑

γ

|γ , q〉C C〈γ , q|
τ ′|pn| − iτ ′′ pn + εγ q

, L̂R(A)(ω, q) =
∑

γ

|γ , q〉C C〈γ , q|
∓iωτ ′ − ωτ ′′ + εγ q

. (A20)

These helpful relations will be used routinely in Appendixes B and C.
Due to their dissipative nature, fluctuating CPs cannot be interpreted as bosonic quasiparticles, but are instead overdamped

bosonic modes. However, ĤGL is the Hermitian matrix and its eigenmodes |γ q〉C form a complete basis. ĤGL can be diagonalized
via the unitary transformation governed by the matrix Ûq given by

ÊGL(q) = UqĤGL(q)U †
q , ÊGL =

(
ε+,q 0

0 ε−,q

)
, Uq =

(
cos (ϑq/2) ζ sin (ϑq/2)e−iζφq

−ζ sin (θq/2)eiζφq cos (ϑq/2)

)
. (A21)

This transformation is used in Appendix C, where a derivation of the kinetic equation for fluctuating CPs is presented.

APPENDIX B: LINEAR-RESPONSE THEORY AND PARACONDUCTIVITY

1. General expression for the conductivity tensor

This section presents a general expression for the conductivity tensor, which is derived with the help of the linear-response
approach. The external electric fields in electron and hole layers that we have disregarded so far can be described by position-
independent vector potentials ae

t and ah
t . Components of a fluctuating CP are spatially separated and have the opposite charge.

That is why the Peierls substitution introduces the vector potential to the Ginzburg-Landau Hamiltonian as

ĤGL(q) → ĤGL

(
q − e

c
aeh

t

)
, aeh

t = ae
t − ah

t . (B1)

Fluctuating CPs are affected by the electric field difference across the bilayer and their motion results in electric currents in
both layers. These currents have the same magnitude but the opposite signs. Really, the current operators for two layers have the
opposite signs as

Je(h)(q) = ±ev(q), v(q) = ∂qHGL(q). (B2)

Within the Kubo linear-response theory, the contribution of fluctuating CPs to the DC conductivity (and transconductivity
σ D

αβ = −σαβ ) tensor σαβ = e2Im[χR
αβ (ω)]/ω is related to the imaginary part of the retarded velocity-velocity correlation function
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χR
αβ (ω). It can be obtained by the analytical continuation from the corresponding Matsubara correlation function χαβ (i�n), which

is given by

χαβ (i�n) = T
∑
pnq

Tr[v̂α (q)L̂(ipn + i�n, q)v̂β (q)L̂(ipn, q)]. (B3)

If we use the spectral representation of the Cooper pair propagator, presented in Appendix A, the summation over Matsubara
frequencies and the analytical continuation are straightforward and result in

σαβ =
∑
qγ γ ′

(
Re

[
Qγ γ ′

αβ (q)
]
Jγ γ ′

Re (q) + Im
[
Qγ γ ′

xy (q)
]
Jγ γ ′

Im (q)
)
. (B4)

Here Qγ γ ′
αβ represents the product of matrix elements for velocity operators and is given by

Qγ γ ′
αβ (q) = 〈γ q|vα (q)|γ ′q〉C C〈γ ′q|vβ (q)|γ q〉C. (B5)

The factors Jγ γ ′
Re (p) and Jγ γ ′

Im (p) are given by

Jγ γ ′
Re =

∫
dω

π
Im

[
LR

γ

]
Im

[
LR

γ ′
](−∂nB(ω)

∂ω

)
, Jγ γ ′

Im =
∫

dω

π

[
Im

[
LR

γ

]∂Re
[
LR

γ ′
]

∂ω
− Im

[
LR

γ ′
]∂Re

[
LR

γ

]
∂ω

]
. (B6)

Here we use the compact notation LR
γ ≡ LR

γ (ω, q) for all Green’s functions inside the integrals. It should be noted that these
relations are very general and do not rely on any specific frequency or momentum dependence of the Green’s function LR

γ (ω, q).
For the Green’s functions in Eq. (A20), which describe fluctuating CPs, we get

Re
[
LR

γ (ω, q)
] = εγ q(p) + ωτ ′′

(ωτ ′)2 + (εγ q(p) + ωτ ′′)2
, Im

[
LR

γ (ω, p)
] = ωτ ′

(ωτ ′)2 + (εγ q(p) + ωτ ′′)2
. (B7)

The integration in Eqs. (B6) can be performed and results in

Jγ γ ′
Re =

(
T

εγ q
+ T

εγ ′q

)
τ ′|τ |2

|εγ qτ + εγ ′qτ ∗|2 , Jγ γ ′
Im =

(
T

εγ q
− T

Eγ ′

)
τ ′′|τ |2

|εγ qτ + εγ ′qτ ∗|2 . (B8)

It is instructive to consider intrachannel (γ = γ ′) and intermode (γ �= γ ′) contributions to the conductivity tensor separately.
The factor Jγ γ ′

Im vanishes at γ ′ = γ and the intramode contribution can be written as

σ AL
αα =

∑
γ q

Re
[
Qγ γ

αα (q)
]

2ε3
γ q

T |τ |2
τ ′ . (B9)

Here we have taken into account that Qγ γ
αᾱ = 0 and intramode transitions contribute only to the longitudinal conductivity. As it

is discussed in the main part of paper, σ AL
αα represents a sum of two independent terms describing the conventional Aslamazov-

Larkin effect for each of two competing channels. It is instructive to separate the intermode contribution into two terms as
follows:

σ�
αᾱ =

∑
γ q

Im
[
Qγ γ̄

αᾱ

]
τ ′′|τ |2

|εγ qτ + εγ̄ qτ ∗|2
(

T

εγ q
− T

εγ̄ q

)
=

∑
γ q

2Im
[
Qγ γ̄

αᾱ

]
τ ′′|τ |2

|εγ qτ + εγ̄ qτ ∗|2
T

εγ q
, (B10)

σ G
αβ =

∑
γ q

Re
[
Qγ γ̄

αβ

]
τ ′|τ |2

|εγ qτ + εγ̄ qτ ∗|2
(

T

εγ q
+ T

εγ̄ q

)
=

∑
γ q

2Re
[
Qγ γ̄

αβ

]
τ ′|τ |2

|εγ qτ + εγ̄ qτ ∗|2
T

εγ q
. (B11)

Here we have taken into account that Im[Qγ γ̄
αα ] = 0. These terms represent anomalous Aslamazov-Larkin contributions to the

conductivity. In Appendix C we demonstrate that they are intricately related with the nonzero Berry curvature (�γ q) and quantum
metric (Ĝγ q) for the GL Hamiltonian HGL.

2. Temperature dependence of the conductivity tensor

This section presents the derivation of conventional and anomalous Aslamazov-Larkin contributions to conductivity tensor.
The explicit expressions for the velocity operator v(q) introduced in Eq. (B2) are

vx(q) =
(

2ξqx −ξ�

−ξ� 2lqx

)
, vy(q) =

(
2ξqy iξ�

−iξ� 2lqy

)
. (B12)
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As a result, the product of matrix elements for velocity operators Qγ γ ′
αβ (q) averaged over the direction of momentum q is given

by

〈
Qγ γ

xx

〉
φq

= 2ξ 4q2 + ξ 4
� q2

2dq
≈ 2ξ 4q2,

〈
Qγ γ

xy

〉
φq

= 0,

〈
Qγ γ̄

xx

〉
φq

= ξ 2
�

2

(
1 + ε2

z

d2
q

)
≈ ξ 2

� ,
〈
Qγ γ̄

xy

〉
φq

= ζ ξ 2
�

εz

dq
≈ ζ ξ 2

� sign[εz]. (B13)

Here we have also performed the expansion in the ratio of spatial scales, ξ�/ξ � 1. Besides, in the leading order in ξ�/ξ the effect
of the effective pseudospin-orbit interactions at the dispersion of fluctuating CPs can be neglected. As a result, the dispersion
relations are approximated as εA(B) + ξ 2q2. If we also expand in the ratio of time scales τ ′′/τ ′ � 1, the expressions for the
conductivity tensor, Eqs. (B9)–(B11), can be presented as

σ AL
xx = e2

2π h̄

8T τ ′

π
FAL, σ�

yx = ζ
e2

2π h̄

8T τ ′

π

(
ξ�

l

)2
τ ′′

τ ′ F�, σ G
xx = e2

2π h̄

8T τ ′

π

(
ξ�

l

)2

FG. (B14)

For the microscopically evaluated fluctuating CP relaxation time τ ′ given by Eq. (A14), the second factor simplifies as 8T τ ′/π =
1. The temperature behavior of these terms is governed by dimensionless functions F ≡ F (εA, εB). These functions depend only
on εA = ln[T/T 0

A ] and εB = ln[T/T 0
B ] and are given by

F AL
L = π

8

∫ ∞

0

d (ξ 2q2)

2

[
ξ 2q2

(εA + ξ 2q2)3
+ ξ 2q2

(εB + ξ 2q2)3

]
= π

32

(
1

εA
+ 1

εB

)
,

FG = π

8

∫ ∞

0

d (ξ 2q2)

2

1

(εs + ξ 2q2)(εA + ξ 2q2)(εB + ξ 2q2)
= π

8(εA − εB)2
ln

[
(εA + εA)2

4εAεB

]
,

F� = π

8

∫ ∞

0

d (ξ 2q2)

2

εz

(εs + ξ 2q2)2(εA + ξ 2q2)(εB + ξ 2q2)
= π

8(εA − εB)

{
ln [εA/εB]

εA − εB
− 2

εA + εB

}
. (B15)

As a result, we recover the expressions in Eqs. (26), which are presented in the main text of the paper.

APPENDIX C: KINETIC EQUATION FOR FLUCTUATING COOPER PAIRS

1. Time-dependent Ginzburg-Landau equation

This Appendix is devoted to the time-dependent Ginzburg-Landau (TDGL) equation. It governs the dissipative dynamics of
the bosonic field 
 ≡ {
A

τr,

B
τr} for fluctuating CPs and is given by

τ ∗
(

∂
tr

∂t
+ ieφeh

tr 


)
= −ĤGL(q)
 + ηtr, 〈ηtrη

†
t ′r′ 〉 = N̂δtt ′δrr′ , N̂ = 2T τ ′1̂. (C1)

Here we take into account that components of fluctuating CPs have opposite charges and are spatially separated. For these
reasons, coupling with electric potentials in both layers (φe

tr and φh
tr ) can be introduced via the Peierls substitution ∂t → ∂t +

ieφeh
tr with φeh

tr = φe
tr − φh

tr. The external complex field ηtr = {ηA
tr, η

B
tr} is the Langevin noise. Its presence is dictated by the

fluctuation-dissipation theorem, and the correlation function 〈ηtrη
†
t ′r′ 〉, which is free of temporal and spatial correlations (white

noise), is proportional to the relaxation rate τ ′ but does not depend on τ ′′. In the considered weak-to-moderate Cooper pairing
regime, their ratio is small (τ ′′/τ ′ � 1); hence, the dissipation of fluctuating CPs is an essential component in their dynamics.
These CPs cannot be interpreted as bosonic quasiparticles, but are instead overdamped bosonic modes.

The TDGL equation can be derived microscopically (e.g., with the help of the Keldysh diagrammatic technique) or introduced
in a phenomenological way as we do here. If we ignore the coupling to electromagnetic field (that can be reintroduced
by the Peierls substitution), the dynamics of fluctuating CPs in the TDGL framework is governed by the inverse retarded
propagator L̂R(ω, q). In equilibrium the bosonic field describing fluctuating CPs is not zero, but is shaped by the noise as

ωq = L̂R(ω, q)ηωq (and 
†

ωq = η†
ωqL̂A(ω, q) with L̂A(ω, q) the advanced CP propagator). If we assume that the Langevin

noise does not have any temporal and spatial correlations (white noise), the correlation F dyn

 (q) = 〈
tq


†
tq〉 can be presented as

F dyn

 (q) =

∫
dω

2π
L̂R(ω, q)N̂L̂A(ω, q), F td


 (q) =
∫ ∞

−∞

dω

2π i

T

ν0ω
[L̂R(ω, q) − L̂A(ω, q)], (C2)

and is determined by the pseudospin structure of the noise correlation function N̂ . According to the general philosophy
of the Langevin approach, N̂ is chosen in a such way that the correlation function F dyn


 (q) matches with the function
F td


 (q) = 〈
τq

†
τq〉, which is evaluated via thermodynamic averaging and is also presented in Eq. (C2). If we use the spectral

representation for CP propagators L̂R(A)(ω, q) given by Eq. (A20), the integration over frequency ω is straightforward and results

245436-13



DMITRY K. EFIMKIN PHYSICAL REVIEW B 104, 245436 (2021)

in

F td

 (q) =

∑
γ

|γ , q〉C C〈γ , q| T

εγ q
, F dyn


 (q) =
∑
γ ,γ ′

|γ , q〉C C〈γ , q|N̂ |γ ′, q〉C C〈γ ′, q|
τ ′(εγ q + εγ ′q) − iτ ′′(εγ q − εγ ′q)

. (C3)

For the noise correlation function given by the right-hand-side expression in Eq. (C1), F td

 (q) and F dyn


 (q) match each other.
As a result, the description of fluctuating CPs within the quantum field theory approach and within the TDGL framework are
consistent with each other.

2. Transformation of the TDGL equation into the kinetic equation

This section presents the derivation of the kinetic equation for fluctuating CPs. First, it is instructive to introduce a density
matrix for fluctuating CPs as ρrr′t = 
rt


†
r′t . The density matrix satisfies the equation

∂ρrrt

∂t
= −ie

(
φeh

rt − φeh
r′t

)
ρrr′t − ĤGLρrr′t

τ
− ρrr′t ĤGL

τ ∗ + ηrt

†
r′t

τ
+ 
rtη

†
r′t

τ ∗ , (C4)

which can be interpreted as a generalization of the Liouville–von Neumann equation.
Second, we introduce a distribution function n̂Rqt for fluctuating CPs. This function is obtained from the density matrix by

the Wigner transformation and the unitary rotation to the eigenmode basis as follows:

n̂Rqt = U †
q n̂′

RqtUq, n̂′
Rqt =

∫
dre−iqrρ̂R+ r

2 ,R− r
2 ,t =

∫
dp

(2π )2
eipRρ̂q+ p

2 ,q− p
2 ,t .

Here, Uq is the unitary matrix that diagonalizes the GL Hamiltonian ĤGL as U †
q ĤGLUq = diag{ε+,q, ε−,q} and is given by

Eq. (A21). Diagonal elements of the rotated distribution matrix (n++ ≡ n+ and n−− = n−) can be interpreted as distribution
functions for eigenmodes in phase space (R, q). The off-diagonal elements (n+− and n−+) are responsible for intermode
coherence. For noise-induced equilibrium fluctuating CPs, 
0

ωq = L̂R(ω, q)ηωq, the distribution function n̂0
q is position and

time independent, as given below:

n̂0
q =

(
n0

+,q 0
0 n0

−,q

)
. (C5)

At thermal equilibrium, there is no intermode coherence, and the diagonal terms are given by the classical distribution function
n0

γ q = T/εγ q, which confirms the interpretation outlined above for n̂Rqt .
Third, we will follow Ref. [84] and perform a gradient expansion of the equation for the matrix distribution function n̂Rqt .

For a start, we apply the Wigner transformation to Eq. (C4) and get the following equation for n̂′
Rqt :

∂t n̂
′
Rqt = T1 + T2 + T3. (C6)

The right-hand side is divided into three terms, which need to be dealt with separately. The term T1 appears due to the coupling
of fluctuating CPs with external electric field and, within leading order of the gradient expression, simplifies as

T 1 = −ie
∫

dre−iqr(φeh
R+r/2,t − φeh

R+r/2,t

)
ρ̂R+ r

2 ,R− r
2 ,t ≈ −eEeh

Rt∂qn̂′
Rqt . (C7)

Here E eh
Rt = −∇φeh

Rt is an electric field difference between layers. The term T2 describes the dynamics of fluctuating CPs as

T2 = − ĤGL ⊗ n̂′
Rqt

τ
− n̂′

Rqt ⊗ ĤGL

τ ∗ ≈ − ĤGL(q)n̂

τ
− n̂ĤGL(q)

τ ∗ + ih̄

2

(
∂qĤGL∂Rn̂′

Rqt

τ
− ∂Rn̂′

Rqt∂qĤGL

τ ∗

)
. (C8)

Here ⊗ is the Moyal product, which in the lowest order of the gradient expansion simplifies as

⊗ = exp

(
ih̄

2
[
←−
∂ R

−→
∂ q − ←−

∂ q
−→
∂ R]

)
≈ 1 + ih̄

2
[
←−
∂ R

−→
∂ q − ←−

∂ q
−→
∂ R]. (C9)

The term T3 describes the effect of the Langevin noise and is of the first order in it. That is why we can approximate the order
parameter by its value in equilibrium, 
0

ωq = L̂R(ω, q)ηωq, that allows to simplify T3 as follows:

T3 =
∫

dω

2π

(
N̂L̂A(ω, q)

τ
+ L̂A(ω, q)N̂

τ

)
= 2T τ ′

|τ |2 1̂. (C10)

Here we have used the spectral decomposition for the Cooper pair propagator, Eq. (A20). If we combine all three terms T1, T2,
and T3 together we get a closed-form equation for the distribution function n̂ as

∂t n̂
′
Rqt = −eEeh

Rt∂qn̂′
Rqt − ĤGL(q)n̂′

Rqt

τ
− n̂′

Rqt ĤGL(q)

τ ∗ + ih̄

2

(
∂qĤGL∂Rn̂′

Rqt

τ
− ∂Rn̂′

Rqt∂qĤGL

τ ∗

)
+ 2T τ ′

|τ |2ν0
1̂. (C11)
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Now we are ready to perform the rotation n̂ = U †
q n̂′

RqtUq to the eigenmode basis. Here, Uq is the unitary matrix that diagonalizes

the GL Hamiltonian ĤGL as U †
q ĤGLUq = diag{ε+,q, ε−,q}. The rotation of Eq. (C11) results in

∂ n̂

∂t
= −eEeh

Rt Dqn̂ − ÊGL(q)n̂

τ
− n̂ÊGL(q)

τ ∗ + ih̄

2

(
DqÊGL∂Rn̂

τ
− ∂Rn̂DqÊGL

τ ∗

)
+ 2T τ ′

|τ |2ν0
1̂. (C12)

Here Dqn = ∂q − i[Aq, n] is the covariant derivative. Aq = iU †
q ∂qUq is the generalized Berry connection, which has been

introduced in the main part of the paper as Eq. (18). The equation for the diagonal elements of the distribution n̂γ can be
presented as

∂t nγ + eEeh[∂qnγ − i
(
Aγ γ̄

q nγ̄ γ − Aγ̄ γ
q nγ γ̄

)] + τ ′′

|τ |2 ∂qεγ q∂Rnγ = −2εγ qτ
′

|τ |2
(
nγ − n0

γ

)
. (C13)

The electric field difference, Eeh
tR = −∂Rφeh

tr , not only shifts the distribution functions nγ , but also induces intermode coherence.
The coupling with the off-diagonal components of the distribution function is governed by the generalized Berry connection
matrix Aq = iU †

q ∂qUq. The dissipative nature of fluctuating CP dynamics is manifested in the presence of a relaxation term on
the right-hand side of the kinetic equation. The equation for the off-diagonal elements is kept to the zeroth order of the gradient
expansion (all gradient terms including ∂t n̂γ γ̄ are neglected). As a result, the intermode coherence nγ γ̄ adiabatically follows the
disturbed distribution functions nγ as

nγ γ̄ = iAγ γ̄
q ∂Rn+

(εγ q − εγ̄ q)τ ′′

εγ qτ ∗ + εγ̄ qτ
, nγ̄ γ = n∗

γ γ̄ . (C14)

Here we also have followed Ref. [84] and performed the approximation ∂Rn+ ≈ ∂Rn−, which decouples the kinetic equations
for n+ and n+. Besides, in this approximation predictions based on the resulting kinetic equations match with the ones based
on the TDGL equation for fluctuating CPs and the linear-response approach, as we discuss in the next section. If we combine
Eqs. (C13) and (C14), we obtain the kinetic equation, which is presented in the main part of the paper as Eq. (22).

3. The conductivity tensor

In this section we demonstrate that the expressions for the conductivity tensor derived with the help of the kinetic equation for
fluctuating CPs match with results obtained in Appendix B with the help of the linear-response theory. As we discuss in the main
text, electric field difference eEeh induces the three contributions to the current in both layers of the different physical origin:

Je(h) = ±
∑
pγ

[
∂qεγ qn1

γ q + u�
γ qn0

γ q + uG
γ qn0

γ q

]
, n0

γ q = T

εγ q
, n1

γ q = −|τ |2Eeh∂qn0
γ q

2τ ′εγ q
. (C15)

The first term originates from the shift of the distribution function for fluctuating CPs and represents the conventional Aslamazov-
Larkin effect. The corresponding contribution to the conductivity tensor is given by

σ AL
αβ =

∑
γ q

∂qα
εγ q∂qβ

εγ q

2ε3
γ q

T |τ |2
τ ′ , ∂qα

εγ q∂qβ
εγ q = Re

[
Qγ γ

αβ (q)
]
. (C16)

Here we recall that 〈γ q|vα (q)|γ q〉C = ∂qα
εγ q. As a result, this expression matches with Eq. (B9) derived in Appendix B.

The second term originates from the anomalous velocity u�
γ q, which is intricately related with the nonzero Berry curvature of

fluctuating CPs. It results only in the Hall conductivity that is given by

σ�
αβ = εαβz

∑
γ q

�γ q
(εγ q − εγ̄ q)2τ ′′|τ |2
|εγ qτ ∗ + εγ̄ qτ |2

T

εγ q
, �γ q = 2Im

[
Qγ γ̄

xy
]

(εγ q − εγ̄ q)2
. (C17)

Here we have rewritten the Berry curvature �γ q in terms of the product of matrix elements for velocity operators. As a result,
this expression matches with Eq. (B10) derived in Appendix B.

The third term originates from the anomalous velocity uG
γ q, which is intricately related with the nonzero quantum metric of

fluctuating CPs. It results both in longitudinal and transverse elements of the conductivity tensor that are given by

σ G
αβ =

∑
γ q

Ĝγ q ·
(
ε2
γ q − ε2

γ̄ q

)
τ ′|τ |2

|εγ qτ ∗ + εγ̄ qτ |2
T

εγ q
, Ĝγ q = − Re[Q̂γ γ̄ ]

(εγ q − εγ̄ q)2
. (C18)

Here we have rewritten the quantum metric Gγ q in terms of the product of velocity operators. If we use the following helpful
identity,

ε+,q + ε−,q

ε+,q − ε−,q

(
T

ε+,q
− T

ε−,q

)
= −

(
T

ε+,q
+ T

ε−,q

)
, (C19)
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Eq. (C18) matches with Eq. (B11) derived in Appendix B. As a result, we conclude that the results obtained with the help of the
linear-response approach and the kinetic equation are consistent with each other.
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