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The coherent third-order nonlinear response of monolayer transition-metal dichalcogenide semiconductors,
such as MoSe2, is dominated by the nonlinear exciton response, as well as biexciton and trion resonances. The
fact that these resonances may be spectrally close together makes identification of the signatures, for example
in differential transmission (DT), challenging. Instead of focusing on explaining a given set of experimental
data, a systematic study aimed at elucidating the roles of intravalley and intervalley long-range electron-hole
(e-h) exchange on the DT spectra is presented. Previous works have shown that the e-h long-range exchange
introduces a linear leading-order term in the exciton dispersion. Based on a generalized Lippmann-Schwinger
equation, we show that the presence of this linear dispersion term can reduce the biexciton binding energy to
zero, contrary to the conventional situation of quadratic dispersion where an arbitrarily weak (well-behaved)
attractive interaction always supports bound state(s). The effects of spin scattering and the spin-orbit interaction
caused by e-h exchange are also clarified, and the DT line shape at the exciton and trion resonance is studied
as a function of e-h exchange strength. In particular, as the exciton line shape is determined by the interplay
of linear exciton susceptibility and the bound-state two-exciton resonance in the T matrix, the line shape at the
trion is similarly determined by the interplay of the linear trion susceptibility and the bound-state exciton-trion
resonance in the T matrix.
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I. INTRODUCTION

The physics of monolayer transition-metal dichalcogenide
(TMD) semiconductors, such as MoSe2, has been widely in-
vestigated. Review articles include Refs. [1–6]. Examples of
studies of these materials include their growth, preparation,
and structural properties [7–10], as well as thermoelectric
[11], piezoelectric [12], electronic [13–23], electron transport
and transfer [24–26], mechanical and phononic [27–31], and
optical, exciton, and trion properties [32–67], and also ex-
ploration for future device applications [1,68–73]. Similar to
conventional III-V semiconductors, TMDs have direct elec-
tronic band gaps and host excitons (albeit with larger exciton
binding energies than their III-V counterparts). A crucial as-
pect that is different between III-V and TMD semiconductors
is the size of the electron-hole (e-h) exchange, which is on the
order of meV in TMDs while on the order of μeV in III-V
semiconductors. Another aspect that is, at least in practice,
different between typical III-V and TMD semiconductors is
the presence of trion resonances below the exciton in TMDs.
This is a consequence of intentional or unintentional doping
of TMDs. The spectroscopic challenge that arises from the
trion resonances is that they are generally close to the expected
position of the biexciton resonance, a few tens of meV be-
low the exciton. This makes identification of the resonances,
which would be easy if they would be substantially spectrally
separated, more difficult. It also makes the identification of
lasing processes, that have been observed in TMDs [71–73],
more difficult, as there is no strongly spectrally isolated sig-
nature that identifies the lasing as excitonic, trion-assisted,

or biexciton-assisted lasing. Previous work [55,56,74] has
been successful at using microscopic theories, including e-h
exchange [74], to identify spectral signatures in experimental
differential transmission or absorption spectra to originate
from trions or biexcitons, and a detailed microscopic analysis
including e-h exchange of pump-probe spectra of TMDs has
been given in Ref. [65]. Also, the effect of the e-h exchange in-
teraction on the exciton dispersion is by now well understood
[40,44,74–78], as are intervalley exciton scattering dynamics
[79]. But a systematic study explaining the underlying prin-
ciples of how long-range e-h exchange influences the spectral
positions and line shape in differential transmission (DT) is
still lacking.

In the following, we use a T -matrix model and develop
a generalized Lippmann-Schwinger equation [80,81], and
combine it with the theory of differential transmission in a
coherent third-order nonlinear response regime [82] (so-called
χ (3)) to elucidate the effects of both intravalley and intervalley
long-range e-h exchange on the nonlinear exciton response
and the resonances corresponding to the various two-particle
complexes, where by “particle” we mean exciton and trion,
i.e., on the two-particle complexes of biexcitons, exciton-trion
and trion-trion bound states. To keep the theory simple and
transparent, we use a separable potential for the two-particle
interaction potential.

There are two central aspects to this analysis. First, the
long-range e-h exchange can modify the dispersion relation of
the particles (i.e., the center-of-mass dispersion of the excitons
and trions). It has been shown theoretically [44,74–76,83]
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that the long-range e-h exchange interaction leads to a term
linear in the exciton momentum as the leading order in the
dispersion relation of certain branch(es) of the lowest-lying
exciton states. The presence of this linear dispersion behavior
has received some experimental support [77,78]. We study
how this change in the analytic property of the dispersion
at low momenta affects the ability for the particles to form
bound states. We first consider a simple model of two particles
with linear dispersion interacting via an attractive separa-
ble potential in a single-channel setting in two dimensions.
We show analytically that there exists a threshold that the
strength of the interaction needs to exceed for it to support
a bound state. This is in contrast to the conventional case of
particles with quadratic energy-momentum dispersion in two
dimensions, where an attractive interaction satisfying some
broad conditions always supports bound state(s) no matter
how weak the interaction is (e.g., see Refs. [84–87] and the
end of Chap. VI on p. 156 of Ref. [88]). Typically, replacing
the quadratic dispersion with a linear one weakens the binding
of the bound state. We then show that the effect of weakening
or precluding a bound biexciton also holds in a model that has
the spin-valley configuration structure of excitons (and trions)
in a TMD (specifically MoSe2) where one exciton branch has
a linear leading-order dispersion.

Second, the intervalley e-h exchange results in the coupling
of the two different spin states of each particle. In other words,
the spin does not remain a good quantum number. This cou-
pling also involves spin-orbit coupling, since, say, a scattering
of two particles from the initial state of both particles being
spin-down states to the final state of both being spin up needs
to be compensated by a corresponding decrease of the orbital
angular momentum (OAM) of the the two-particle complex.
Of course, in the line shape of the DT all these effects are en-
tangled, but we provide an analysis where we systematically
switch on the various physical processes, thus clarifying their
respective role in the DT spectra.

The paper is organized as follows. In Sec. II we first ana-
lyze a scalar model of the T matrix and obtain an an analytical
solution for particles with linear dispersion. We also formulate
the general T -matrix theory applicable to our system and
derive an expression for the DT in terms of the T matrix.
In Sec. III we present numerical results for the DT and the
relevant T -matrix components. We summarize our findings in
Sec. IV.

II. THEORETICAL FORMALISM

In the first section, we show by a simple single-channel
model that two particles in two dimensions with linear kinetic
energy dispersion and interacting through an attractive force
do not necessarily have a bound state. A threshold may exist
which the strength of the attraction needs to exceed in order
for bound state(s) to be supported. This is in contrast to the
common case of quadratic dispersion where an attractive in-
teraction, no matter how weak, always supports bound state(s)
in two dimensions. In formulating the problem, we use the
Lippmann-Schwinger equation for the two-body scattering
T matrix and assume a separable interaction. In the second
section, we generalize the T -matrix formalism to a model with
multiple particle species and spin states, which is applied to

the system of excitons and trions in monolayer TMDs. Our
model configuration is appropriate for MoSe2. Electron-hole
long-range exchanges, both intravalley and intervalley, are
included in the single-particle part of the Hamiltonian. The ef-
fect of the short-range e-h exchange is included in the exciton
energy at zero momentum [75], and dark (spin-forbidden) in-
tervalley excitons are omitted in the model. In the last section,
the third-order (χ (3)) differential transmission of light through
a TMD layer in a pump-probe setting is related to the T matrix
developed in the second section. Numerical results showing
how the bound-state energies, differential transmission, etc.,
are affected by using dispersions with linear leading-order
terms in the e-h exchanges are investigated in Sec. III.

A. Single-channel bound states in two dimensions with linear
free-particle dispersion

We consider the scattering of two particles in the frame
where the total momentum is zero. The scattering T matrix
T (k, k′,�) is given by the Lippmann-Schwinger equation
(e.g., Ref. [89])

T (k, k′,�) = V (k, k′) +
∑

q

V (k, q)GR
0 (q,�)T (q, k′,�),

(1)
where k and k′ are the final and initial relative momenta,
respectively, h̄� is the total energy of the particles, V (k, k′) is
the interaction, and GR

0 (q,�) is the retarded, interaction-free,
two-particle propagator,

GR
0 (k,�) = 1

h̄� − ε(k) + iγ
, (2)

where ε(k) is the total free-particle energy of the particle pair,
and γ is a loss width. The spectral properties of the two-
particle Hamiltonian are related to the poles and branch cuts
of the T matrix as a function � which is treated as a complex
variable. The energies of the bound states are given by the
pole positions of the T matrix. Using a separable attractive
potential, we can analyze the pole condition analytically, and
we find, as expected, that for the case of parabolic free-particle
energy dispersion there is one solution (i.e., bound state) re-
gardless of how weak the interaction is, while in the case of
linear dispersion, a bound-state solution requires the interac-
tion strength to be above a certain threshold. In other words,
contrary to the well-known case of particles with parabolic
dispersion, particles with linear dispersion do not have bound
states for arbitrary weak attractive interaction potentials. The
details of this analysis, including the expression for the
threshold strength of the attractive potential, are given in
Appendix A.

B. Biexcitons in photoexcited two-dimensional
transition-metal dichalcogenides

In the previous section, we have gained some understand-
ing of the effect of a linear dispersion on the two-body bound
state in the single-channel model. We extend the formal treat-
ment here to the multichannel case of excitons and trions in
the weakly nonlinear optics of two-dimensional (2D) TMDs.

In (direct-gap) semiconductors and TMDs, an important
driver of χ (3) nonlinearity is the scattering, including resonant
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bound-state formation, among excitons, and possibly also tri-
ons. We treat the excitons and trions as point particles and
formulate the scattering using a two-body T matrix, which
includes in this case the spin and valley degrees of freedom.
We consider specifically MoSe2, which has a relatively sim-
ple spin-valley band structure near the band gap. Only the
lowest-lying exciton and trion subbands are included in our
model. The single-particle basis in this subspace is specified
by the parameter set (β, σ, p), where β = x (for exciton), t
(for trion) labels the particle species, σ = +/− is the spin,
and p is the 2D momentum in the monolayer plane. We

limit our considerations to electron-doped samples so that
the trion is made up of an electron-hole pair in one valley,
K , for example, and an electron in an inequivalent valley
K ′. σ for the trion refers to the spin state of the valence
electron corresponding to the hole in the trion: σ = +(−)
for valence electron spin being up (down). There is a one-to-
one correspondence between the pair of inequivalent valleys
and the exciton and/or trion spin states. So no additional
parameter labeling the valley in the single-particle basis is
needed.

The exciton-trion Hamiltonian in our model is

Ĥ =
∑

β=x,t ;p,
σ,σ ′=±

〈σ |hβ (p)|σ ′〉a†
βpσ aβpσ ′ +

∑
β1,β2=x,t ;Q,k,k′,
σ1,σ2,σ

′
1,σ

′
2=±

〈σ1σ2|V β1β2 (k, k′)|σ ′
1σ

′
2〉a†

β1(Q+k/2)σ1
a†

β2(Q−k/2)σ2
aβ2(Q−k′/2)σ ′

2
aβ1(Q+k′/2)σ ′

1
.

(3)

Written as a matrix in the spin sub-basis (+,−)T , the one-
body Hamiltonian has the form

ĥβ (p) =
(

εβ (p) J inter
β (p)e−2iθp

J inter∗
β (p)e2iθp εβ (p)

)
, p = (p, θp).

(4)
Each diagonal term consists of a part derived from the
electron-hole band structure and an intravalley e-h exchange.
At the low-momentum limit, the leading order (in momen-
tum) of the band-structure part is quadratic while that of the
intravalley exchange is linear. The off-diagonal terms flip the
spin and effect intervalley e-h exchange. The spin flipping
comes with a compensating change in OAM so that the total
angular momentum of the particle is conserved. For exam-
ple, in the transition from σ = − to σ = +, the factor e−2iθp

reduces the OAM by 2. The leading order of the function
J inter
β (p) is also linear. Knowledge of the functional forms of

εβ (p) and J inter
β (p) is not needed for the development in this

section, and so we will leave them unspecified. For the trion,
since an intervalley exchange would put the two electrons and
the hole in the same valley, and this configuration does not
support a bound state at a comparable energy to the regular
trion, we set the intervalley exchange to zero, J inter

t (p) = 0.
We expect the intravalley e-h exchange occurring inside a
trion would affect the dispersion relation between the trion
energy and its center-of-mass momentum. The e-h pair, how-
ever, is a subsystem of the three-body bound state, and the
leading-order behavior of the trion dispersion caused by the
exchange is not clear. Hampered by this uncertainty, we will
not consider the effects of e-h exchange on the bound states
containing the trions and will neglect the intravalley exchange
of the trion.

In the interaction term, k and k′ denote the two particles’
relative momenta in the outgoing and incoming states, respec-
tively, and Q denotes the total momentum of the two particles.
The interaction is assumed to be independent of Q and to
conserve individual spins:

〈σ1σ2|V β1β2 (k, k′)|σ ′
1σ

′
2〉

= δσ1σ
′
1
δσ2σ

′
2
〈σ1σ2|V β1β2 (k, k′)|σ1σ2〉. (5)

We also write the interaction as a 4 × 4 matrix in the two-
particle spin sub-basis (++,+−,−+,−−), denoting the
matrix by V̂ β1β2 (k, k′).

The scattering of two excitons or trions is formulated in
terms of the T matrix, a generic element of which is written
as 〈σ1σ2|T β1β2 (k, k′,�)|σ ′

1σ
′
2〉. The subscripts 1 and 2 refer to

the two particles in the scattering. The symbols for momenta,
spins, and particle species are the same as those in the interac-
tion. We work in the frame of zero total momentum for the two
particles (normal incident beams). � is the total two-particle
energy in this frame. We also use T̂ β1β2 (k, k′,�) to denote
the T matrix written as a 4 × 4 matrix in the two-particle
spin sub-basis. The Lippmann-Schwinger equation for the T
matrix is

T̂ β1β2 (k, k′,�) = V̂ β1β2 (k, k′) +
∑

q

V̂ β1β2 (k, q)

× Ĝβ1β2R
0 (q,�)T̂ β1β2 (q, k′,�), (6)

where Ĝβ1β2R
0 (q,�) is the two-particle free retarded Green’s

function written as a matrix in the two-particle spin sub-basis.
It is given by

Ĝβ1β2R
0 (q,�) = [h̄� − ĥβ1 (q/2) − ĥβ2 (−q/2) + iγ ]−1. (7)

In Appendix B, the explicit expression of Ĝβ1β2R
0 (q,�) is

derived from Eq. (7). The interaction V̂ β1β2 (k, k′) is assumed
to conserve the relative OAM of the two particles. It can
therefore be expanded as a sum over a single OAM integer
index:

V̂ β1β2 (k, k′) =
∞∑

μ=−∞
V̂ β1β2

μ (k, k′)eiμ(θk−θk′ ), (8)

where k = (k, θk ). The retarded Green’s function and the T
matrix are likewise expanded:

Ĝβ1β2R
0 (q,�) =

∞∑
μ=−∞

Ĝβ1β2R
0μ (q,�)eiμθq , q = (q, θq ), (9)

T̂ β1β2 (k, k′,�) =
∞∑

μ,μ′=−∞
T̂ β1β2

μμ′ (k, k′,�)ei(μθk−μ′θk′ ). (10)
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We can now rewrite the T -matrix equation (6) in terms of
the matrices appearing on the right-hand sides for Eqs. (8)–
(10). Then, using again a separable potential, we can formally
solve the resulting matrix form of the Lippmann-Schwinger
equation and obtain a matrix representation of the T matrix
in the spin basis of the particles. The detailed expressions are
given in Appendix C.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results of the theory
developed in Sec. II.

Unless otherwise noted, we use the following parameters.
The effective electron mass follows from a parabolic approx-
imation of a hyperbolic band model and is given by me =
h̄2Eg/(2a2

Lt2
h ), where we use aL = 3.313 Å for the lattice con-

stant, th = 0.94 eV for the hopping matrix element, and Eg =
2.126 eV for the band gap [16,40]. This yields me = 0.83m0,
where m0 is the electron mass in vacuum, which is consistent
with Ref. [90]. We assume the hole and electron mass to be
equal, so that the exciton mass is mx = 2me, and the trion mass
is mtrion = 3me. We use the Coulomb potential in the MoSe2

layer developed in Eq. (5) of Ref. [62], which can be viewed as
an improved version of the Rytova-Keldysh potential. Specifi-
cally, we use the dielectric function given as Eqs. (6) and (7) of
Ref. [62], with the monolayer thickness d = 0.6 nm and 
+ =

− = 5d . We call this dielectric function εD(k). Hence, using
Gaussian units, the Coulomb interaction is V c(k) = 2πe2

kεD (k) . We
use the separable model Eq. (C7) for the two-particle (xx, xt ,
tt) interactions. Each component is assumed to be of constant
strength over a common range of relative momentum:

uβ1β2
μσ1σ2

(k) = ũβ1β2
μσ1σ2

, 0 � k � kmax

= 0, otherwise, (11)

where the ũβ1β2
μσ1σ2

′s are strength constants, which we set to be
dependent on the particle species but not on the spin states.
We chose the strength of the exciton-exciton interaction to
be (ũxx

μσ1σ2
)2 = u2

0 = 6 eV Å2 and the upper limit of the wave
vector range, kmax = 6/aB, where the 2D Bohr radius is aB =
1 nm. The exciton-trion and trion-trion interactions are set
at (ũxt

μσ1σ2
)2 = 0.6u2

0, (ũtt
μσ1σ2

)2 = 0.2u2
0, respectively. In each

channel, the parameter λβ1β2
μσ1σ2

= ±1 determines whether the
interaction is repulsive or attractive. The trion is set to be
26 meV below the exciton resonance.

The interband dipole matrix element entering the first-
order exciton susceptibility, ercv (where e is the absolute
value of the electron charge in vacuum), is determined ac-
cording to Ref. [40] as rcv = √

2aLth/Eg. For simplicity, we
use the hydrogenlike form for the exciton wave function at
zero electron-hole separation, φ1s(r = 0) = √

8/πaB. The os-
cillator strength of the exciton is proportional to the square
of the exciton dipole moment, μi = ercvφ1s(r = 0), where
i = +,− indicates the exciton spin, and the linear suscepti-
bility is independent of spin. For clarity, we take the oscillator
strength of the trion to be relatively large, 20% of that of
the exciton, i.e., | fi|2n′

ei = 0.2|μi|2. In actual simulations of
typical samples the trion oscillator strength would typically be
chosen to be much smaller, for example, 1%. The dephasing of
the exciton is taken to be γ0 ≡ γexciton = 2 meV, and we take

the trion dephasing to be γ− ≡ γtrion = 0.5γexciton, which is
motivated by the fact that trions are more likely to be localized
and localized excitations have usually smaller dephasing rates
than delocalized ones. Finally, unless otherwise noted, the
following results assume OAM filtering, by which we mean
that both the incoming and outgoing waves in the T matrix
have only zero OAM.

The single-particle Hamiltonian is given in Eq. (4). For the
exciton, the intervalley e-h exchange is given by [40]

J inter
x (k) = 3V c(k) 1

2 r2
cvk2|φ1s(r = 0)|2, (12)

which is real valued in our case. Here, k is the magnitude
of the exciton wave vector k, the factor of 3 comes from
the fact that there are three equivalent valleys, and the factor
1/2 comes from the factor of 1/

√
2 in the matrix element

of the lattice-periodic parts of the Bloch wave functions,
〈uck|i 	∇|uck〉 = rcv

1√
2
(x̂ + iŷ). As mentioned above, the phase

factors that depend on the direction of the wave vector in
Eq. (4) show the spin-orbit coupling: flipping the exciton
spin from plus (minus) to minus (plus) is associated with an
increase (decrease) of the orbital angular momentum of 2 (in
units of h̄).

In contrast to the intervalley exchange, the intravalley ex-
change does not couple inequivalent Dirac valleys and hence
does not couple opposite exciton spins. Therefore, the in-
travalley exchange modifies only the diagonal terms in the
Hamiltonian Eq. (4) which is given as

εx(k) = h̄2k2/(2mx ) + J intra
x (k), (13)

where the intravalley exchange is taken to be the same as the
intervalley exchange J intra

x (k) = J inter
x (k).

Figure 1 summarizes the effects of the e-h exchange
on the dispersion relations, which are in agreement with
Refs. [40,44,74,77]. Note that, because of the k-dependent
dielectric constant εD(k), the Coulomb potential is not simply
proportional to 1/k, as would be the case if εD(k) were k inde-
pendent, and therefore the exchange interaction is not simply
proportional to k. This becomes apparent when we look at
the exciton dispersion, Fig. 1. Figure 1(a) shows the bare ex-
citon dispersion without exchange effect, ε(k) = h̄2k2/(2mx ).
Figure 1(b) shows the exciton dispersion for the case where
we only have intravalley e-h exchange. In this case, the two
spin states are degenerate, and given by ε(k) = h̄2k2/(2mx ) +
J intra

x (k). We see that, at small wave vectors, the dispersion is
approximately linear, corresponding to the linear-dispersion
model discussed above (Sec. II A). However, due to the k
dependence of the dielectric function, the dispersion starts to
deviate significantly from the linear form at approximately
k ≈ 106 cm −1. Figure 1(c) shows the exciton dispersion for
the case where we only have intervalley e-h exchange. In
this case, the degeneracy is lifted, and we have two branches
similar to Ref. [40], with the lower branch showing a mini-
mum at nonzero wave vector, ε(k)± = h̄2k2/(2mx ) ± J inter

x (k).
Finally, Fig. 1(d) shows the exciton dispersion for the case
where we have both inter- and intravalley e-h exchange. In
this case, the lower branch is again the unmodified exci-
ton dispersion, ε(k)− = h̄2k2/(2mx ) + J intra

x (k) − J inter
x (k) =

h̄2k2/(2mx ), while the upper branch contains the exchange in-
teraction twice: ε(k)+ = h̄2k2/(2mx ) + J intra

x (k) + J inter
x (k) =
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FIG. 1. (a) Exciton (upper curve) and trion (lower curve) disper-
sion without e-h exchange. (b) Exciton dispersion with intravalley
exchange. The two exciton-spin states are degenerate and the two
dispersions cannot be distinguished. (c) Exciton dispersion with
intervalley exchange; shown are the upper and lower dispersion
branches. (d) Exciton dispersion (upper and lower branches) with
intravalley and intervalley exchange.

h̄2k2/(2mx ) + 2J (k), where J intra
x (k) = J inter

x (k) ≡ J (k). In the
following numerical analysis, we assume that we can adjust
the strength of the inter- and intravalley exchange indepen-

(a)

(b)

FIG. 2. (a) Differential transmission in the cross-circular config-
uration without intervalley e-h exchange. The intravalley exchange is
increased equidistantly with ηintra = 0, 0.2, 0.4, 0.6, 0.8, and 1 from
top to bottom. Except for the bottom curve (η = 1), the spectra are
shifted vertically for clarity. (b) Same data as in (a) but zoomed in to
the biexciton dip, indicated by vertical arrows. The blueshift of the
biexciton with increasing intravalley exchange can clearly be seen.
The spectra in (b) are not vertically shifted.

dently, J inter
x (k) → ηinterJ inter

x (k) and J intra
x (k) → ηintraJ intra

x (k),
and we vary η between zero and 1.

In the following, we show results for the DT signal, the
details of which are given in Appendix D. We begin the
analysis for the simplest case, in which we have no trions, and
we have only intravalley exchange. This reduces the system
to the scalar case discussed in Sec. II A. Figure 2 shows the
differential transmission in the cross-circular configuration,
with the pump being σ+ polarized and spectrally centered at
the exciton, and the probe σ− and its frequency scanned in the
figure. We see that without exchange, the DT shows a feature
similar to a blueshift: positive DT just below the exciton,
negative DT just above it; however, in this case the negative
and positive parts are not equal in height, thus deviating from
an exact blueshift signal, and a biexciton dip (induced absorp-
tion) appears at approximately 20 meV below the exciton (i.e.,
the biexciton binding energy is 20 meV). This is in qualitative
agreement with the case of GaAs, which has been shown in
Ref. [91] [see Fig. 4(d) in Ref. [91] and note that the induced
biexciton absorption peak (corresponding to a dip in DT) in
GaAs is not well separated from the exciton feature].

When we increase the e-h exchange from zero to its full
strength, we see the biexciton binding energy decreasing and
the biexciton dip eventually merges with the features in the
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(a)

(b)

FIG. 3. (a) The two-exciton T -matrix component T−+−+ corre-
sponding to the spectra in Fig. 2. The exchange interaction is varied
in the same way as in Fig. 2. The biexciton peak can clearly be seen.
(b) Same as (a) but for T−++−. Here, the T -matrix component is
zero independent of the e-h exchange strength. The spectra are again
shifted vertically for clarity.

vicinity of the exciton, making the exciton DT line shift more
similar to a pump-induced redshift (this is not an exact red-
shift, because the DT signal at the exciton is, from left to right,
negative-positive-negative, instead of negative-positive in the

FIG. 4. Differential transmission in the cross-circular configura-
tion without intravalley e-h exchange. The intervalley exchange is
increased equidistantly with ηinter = 0, 0.2, 0.4, 0.6, 0.8, and 1 from
top to bottom. Except for the bottom curve (η = 1), the spectra are
shifted vertically for clarity. For clarity, the biexciton resonance is
indicated by the dash-dotted line.

(a)

(b)

FIG. 5. (a) The two-exciton T -matrix component T−+−+ corre-
sponding to the spectra in Fig. 4. The exchange interaction is varied
in the same way as in Fig. 4. The biexciton peak can clearly be seen
as it splits and shifts with increasing e-h exchange coupling. (b) Same
as (a) but for T−++−. The spectra in (a) and (b) are shifted vertically
for clarity.

exact redshift). In order to gain more insight into this behavior,
we show the underlying two-exciton T matrix in Fig. 3. For
the discussion of results shown in Figs. 2–9, we simplify
the notation and write 〈σ1σ2|T xx

00 |σ ′
1σ

′
2〉 as Tσ1σ2σ

′
1σ

′
2
. We note

that, in general [Eqs. (D6) and (D9)], DT in the cross-circular
configuration receives contributions from T−+−+ (i.e., the T

FIG. 6. Same data as in Fig. 5, but only showing the two spectra
at full exchange strength (purple curves) and for comparison the
curve for zero exchange strength. The split biexciton corresponds to
the two dispersion curves shown in Fig. 1(c).
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(a)

(b)

FIG. 7. Differential transmission in the cross-circular configura-
tion ranging from only intervalley exchange to full intravalley and
intervalley exchange, ηinter = 1 and ηintra = 0, 0.2, 0.4, 0.6, 0.8, and 1
from top to bottom. Except for the bottom curve (η = 1), the spectra
are shifted vertically for clarity. (b) Same data as in (a) but zoomed
in to the biexciton dip, indicated by vertical arrows. The blueshift
of the biexciton with increasing intravalley exchange can clearly be
seen. The spectra in (b) are not vertically shifted.

matrix where there is no net change in the spin of either
exciton) and T−++− (the T matrix where the two excitons flip
their spins, one from −1 to 1 and the other from +1 to −1, so
that the total spin of the two excitons remains unchanged). In
T−+−+, as expected, the biexciton peak moves from −20 meV
in the case without e-h exchange to a frequency slightly above
the two-exciton continuum edge in the case of full exchange,
Fig. 3(a). This corroborates our finding in Sec. II A that a
linear exciton dispersion decreases the bound-state binding
energy and can prohibit biexcitons from forming. Since in
the case of only intravalley e-h exchange we have no mixing
of the exciton spin states, the T matrix in the “− + +−”
channel is zero, regardless of the strength of the e-h intravalley
exchange.

Next, we show results where we have only intervalley e-h
exchange but no intravalley exchange. Figure 4 shows the
evolution of the cross-circular DT in increasing intervalley
exchange. Without exchange, we have again the blueshift (or
close to blueshift) feature at the exciton, and the biexciton dip
at −20 meV. At full intervalley exchange, the exciton feature
has developed a slightly negative feature just below the exci-
ton, and the negative feature just above the exciton has slightly
diminished. The biexciton dip has moved to lower frequencies

(a)

(b)

FIG. 8. (a) The two-exciton T -matrix component T−+−+ corre-
sponding to the spectra in Fig. 7. The exchange interaction is varied
in the same way as in Fig. 7. The biexciton peak can clearly be seen
as it splits and shifts with increasing e-h exchange coupling. (b) Same
as (a) but for T−++−. The spectra (a) and (b) are shifted vertically for
clarity.

(i.e., the biexciton binding energy has increased). Again, to
obtain more insight into this behavior, we look at the T matrix.
Figure 5(a) shows, as before, a prominent biexciton peak in
the case without exchange. Since the intervalley exchange
couples the exciton spins and leads to a splitting in the ex-
citon dispersion, Fig. 1(c), the biexciton peak in T−+−+ splits
into two when the intervalley exchange is nonzero. However,
there is no such splitting in the DT spectrum. In order to
understand this, we plot in Fig. 5(b) the T matrix in the
“− + +−” channel. When intervalley exchange is switched
on, T−++− becomes nonzero, and moreover the spin mixing is
accompanied by spin-orbit coupling. In this channel we find
that the two biexciton resonances correspond to different signs
in the T matrix. The usual case, where Im(T ) is negative,
corresponds to a biexciton resonance that leads to induced
absorption (or a dip in DT). In the present case, the upper
of the two split biexciton states has the opposite sign, which
leads to a cancellation against the upper peak in T−+−+ and
the absence of the second biexciton peak in DT. The upper of
the two split biexciton states is at a frequency that corresponds
to a biexciton formed from one exciton in each of the two
dispersion branches.
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(a)

(b)

(c)

FIG. 9. (a) Real (magenta curve) and imaginary (green curve)
part of the two-exciton T -matrix component T−+−+ that dominantly
determines the DT in the cross-circular configuration. The imaginary
part is the same as in Fig. 8. The biexciton resonance is approxi-
mately at −3.5 meV. (b) Same as (a) but for T++++. The imaginary
part shows a biexciton resonance which is a consequence of the
spin coupling due to e-h exchange and is not present without e-h
exchange, and the two-exciton continuum that would be present
even without e-h exchange. Note that the T matrix in (a) is much
larger than in (b). (c) Differential transmission in the cross-circular
configuration, dash-dotted red line, which is the same as in Fig. 7,
and the co-circular configuration (solid blue line). All results in this
figure are at full e-h exchange strength.

In Fig. 7 we finally switch on both exchange contributions.
We start from the case of only intervalley exchange and in-
crease the intravalley exchange from zero to full strength. In
this case, the biexciton dip moves from −30 meV towards

FIG. 10. Differential transmission in the cross-circular configu-
ration ranging from zero intravalley and intervalley exchange to full
intravalley and intervalley exchange, ηinter = ηintra = 0, 0.2, 0.4, 0.6,
0.8, and 1 from top to bottom. Except for the bottom curve (η = 1),
the spectra are shifted vertically for clarity. In contrast to the previous
DT figures, here the trion is taken into account. The DT response of
the trion can clearly be seen at approximately 26 meV below the
exciton. Effects of e-h exchange in the trion are omitted.

the exciton and there merges with the exciton scattering fea-
ture, resulting in a negative-positive-(weakly) negative DT
line shape. The corresponding T -matrix results, Fig. 8, show
the biexciton, as it moves toward the two-exciton continuum,
keeps its splitting such that the upper of the two biexciton
peaks remains canceled in the DT regardless of the strength
of the intravalley exchange.

The fact that the e-h intervalley exchange interaction leads
to spin coupling suggests that a biexciton resonance could
be visible in the DT signal in the co-circular configuration.
Without e-h intervalley exchange interaction, the DT in the
co-circular configuration shows an exciton blueshift, which is
a consequence of the repulsive exciton-exciton interaction in
the spin-triplet channel, and theoretically is dominated by the
Hartree-Fock (first order in the exciton-exciton interaction)
contribution to the T matrix T++++. When the e-h intervalley
exchange interaction is included in the calculation, T++++ is
coupled to T−+−+, the latter possibly having a pronounced
biexciton resonance. Figure 9 shows the corresponding T -
matrix components and DT spectra for our parameters are
full exchange-interaction strength. We see that T++++ indeed
exhibits a biexciton resonance at the same energy as the
biexciton resonance in T−+−+. This is in contrast to the case
of GaAs, where the co-circular T++++ has only the onset
of a two-exciton continuum (see Ref. [81]). However, the
biexciton resonance in the co-circular channel does not flip
the sign of the exciton shift; Fig. 9(c) still shows a blueshift in
the co-circular configuration. The reason for this can be seen
from Fig. 9(b), which shows that the real part of T++++ is
much larger than the imaginary part, and it is the real part that
is responsible for the exciton blueshift.

We now evaluate the full theory developed in Sec. II B. We
add the trion and show results where we include the T matri-
ces describing exciton-exciton, exciton-trion, and trion-trion
coupling. In Fig. 10, we show the cross-circular DT under si-
multaneous increase of intervalley and intravalley exchanges.
In other words, for each curve the two exchange energies are
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(a)

(b)

(c)

FIG. 11. (a) The two-exciton T -matrix component T−+−+ corre-
sponding to the spectra in Fig. 10. The exchange interaction is varied
in the same way as in Fig. 10. The biexciton peak can clearly be seen
as it splits and shifts with increasing e-h exchange coupling. (b) Same
as (a) but for T−++−. (c) Same as in (a) but for the exciton-trion
T -matrix component. The spectra in (a), (b), and (c) are shifted
vertically for clarity.

multiplied by the same factor of η = ηinter = ηintra. At zero ex-
change, we have again the (almost ideal) blueshift signal at the
exciton (i.e., positive-negative), a relatively shallow biexciton
dip at −20 meV, and an almost ideal bleaching signal at the
trion (mostly positive DT). At full exchange strength, we find,
as above, the exciton to have the negative-positive-(weakly)
negative signal, and the trion develops an almost ideal red-
shift. To analyze this further, we show in Fig. 11 the relevant
T -matrix components. The evolution of the exciton-exciton T
matrix is similar to the case without trions discussed above. In
the absence of exchange, the exciton-trion T matrix shows a

FIG. 12. Comparison of several T -matrix components for the
case of Fig. 11. Only results for full exchange strength are shown.
In addition to the exciton-exciton and exciton-trion component, the
trion-trion component is shown. A peak corresponding to a bound
trion-trion complex can clearly be seen at approximately −52 meV.
Note that the trion-trion T matrix is small on this scale and has been
multiplied by a factor of 5 for better visibility.

peak, corresponding to a bound state of an exciton and a trion,
at approximately −30 meV. This peaks shifts to −25 meV and
undergoes a strong line-shape deformation as the exchange
is increased to full strength. The superposition of the trion-
exciton bound state at −25 meV and the trion resonance at
−26 meV then leads to the development of the blueshift signal
at the trion frequency seen in Fig. 10. For clarity, we show in
Fig. 12 a comparison of the relevant T -matrix components
for the case of full exchange. The exciton-exciton interaction
determines only the signal in the vicinity of the exciton; there
is no biexciton peak. The trion-exciton bound state is repre-
sented by a strongly asymmetric peak at −25 meV, and the
trion-trion bound state gives a peak at −63 meV. In DT, there
is no feature visible at the trion-trion bound-state frequency.
However, there is in principle a dip in DT at that frequency.
We have verified numerically that an artificial enhancement of
the trion-trion oscillator strength yields a clearly visible dip in
DT at −63 meV, but for our normal parameters this dip is too
small to be visible.

The results including trions discussed so far are without
exchange effects in the trions. As discussed in Sec. II B,
we omit intervalley e-h exchange because in a trion that in-
volves the electron from the valley where the exciton resides
and an electron of opposite spin in a nonequivalent valley
(two-electron singlet state), e-h exchange would transfer the
exciton to the nonequivalent valley, leading to a state with
two electrons of the same spin (two-electron spin-triplet state)
and possible disintegration of the three-particle state into an
exciton and a free electron. We have also omitted intravalley
e-h exchange of the exciton that is part of the trion. Regard-
ing the intravalley e-h exchange effect for the trion, we note
that Ref. [92] pointed out that the e-h exchange interaction
vanishes in charged excitons in III-V quantum dots. It might
therefore be possible that the intravalley e-h exchange in trions
in TMDs is also small. Nevertheless, we have also evaluated a
purely hypothetical model of intravalley e-h exchange of the

245434-9



KWONG, SCHAIBLEY, AND BINDER PHYSICAL REVIEW B 104, 245434 (2021)

FIG. 13. The effect of pump-induced free-carrier generation on
the cross-circular DT. The solid blue curve is the same as in Fig. 10
at full exchange strength, which is without free-carrier generation,
and the dashed red curve is with free-carrier generation.

exciton that is part of the trion. In this model, the trion disper-
sion becomes ε(k)trion = h̄2k2/(3me) + J intra

t (k). This affects
the exciton-trion and trion-trion channel in the T matrix. As
expected, we find within this hypothetical model (not shown)
that the binding energy of the trion-trion complex is now
reduced, and that of the exciton-trion complex is slightly
reduced.

The trion nonlinearity discussed so far simulates only di-
rect interactions between pump- and probe-induced trions.
In principle, the pump-induced excitons can lead to pump-
induced free charge carriers if at least some of the excitons
dissociate. In that case, the pump-induced free charge carriers
make forming trions by the probe more probable. To model
this scenario, we present in Appendix E a phenomenological
model for the third-order response from pump-induced free-
carrier generation. Figure 13 shows that the main effect on
the DT is a reduction (or pulling down) of the DT feature at
the trion, consistent with the notion that the pump-induced
carriers facilitate trion absorption of the probe.

We now comment on the OAM characteristics of the DT. In
the presence of intervalley e-h exchange, spin-orbit coupling
involved in the exciton scattering creates OAM states that
are not necessarily included in the incident light field. In
the results presented so far, we assume the incident field has
zero OAM and the transmitted field is filtered to also include
only zero OAM. In a typical experiment, the incident field
has indeed only zero OAM, but the transmitted field is not
necessarily filtered. As discussed in Sec. II B, the T -matrix
coupling is block diagonal in the total angular momentum
(mtot) basis. The total angular momentum is related to the
OAM and the spins σ1 and σ2 of the two particles involved
in the scattering process via mtot = μ + σ1 + σ2.

In the case of the incident field having only zero OAM,
μ′ = 0, there are only three total angular momentum states
that contribute to the DT, namely, mtot = 0, 2,−2. In the
mtot = 0 subspace, the states written as {σ1, σ2, μ} are
{+,+,−2}, {+,−, 0}, {−,+, 0}, {−,−, 2}. Similarly, in
the mtot = 2 subspace, the states are {+,+, 0}, {+,−, 2},
{−,+, 2}, {−,−, 4}, and in the mtot = −2 subspace, the states

are {+,+,−4}, {+,−,−2}, {−,+,−2}, {−,−, 0}. In the
co-circular configuration, the created exciton pair is in the
mtot = 2 subspace. When intervalley exchange flips one spin,
the pair switches to the {+,−, 2} or {−,+, 2} state. Thus the
biexciton contributing to T++++ in this case has OAM μ = 2.
Within each subspace, the T matrix is a 4 × 4 matrix in the
basis of the states just given. Hence, each T -matrix compo-
nent can be labeled by two OAM numbers, in the notation
of Sec. II B, as T = Tμ,μ′ (suppressing all other dependencies
of the T matrix). In the numerical evaluation, we restrict
ourselves to T̂ β1β2

0,0 because we consider only incident and de-
tected beams in the direction normal to the monolayer plane.
The matrix elements T̂ β1β2

μμ′ with nonzero OAM μ and/or μ′
contribute to quantities of beams prepared and/or detected in
oblique directions.

In Fig. 14, we show DT in the four (co-circular, cross-
circular, collinear, and cross-linear) configurations with the
pump tuned at the exciton frequency. We note that in Fig. 14
the usual relation between the DT in the co-circular and
cross-linear configuration, DTco-circular = 2DTcross-linear, is not
fulfilled. This relation holds for the coherent third-order re-
sponse in configurations where one resonance, for example,
the exciton, dominates the linear response and can readily be
verified from the relations given in Ref. [82]. It can be shown
analytically that the relation does not hold in the case where
more than one resonance, for example, the exciton and the
trion, contribute to the response.

IV. CONCLUSION

In conclusion, we have shown how intravalley and inter-
valley e-h exchange affects the nonlinear transmission spectra
via the modification of the dispersion relations of the parti-
cles involved in two-particle scattering, in particular excitons.
Using a model of a separable two-particle potential, we have
shown analytically that, in two dimensions, a linear dispersion
reduces the two-particle bound-state energy and, depending
on the interaction strength, can eliminate the bound state. We
have derived and numerically solved a generalized Lippmann-
Schwinger equation describing two-particle scattering, where
the two particles can be two excitons, an exciton and a trion,
or two trions. The Lippmann-Schwinger equation accounts for
intravalley e-h exchange via the dispersion relations, and for
intervalley e-h exchange resulting in spin scattering and spin-
orbit interaction. We found the T matrix to be block diagonal
with each block labeled by the total angular momentum of the
two particles. We have analyzed the DT spectra and underly-
ing T -matrix components for the case of a pump at an exciton
as a function of intravalley and intervalley exchange cou-
pling strength, and have seen that if both are at full strength,
the biexciton dip in DT (corresponding to pump-induced ab-
sorption) merges with the two-exciton continuum-scattering
contribution, changing the DT line shape at the exciton from
a positive-negative signal (indicating an exciton blueshift)
without exchange to one that is negative-positive-(weakly)
negative (similar to an exciton redshift) at full exchange
strength.

Quite generally, the DT signal in χ (3) is large when the
light fields are tuned to the linear (first-order) resonances.
That is why the DT signal is largest when the probe is at the
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(a)

(b)

(c)

(d)

FIG. 14. Differential transmission in the co- and cross-circular
and collinear and cross-linear configuration at full intravalley and
intervalley exchange.

exciton. The specific line shape of the DT signal results from
a complex interplay of the first-order susceptibilities with the
two-particle T matrix.

The trion also provides a first-order resonance; hence the
DT signal becomes large when the probe field is at the trion.
We found that the line shape at the trion changes from mostly
positive DT at zero e-h exchange in the exciton to a redshift
signal (negative-positive) at full exchange. The fact that the
line shape at the trion is affected by the e-h exchange in the ex-
citon is a consequence of the bound trion-exciton resonance,
which for our parameter values shifts from below the linear
trion resonance to above it as the e-h exchange in the exciton
is switched on.

In the future, it would be desirable to extend the present
analysis to the case of incoherent nonlinear optical response,
i.e., a regime where incoherent scattering, in particular inter-
valley scattering and spin relaxation, contributes to the optical
response. It would also be desirable to extend the present
analysis beyond the separable interaction potential, similar to
the full numerical solution of the exciton-exciton T matrix
performed in Ref. [81].

Such theoretical approaches to the exciton-exciton T ma-
trix in TMDs, starting from a fermionic theory of electrons
and holes, have already been reported in Refs. [65,74], and
extended studies using those approaches could shed further
light on the issues raised in the present paper. This includes
the question about possible quantitative differences between
predictions based on the point-particle approximation for ex-
citons and trions used in the present paper and those based on
fermionic theories. It would also include the question whether
the strength of the intervalley and intravalley exchange effects
can vary between samples and, if so, what physical mecha-
nism would determine the exchange strengths under realistic
experimental conditions. For example, based on our analysis,
the experimental results shown in Ref. [56] appear to have
reduced exchange interactions, since a strong biexciton has
been observed. Since there two-dimensional coherent spec-
troscopy (2DCS), rather than DT spectra, is shown, we have
verified that our T -matrix approach, evaluated for 2DCS (see
Appendix F for the corresponding formulas), yields results
that are largely consistent with the experimental findings of
that reference, if we reduce e-h exchange effects. Similarly,
the differential absorption spectra shown in Ref. [74] appear
qualitatively similar to the results we obtain if the intravalley
e-h exchange is reduced. Such an extended analysis might also
clarify the role of the low-frequency two-exciton continuum
states (or two-exciton scattering resonances) on the DT or
differential absorption line shape in the vicinity of the exciton.
As shown above, we expect that under certain circumstances,
two-exciton continuum states can have a large influence on the
nonlinear optical response of TMDs.

ACKNOWLEDGMENTS

R.B. gratefully acknowledges financial support from
the U.S. National Science Foundation (NSF) under Grant
No. DMR 1839570, and the use of High Performance
Computing (HPC) resources supported by the University of
Arizona. J.S. acknowledges support from AFOSR Grant No.

245434-11



KWONG, SCHAIBLEY, AND BINDER PHYSICAL REVIEW B 104, 245434 (2021)

FA9550-20-1-0217, NSF Grants No. DMR-2003583 and No.
ECCS-2054572, and ARO Grant No. W911NF2010215.

APPENDIX A: THRESHOLD CONSIDERATIONS FOR
WEAK ATTRACTIVE POTENTIALS

In this Appendix, we provide technical details of the T -
matrix results and threshold conditions for bound states to
exist discussed in Sec. II A . We consider the scattering of two
particles in the frame where the total momentum is zero. The
scattering T matrix T (k, k′,�) is given by the Lippmann-
Schwinger equation (e.g., Ref. [89])

T (k, k′,�) = V (k, k′) +
∑

q

V (k, q)GR
0 (q,�)T (q, k′,�),

(A1)
where k and k′ are the final and initial relative momenta,
respectively, h̄� is the total energy of the particles, V (k, k′)
is the interaction, and GR

0 (q,�) is the retarded, interaction-
free, two-particle propagator. The interaction is taken to be
separable:

V (k, k′) = λu(k)u(k′), (A2)

where u(k) is a square-integrable function, and the interaction
is repulsive (attractive) for λ = 1 (−1). With this interaction,
we solve Eq. (A1) analytically in the usual way. Equation (A1)
is written as

T (k, k′,�) = λu(k)[u(k′) + J (k′,�)], (A3)

where

J (k′,�) =
∑

q

u(q)GR
0 (q,�)T (q, k′,�). (A4)

Multiplying both sides of Eq. (A3) by u(k)GR
0 (k,�) and

summing over k gives

J (k′,�) = λI (�)[u(k′) + J (k′,�)], (A5)

where

I (�) =
∑

k

u2(k)GR
0 (k,�). (A6)

From Eq. (A5), J (k′,�) is obtained as

J (k′,�) = λI (�)u(k′)
1 − λI (�)

. (A7)

Substituting Eq. (A7) into Eq. (A3), we get after a little alge-
bra

T (k, k′,�) = λu(k)u(k′)
1 − λI (�)

. (A8)

The spectral properties of the two-particle Hamiltonian are
related to the poles and branch cuts of the T matrix as a
function of � which is treated as a complex variable. The
energies of the bound states are given by the pole positions
of the T matrix, which, in our separable model, are the zeros
of the denominator in Eq. (A8):

1 − λI (�) = 0 ⇒ λ
∑

k

u2(k)GR
0 (k,�) = 1. (A9)

It is known that if the free-particle energy-momentum dis-
persion is parabolic, an attractive interaction always supports

bound states in two dimensions while it supports bound states
in three dimensions when its strength exceeds a threshold (see,
for example, Refs. [84–87]). We will show that if the free-
particle dispersion is linear, a strength threshold also exists in
two dimensions for an attractive interaction to support bound
states.

The retarded Green’s function is

GR
0 (k,�) = 1

h̄� − ε(k) + iγ
, (A10)

where ε(k) is the total free-particle energy of the particle
pair, and γ is a loss width. For algebraic convenience, we
consider a simple model for u(k) in which it is a constant
over a range of values of k = |k| and vanishes elsewhere:
u(k) = u0θ (k)θ (km − k). The pole condition Eq. (A9) then
becomes [with the conversion

∑
k → ∫

d2k/(2π )2]

λI (�) = λ
u2

0

2π

∫ km

0
dk

k

h̄� − ε(k) + iγ
= 1. (A11)

We consider the effects of both parabolic and linear disper-
sions on the bound-state energy.

Parabolic dispersion. The free-particle energy has the form
ε(k) = ak2. The particles have momenta ±k/2. The constant
a is given by a = h̄2/(8mr ), where mr is the reduced mass.
Carrying out the integral in Eq. (A11) with this ε(k) reduces
the equation to

−λ
u2

0

4πa
ln

[
h̄� − ak2

m + iγ

h̄� + iγ

]
= 1. (A12)

We consider the limit γ ↓ 0. The natural logarithmic function
in Eq. (A12) [and hence I (�)] has a branch cut along a line
segment which lies infinitesimally below, by −iγ , the positive
real � axis between � = 0 and � = ak2

m/h̄. We seek solutions
to Eq. (A12) along the axis Re� < 0. The logarithmic func-
tion is continuous along this axis, and so we set γ = 0. The
solution is

h̄� = ak2
m

1 − e
− 4πa

λu2
0

, � < 0. (A13)

Equation (A13) shows that, as expected, Eq. (A12) does
not have a solution on the negative real � axis for λ > 0, and
it has one solution for λ < 0, however weak u0 is.

Linear dispersion. In this case, the free-particle energy has
the form ε(k) = bk. Using this form, λI (�) becomes

λI (�) = − λu2
0

2πb

∫ km

0
dk

k

k + z
, z ≡ −1

b
(h̄� + iγ ) (A14)

= − λu2
0

2πb

[
km − z ln

(
km + z

z

)]
. (A15)

Equation (A15) shows that I (�) has a branch cut which is the
line segment 0 � h̄� � bkm shifted downwards by −iγ . The
limit γ ↓ 0 is again taken. To seek solutions to Eq. (A9) on
the negative Re� axis, we set γ = 0. On this axis, Eq. (A9)
becomes

λI (�) = −λ�

[
1 − z

km
ln

(
km + z

z

)]
= 1, (A16)

with z = − h̄�
b > 0, where we have defined a strength pa-

rameter � ≡ u2
0km

2πb . We have not been able to find an explicit
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expression for z from Eq. (A16). It is more convenient to use
Eq. (A14) to deduce the conditions for existence of solutions
for Eq. (A16). First, the form of the integrand in Eq. (A14)
shows that for z real and positive (i.e., for γ = 0 and �

being real and negative), the integral is positive. Therefore,
for a repulsive interaction λ > 0, λI (�) is negative, which
implies that Eq. (A16) does not have a solution. It is also clear
that the integral decreases as z increases. For an attractive
interaction, λ = −1, λI (�) has a maximum value of � at
� = 0 and decreases monotonically to zero as � goes along
the negative real axis to −∞. Therefore, the strength threshold
for Eq. (A16) to have a solution is � = 1. A weak attraction
below this threshold (� < 1) does not support a bound state.

APPENDIX B: THE TWO-PARTICLE FREE RETARDED
GREEN’S FUNCTION

The two-particle free retarded Green’s function
Ĝβ1β2R

0 (q,�) is defined by Eq. (7). We derive here explicit
expressions of this Green’s function through an expansion
in the eigenbasis of the single-particle Hamiltonian ĥβ (p)
[Eq. (4)]. We denote the two eigenvalues of ĥβ (p) by ξβ, j (p),
j = u (upper), 
 (lower) and their corresponding eigenvectors
by |β, u〉 and |β, 
〉. (We have omitted the momentum labels
p in the eigenvectors to reduce notational clutter.) They are
given by

ξβ,u/
(p) = εβ (p) ± |J inter
β (p)|, (B1)(〈+|β, u〉

〈−|β, u〉
)

= 1√
2

(
e−iθp

eiθp

)
,

(〈+|β, 
〉
〈−|β, 
〉

)
= 1√

2

(
e−iθp

−eiθp

)
.

(B2)

Expanded in the product eigenbasis of the two particles, a
Green’s function matrix element in the spin sub-basis be-
comes

〈σ1σ2|Gβ1β2R
0 (q,�)|σ ′

1σ
′
2〉

=
∑

m,n=u,


〈σ1σ2|β1, m; β2, n〉〈β1, m; β2, n|σ ′
1σ

′
2〉

h̄� − ξβ1,m
(q/2) − ξβ2,n

(q/2) + iγ
. (B3)

Using the eigenvectors (B2), we can write the Green’s func-
tion more explicitly. When both particles are excitons, the
Green’s function matrix in the spin basis (++,+−,−+,−−)
is as follows:

ĜxxR
0 (q,�) = 1

4

⎛
⎜⎜⎜⎜⎝

s1 s3e−2iθq s3e−2iθq s2e−4iθq

s3e2iθq s1 s2 s3e−2iθq

s3e2iθq s2 s1 s3e−2iθq

s2e4iθq s3e2iθq s3e2iθq s1

⎞
⎟⎟⎟⎟⎠,

(B4)
where

s1 = gxx
uu + gxx



 + 2gxx
u
, s2 = gxx

uu + gxx


 − 2gxx

u
,

s3 = gxx
uu − gxx



, (B5)

and

gβ1β2
mn = 1

h̄� − ξβ1,m
(q/2) − ξβ2,n

(q/2) + iγ
. (B6)

Because spin flipping is absent in the trion, many elements
in the exciton-trion and trion-trion Green’s function matrices
equal zero. The exciton-trion Green’s function is

ĜxtR
0 (q,�) = 1

4

⎛
⎜⎜⎜⎜⎝

r1 0 r3e−2iθq 0

0 r1 0 r3e−2iθq

r3e2iθq 0 r1 0

0 r3e2iθq 0 r1

⎞
⎟⎟⎟⎟⎠,

(B7)
where

r1 = gxt
uu + gxt



 + 2gxt
u
, r3 = gxt

uu − gxt


, (B8)

and gxt
β1β2

is defined in Eq. (B5). The trion-trion Green’s
function matrix is the identity matrix multiplied by the factor
gtt

uu(= gtt


).

APPENDIX C: SPIN-BASIS REPRESENTATION OF
LIPPMANN-SCHWINGER EQUATION

In this Appendix, we present the detailed expressions for
the formal solution of the Lippmann-Schwinger equation (6)
discussed at the end of Sec. II B. Substituting the expansions
from Eqs. (8)–(10) into Eq. (6), we obtain

∞∑
μ,μ′=−∞

T̂ β1β2
μμ′ (k, k′,�)ei(μθk−μ′θk′ ) =

∞∑
μ,μ′=−∞

δμμ′V̂ β1β2
μ (k, k′)ei(μθk−μ′θk′ ) +

∞∑
μ,μ′,μ′′,μq=−∞

1

(2π )2

∫ ∞

0
dq

×
∫ 2π

0
dθqV̂ β1β2

μ (k, q)eiμ(θk−θq )Ĝβ1β2R
0μq

(q,�)eiμqθq T̂ β1β2
μ′′μ′ (q, k′,�)ei(μ′′θq−μ′θk′ ). (C1)

The integral over θq gives
∫ 2π

0 dθqei(−μ+μq+μ′′ )θq = 2πδμq,μ−μ′′ . Since Eq. (C1) is valid for any values of θk and θk′ , it implies the
following equation:

T̂ β1β2
μμ′ (k, k′,�) = δμμ′V̂ β1β2

μ (k, k′) +
∞∑

μ′′=−∞

1

2π

∫ ∞

0
dq V̂ β1β2

μ (k, q)Ĝβ1β2R
0μ−μ′′ (q,�)T̂ β1β2

μ′′μ′ (q, k′,�). (C2)

The total angular momentum mtot of the two-particle state is the sum of the spins and the relative OAM, mtot = σ1 + σ2 + μ.
Since both V β1β2 and Gβ1β2R

0 conserve mtot, the T matrix is block diagonal in mtot, which motivates the switching from the μ
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sub-basis to the mtot sub-basis. We define the interaction and the T -matrix elements in the mtot sub-basis in terms of those in the
μ sub-basis as (suppressing the subscript tot on mtot for notational simplicity in the remainder of this section)

〈σ1σ2|V β1β2
m (k, k′)|σ ′

1σ
′
2〉 = δσ1σ

′
1
δσ2σ

′
2
〈σ1σ2|V β1β2

m−σ1−σ2
(k, k′)|σ1σ2〉, (C3)

〈σ1σ2|T β1β2
m (k, k′,�)|σ ′

1σ
′
2〉 = 〈σ1σ2|T β1β2

m−σ1−σ2,m−σ ′
1−σ ′

2
(k, k′,�)|σ ′

1σ
′
2〉. (C4)

We also introduce the notation

〈σ1σ2|Gβ1β2R
0 (q,�)|σ ′

1σ
′
2〉 = 〈σ1σ2|Gβ1β2R

0,σ ′
1+σ ′

2−σ1−σ2
(q,�)|σ ′

1σ
′
2〉. (C5)

This matrix does not depend on m. The 4 × 4 matrices (in the |σ1σ2〉 sub-basis) of which the above quantities are elements are
denoted by V̂ β1β2

m (k, k′), T̂ β1β2
m (k, k′,�), and Ĝβ1β2R

0 (q,�). In terms of these matrices, the Lippmann-Schwinger equation (C2)
is rewritten in a compact form as

T̂ β1β2
m (k, k′,�) = V̂ β1β2

m (k, k′) + 1

2π

∫ ∞

0
dq V̂ β1β2

m (k, q)Ĝβ1β2R
0 (q,�) T̂ β1β2

m (q, k′,�). (C6)

For the momentum dependence of the interaction, we adopt
a separable form in each OAM and spin channel,

〈σ1σ2|V β1β2
μ (k, k′)|σ1σ2〉 = λβ1β2

μσ1σ2
uβ1β2

μσ1σ2
(k)uβ1β2

μσ1σ2
(k′), (C7)

with λβ1β2
μσ1σ2

= 1 or −1. For formal manipulations, λβ1β2
μσ1σ2

and
uβ1β2

μσ1σ2
(k) are also written in m-sub-basis matrix form,

〈σ1σ2|�̂β1β2
m |σ ′

1σ
′
2〉 = δσ1σ

′
1
δσ2σ

′
2
λ

β1β2
m−σ1−σ2,σ1σ2

, (C8)

〈σ1σ2|Ûβ1β2
m (k)|σ ′

1σ
′
2〉 = δσ1σ

′
1
δσ2σ

′
2
uβ1β2

m−σ1−σ2,σ1σ2
(k), (C9)

in terms of which Eq. (C7) can be written as

V̂ β1β2
m (k, k′) = �̂β1β2

m Ûβ1β2
m (k)Ûβ1β2

m (k′). (C10)

With this interaction, the T -matrix equation, Eq. (C6), can
be formally solved in a similar way as its single-channel
counterpart Eq. (A1), proper care being taken of the noncom-
mutativity of (most of) the matrices involved. The solution is

T̂ β1β2
m (k, k′,�) = �̂β1β2

m Ûβ1β2
m (k)

[
1 − Îβ1β2

m (�)
]−1

Ûβ1β2
m (k′),

(C11)
where

Îβ1β2
m (�)= 1

2π

∫ ∞

0
dkkÛβ1β2

m (k)Ĝβ1β2R
0 (k,�)�̂β1β2

m Ûβ1β2
m (k).

(C12)
The trion being a fermion, the two-trion scattering and

bound-state wave functions observe total antisymmetry under
exchange. When the spin state is symmetric (antisymmet-
ric), the spatial orbital wave function is a superposition of

odd (even) OAM states. In our formalism, this antisymmetry
condition is imposed by setting the even-OAM components of
the trion-trion interaction in the parallel-spin channel to zero:

〈σσ |V tt
μ (k, k′)|σσ 〉 = 0 when μ is even. (C13)

APPENDIX D: DIFFERENTIAL TRANSMISSION

In this Appendix, we relate the MoSe2 exciton-trion T
matrix to the χ (3) pump-probe DT. We consider normally
incident pump and probe on the monolayer. (One of the beams
may be slightly oblique to introduce a directional separation.
We will ignore the effect of the small deviation from the
normal.) Up to χ (3), the transmission of the probe is given
in the frequency domain by

Ti(ω) =
∣∣E (t )

pr,i(ω)
∣∣2

∣∣E (inc)
pr,i (ω)

∣∣2

= 1 − 4πω

nc

Im
[
E (inc)∗

pr,i (ω)
(
P(1)

pr,i(ω) + P(3)
pr,i(ω)

)]
∣∣E (inc)

pr,i (ω)
∣∣2 .

(D1)

The subscript i = +,− labels the circular polarized compo-
nents of the various quantities, and the subscript pr means the
probe. E (inc)

pr,i and E (t )
pr,i are the incident and transmitted probed

fields, respectively. P(k)
pr,i is the χ (k)-induced polarization. n is

the refractive index of the medium on the two sides of the
monolayer. Through the induced polarization, the linear (χ (1))
transmission and χ (3) differential transmission are related to
the susceptibility by

T (1)
i (ω) = 1 − 4πω

nc

∑
j=+,−

Im

[
χ

(1)
i j (ω)

E (t )∗
pr,i (ω)E (t )

pr, j (ω)∣∣E (inc)
pr,i (ω)

∣∣2

]
, (D2)

DT (3)
i (ω) = −4πω

nc

∑
j,k,
=+,−

Im

[
1

(2π )2E (inc)
pr,i (ω)

∫
dω1dω2dω3δ(ω − ω1 − ω2 + ω3)χ (3)

i jk

(ω1, ω2, ω3)

× (
E (t )

pr, j (ω1)E (t )
p,k (ω2)E (t )∗

p,
 (ω3) + E (t )
p, j (ω1)E (t )

pr,k (ω2)E (t )∗
p,
 (ω3)

)]
, (D3)
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where the subscript p means the pump. We specialize to monochromatic fields with pump frequency ωp and probe frequency
ωpr :

E (inc)
p,i (ω) = 2πδ(ω − ωp)Ep,i, E (inc)

pr,i (ω) = 2πδ(ω − ωpr )Epr,i. (D4)

Assuming weak response, we approximate the transmitted fields by the incident fields on the right-hand sides of Eqs. (D2) and
(D3). With these simplifications, the transmission equations become

T (1)
i (ωpr ) = 1 − 4πωpr

nc

∑
j=+,−

Im

[
χ

(1)
i j (ωpr )

E∗
pr,iEpr, j

|Epr,i|2
]
, (D5)

DT (3)
i (ωpr ) = −4πωpr

nc

∑
j,k,
=+,−

Im

[
E∗

pr,iEpr, j

|Epr,i|2
(
χ

(3)
i jk


(ωpr, ωp, ωp) + χ
(3)
ik j
(ωp, ωpr, ωp)

)
Epr,kE∗

pr,


]
. (D6)

In our model, the linear susceptibility is the sum of contributions from the exciton and the negative trion:

χ
(1)
i j (ωpr ) = δi j

∑
β=x,t

χ
β(1)
i (ωpr ), (D7)

where

χ
x(1)
i (ωpr ) = − |μi|2

h̄ωpr − εx(0) + iγx
, χ

t (1)
i (ωpr ) = − | fi|2n′

e,i

h̄ωpr − εt (0) + iγt
, (D8)

μi is the exciton electric interband dipole moment, fi is the trion excitation amplitude, and n′
e,i is the doped electron density in a

valley inequivalent to that where the other two constituent particles, an e-h pair, of the trion reside. The two-particle scattering
contribution to the χ (3) susceptibility is given by

χ
(3)
i jk


(ωpr, ωp, ωp) = −
∑

β1,β2=x,t

(
χ

β1(1)
i (ωpr )

ζβ1,i

)(
χ

β1(1)
j (ωpr )

ζ ∗
β1, j

)(
χ

β2(1)
k (ωp)

ζ ∗
β2,k

)(
χ

β2(1)∗

 (ωp)

ζβ2,


)
〈i
|T β1β2

00 (0, 0, ωpr + ωp| jk〉, (D9)

where

ζx,i = μi, ζt,i = fi

√
n′

e,i. (D10)

APPENDIX E: PHENOMENOLOGICAL MODEL FOR
PUMP-INDUCED FREE-CARRIER GENERATION

In this Appendix we present a simple model that can ac-
count for pump-induced free charge carriers, which in turn
modify the trion susceptibility. This phenomenological model
does not contain microscopic details of how the pump light
creates free carriers. Some possibilities include two-photon
absorption of the pump, or thermal ionization of the excitons
created by the pump, with the latter being less likely if the
experiment is performed at low temperatures. Assuming that
the free-carrier density is changed by the pump by the amount

�n′
e,i, i.e., n′

e,i → n′
e,i + �n′

e,i, the trion susceptibility, which
is linear in the carrier density, will change by the amount

�χ t
i j (ωpr ) = − | fi|2�n′

e,i j

h̄ωpr − εt (0) + iγt
= χ

t (1)
i j (ωpr )

�n′
e,i j

n′
e,i

,

(E1)
which contributes to the third-order nonlinear response if we
restrict ourselves to the lowest order in the pump amplitude,
where the change of the density will be of second order. We
account for possible resonance enhancement of the pump-
induced free-carrier density with the following model for the
pump-induced density,

�n′
e,i j (ωp, ωp)

n′
e,i

=
∑

kl

ge
i jkl

∑
β=x,t

(
χ

β(1)
k (ωp)

ζ ∗
β,k

)(
χ

β(1)∗

 (ωp)

ζβ,


)
Ep,kE∗

p,
, (E2)

and the corresponding pump-induced free-carrier contribution (superscript f ) to the third-order susceptibility,

χ
f (3)

i jkl (ωpr, ωp, ωp) = χ
t (1)
i j (ωpr )ge

i jkl

∑
β=x,t

(
χ

β(1)
k (ωp)

ζ ∗
β,k

)(
χ

β(1)∗

 (ωp)

ζβ,


)
, (E3)

which is added to the original χ (3) terms in Eq. (D9).
Since the probe does not mix the spins, and under the

assumption that the pump does not create intervalley spin

coherence and that the spin k in the valley containing the
pump-induced carriers must be different from the one associ-
ated with the polarization i, we have ge

i jkl = ge
0δi jδk
[1 − δik].
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In our numerical evaluations, we take ge
0 = 6 × 10−13

cm2.
For simple estimates, the following model for the exciton

and trion oscillator strengths is also useful. The effective ex-
citon dipole matrix element is

μi = −qe
ih̄℘i

m0εx(0)
φx(r = 0), (E4)

where qe is the absolute value of the electron charge in
vacuum, m0 the electron mass in vacuum, ℘i the interband
momentum matrix element, which in our case is independent
of the spin subscript i (see Ref. [93] for a detailed analysis of
the relation between momentum and dipole matrix elements),
and φx(r = 0) the exciton wave function evaluated as zero
relative e-h coordinate r = re − rh.

According to Eq. (14) of Ref. [94], the trion oscillator
strength differs from that of the exciton by a factor 4πa2

trn′
e,i,

where a2
tr is the trion Bohr radius. Hence, we can write the

trion susceptibility as

χ t
i j (ωpr ) = − |μi|24πa2

trn′
e,i j

h̄ωpr − εt (0) + iγt
. (E5)

APPENDIX F: COHERENT TWO-DIMENSIONAL
SPECTROSCOPY IN A FOUR-WAVE-MIXING

CONFIGURATION

In this Appendix, we apply our formalism to obtain the
structure of coherent two-dimensional spectra in a four-wave-
mixing (FWM) configuration investigated in Ref. [56]. In
this setup, four short pulses, coherent with each other, are
prepared, three of which produce a FWM signal through non-
linear optical coupling in the monolayer. The fourth (signal)
pulse is set in the signal direction in the detection of the
FWM field. The three signal-generating pulses are denoted
by Eiσ (t ), i = 1, 2, 3, where σ = +,− labels the circular
polarization state, and the signal-detection pulse is denoted by
Esσ (t ). The configuration geometry gives the relation between
the wave vectors of the four pulses as ks = k2 + k3 − k1.
Pulse 1 comes first in time, and pulses 2 and 3 arrive simul-
taneously at a delay of t1 after pulse 1, and pulse s arrives at
a delay of t3 after pulses 2 and 3. As a function of the delay
times, the signal is given by [56]

S(3)
σ (t1, t3) =

∫ ∞

−∞
dtP(3)

σ (t )E∗
sσ (t ), σ = +,−, (F1)

where P(3)
σ (t ) is the χ (3) FWM polarization density induced in

the monolayer. The signal S(3)
σ (t1, t3) is Fourier transformed

over t1 and t3 to generate a coherent two-dimensional spec-

trum. For simplicity, we approximate the short pulses used in
Ref. [56] by delta functions in time. We set the zero of our
time coordinate at the time of pulses 2 and 3 which gives the
times of pulse 1 and pulse s as −t1 and t3, respectively. The
electric fields of the four pulses are then given by

E1σ (t ) = Ẽ1σ δ(t + t1), E2σ (t ) = Ẽ2σ δ(t ),

E3σ (t ) = Ẽ3σ δ(t ), Esσ (t ) = Ẽsσ δ(t − t3), (F2)

σ = +,−. The signal given by Eq. (F1) becomes S(3)
σ (t1, t3) =

P(3)
σ (t3)Ẽ∗

sσ . In our model, the polarization density is obtained
as

P(3)
σ (t3) = −

∑
β=x,t

ζ ∗
β,σ pβ(3)

sσ (t3), (F3)

where ζβ,σ is the photon-exciton or photon-trion coupling
defined in Eq. (D10), and pβ(3)

sσ is the interband polarization
associated with the exciton or trion. Substituting these into the
expression for S(3)

σ (t1, t3), deriving the interband polarization
in our theory, and performing the Fourier transforms give the
two-dimensional spectrum of the signal. We do not include
intervalley e-h exchange here, thus avoiding spin flipping
during exciton or trion propagation. The signal spectrum is

S(3)
± (ω1, ω3) = i

∑
β

Ẽ∗
s±|ζβ,±|2

h̄ω3 − εβ (0) + iγ

1

h̄ω3 − εβ (0) + i3γ

×
∑
β ′

1

h̄ω1 + εβ ′ (0) + iγ
[2|ζβ ′,±|2Ẽ2±Ẽ3±Ẽ∗

1±

× T ββ ′
±± (h̄ω3 + εβ ′ (0) + iγ ) + |ζβ ′,∓|2(Ẽ2±Ẽ3∓

+ Ẽ2∓Ẽ3±)Ẽ∗
1∓T ββ ′

±∓ (h̄ω3 + εβ ′ (0) + iγ )],
(F4)

where ω1 and ω3 are the frequency variables in the Fourier
transform over t1 and t3, respectively, and γ is the dephasing
width of the exciton or trion. The notation for the T matrix is
slightly simplified: T ββ ′

σ1σ2
(h̄�) = 〈σ1σ2|T ββ ′

00 (0, 0, h̄�)|σ1σ2〉.
Some features of the resonance structure of S(3)

± (ω1, ω3) can
be seen in Eq. (F4). There are resonances at −εβ ′ (0) along
the ω1 axis and resonances at εβ (0) along the ω3 axis. The
two-particle scattering T matrix typically has a branch cut
above the minimum energy of the noninteracting particle
pair, εβ (0) + εβ ′ (0), and may support bound states. Suppose
bound states exist at energies εβ (0) + εβ ′ (0) − εββ ′

σ1σ2n, n =
0, 1, 2, . . .. Then there are additional resonances along the ω3

axis at εβ (0) − εββ ′
σ1σ2n and branch cut effects above εβ (0).
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