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End-fire all-anisotropic transition metal dichalcogenide nanoantennas
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We demonstrate that all-anisotropic transition metal dichalcogenide (TMDC) nanostructures can support
advanced optical nanoantenna functionalities, such as high end-fire directivity and directionality inversion. The
designed chain structures, driven by a dipole emitter, are composed of negative uniaxial anisotropic tungsten
disulfide (WS2) TMDC nanoparticles featuring ordinary/extraordinary refractive indices. The ordinary index,
whose values are much higher than those of Si (Si is typically used in all-dielectric nanostructures), is also
much higher than the extraordinary index, thus allowing for a strong material birefringence. We find that
anisotropy of this type makes it possible to achieve high end-fire directivity, and also offers an extra degree
of freedom that allows for an orientation-based coupling between a free-to-rotate dipole emitter and fixed WS2

elements. Furthermore, appropriately rotating half the array elements achieves end-fire directional inversion (at
a fixed operating wavelength) simply by adjusting the emitter orientation. This unique feature is characteristic
of the high anisotropy exhibited by WS2 in the optical-near infrared regime, and cannot be readily realized
with isotropic all-dielectric or plasmonic spherical structures due to their material symmetry. The presented
material-anisotropy-based designs comprise a nanophotonics platform that allows for unique functionalities at
the nanoscale, as well as for the implementation of tunable nanophotonic devices.
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I. INTRODUCTION

In the last decade, nanophotonics has comprised a valuable
platform for the development of functional optical devices
due to the advancements in nanoscale fabrication of particles
of various shapes and materials [1]. Such optical nanode-
vices have found a variety of applications, including enhanced
light-mater interaction in all-dielectric structures [2,3], Purcell
factor enhancement in plasmonic [4] or dielectric [5] nanocav-
ities, Raman scattering from silicon nanodisks [6], plasmonic
and all-dielectric optical directive nanoantennas [7–13], opti-
cal plasmonic spectrometers [14], fluorescence enhancement
and control in plasmonic and silicon nanoparticles [15–17],
and control of magnetic dipolar emission in plasmonics [18].
While the majority of the aforementioned applications is as-
sociated with all-dielectric and plasmonic structures, recently,
another branch of anisotropic transition metal dichalcogenide
(TMDC)-based nanophotonics [19–21] has emerged that aims
to lead to unique effects and applications, such as exciton-
polariton transport [22,23], tunable birefringence in Van Der
Waals waveguides [24], and integration of TMDCs with di-
electric nanostructures for the realization of integrated active
metaoptical devices [25].

In this paper, we introduce all-anisotropic WS2 nanoanten-
nas driven by dipole emitters and theoretically demonstrate
that such structures can support high end-fire directivity and
directionality inversion. To rigorously study this problem, we

*zouros@ieee.org

develop a formal full-wave semianalytical solution for the
radiation of an electric dipole source in the presence of an
anisotropic spherical particle. The dipole can be located not
only outside but also inside the anisotropic sphere. Although
the application studied here exploits the part of the theory
with the dipole outside, the remaining part can be potentially
utilized in applications such as field-distribution modeling in
deep brain stimulation [26] by considering spherical human
head-dipole interactions [27], radiated power increments us-
ing double negative materials [28], fluorescence enhancement
in metallic nanoshells [15], and Purcell factor studies [29].
The developed method includes, first, an extension of previous
works [17,30,31] (that deal with the radiation problem of an
infinitesimal electric dipole in the vicinity of an isotropic
sphere) to the radiation problem of the same dipole in the
vicinity of an anisotropic sphere, where the dipole can be
placed inside or outside the anisotropic domain. Second, the
calculation of the electric field is not based on the dyadic
Green’s function method [31,32], an approach feasible only
when the medium surrounding the dipole is isotropic. Instead,
to account for the anisotropy, we consider an equivalent sur-
face current density produced by the dipole moment p [33],
express the electric field in subregions using appropriate ex-
pansions in spherical vector wave functions (SVWFs), and
satisfy the necessary boundary conditions.

Initially, we consider a two-element WS2 sphere-dipole
array, where one element is the WS2 nanoparticle and the
other element is the emitter itself—usually a fluorescent
molecule or a quantum dot—modeled as an infinitesimal
electric Hertzian dipole, directed orthogonally with respect
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to WS2’s optic axis. Applying a multipolar decomposi-
tion for the total radiated field, we reveal that, when the
dominant dipolar moments oscillate in phase, Huygens-
like directivity—or radiation pattern—takes place, similar to
the first Kerker condition of plane-wave scattering [34–36].
The fact that anisotropic particles support Huygens sources
is based on experimental observations demonstrating that
anisotropic TMDC nanostructures enter a regime of reduced
backscattering that corresponds to the first Kerker condi-
tion characterized by a large forward-to-backward scattering
ratio [20]; yet, this first Kerker condition stems from the Huy-
gens source [34]. To fully understand this particular behavior,
we also perform electromagnetic (EM) plane-wave scattering
calculations using a rigorous semianalytical solution [35] and
show that individual WS2 nanoparticles can support mag-
netic dipolar (MD) and electric dipolar (ED) resonances in
the visible regime, similar to high-index isotropic dielectrics.
This allows us to explain that Huygens-like directivity oc-
curs when the radiation wavelength of the dipole is in the
vicinity of the WS2 particle’s ED resonance. On the contrary,
when the dipole is parallel to WS2’s optic axis, no specific
constructive or destructive behavior in the oscillating MD/ED
moments is observed and therefore Huygens-like directivity is
not supported. This is a consequence of the high anisotropy
ratio (AR) exhibited by WS2. Based on these principles,
we further demonstrate via full-wave finite-element simula-
tions (using the high-frequency structure simulator–HFSS)
that chain structures of spherical or cylindrical disk WS2

elements may serve as high end-fire directivity nanoantenna
arrays which actually enhance the directivity of the two-
element counterpart that supports Huygens-like source. The
size of each individual element is appropriately selected so
its ED resonance is shifted in a desired operating wavelength
regime.

We further reveal that material anisotropy strongly af-
fects the response of a nanoantenna array with respect to
the orientation of the emitter, thus allowing for an extra de-
gree of freedom in the design of radiating nanostructures.
In particular, it is possible to utilize the material anisotropy
to achieve directionality inversion for the same operating
wavelength with an exactly symmetric radiation pattern in
the two directions—forward and backward—along the axis of
the nanoantenna. This feature is characteristic of the mate-
rial anisotropy and can be achieved in chains of single WS2

particles, but not with simple isotropic dielectic spherical
structures due to the material symmetry of the latter; achieving
an equivalent behavior requires more complex configurations,
like chains of isotropic core-shell nanoparticles with proper
external pumping [13] or chains of magnetodielectric parti-
cles with Huygens source excitation, i.e., a source composed
of mutually orthogonal electric and magnetic dipoles [37].
Another major advantage of our design is that precise direc-
tionality inversion (due to material anisotropy) takes place at a
fixed operating wavelength, in contrast to core-shell isotropic
plasmonic configurations where inversion is obtained at dif-
ferent wavelengths [14]. All in all, the role of anisotropy is to
render the operation of the two-element WS2 sphere-dipole
array, as well as of the chain of spherical WS2 elements,
dependent on the relative orientation of the dipole emitter, and
to allow for directionality inversion.

(a) (b)

III III

FIG. 1. (a) Dipole inside the anisotropic sphere. (b) Dipole out-
side the anisotropic sphere.

The remainder of the paper is organized as follows. In
Sec. II, we develop the full-wave semianalytical solution for
the radiation problem of an electric dipole source in the pres-
ence of an anisotropic spherical particle and in Sec. III we
analyze the two-element TMDC sphere-dipole array based
on the developed method. In Secs. IV and V, we discuss
properties such as high end-fire directivity and directionality
inversion, and Sec. VI concludes the paper.

II. FULL-WAVE SEMIANALYTICAL SOLUTION

In this section, we develop a full-wave semianalytical so-
lution for the radiation of an electric dipole source in the
presence of an anisotropic spherical particle. The dipole can
be located outside or inside the anisotropic sphere. The two
radiation problems (dipole inside and outside the anisotropic
sphere) are depicted in Fig. 1. The sphere has radius R and
its EM properties are described by the Cartesian anisotropic
permittivity tensor,

ε =
⎡
⎣ε1 0 0

0 ε1 0
0 0 ε3

⎤
⎦, (1)

and the scalar permeability μs. The medium surrounding the
sphere is free space with permittivity ε0 and permeability
μ0. Assuming a spherical coordinate system whose origin is
at the center of the sphere, we consider a tangential point
electric dipole with dipole moment p = pθeθ + pϕeϕ , located
at rd = (d, θd , ϕd ). The time dependence e−iωt is assumed and
suppressed throughout.

A. Dipole inside the sphere

We begin by examining the case where the dipole source
is located inside the anisotropic sphere—i.e., d < R—as de-
picted in Fig. 1(a). The presence of the dipole at rd introduces
a discontinuity at the spherical surface r = d . As a conse-
quence, our analysis is carried out by separating the interior of
the sphere into two regions, namely, region I with 0 � r < d
and region II with d < r < R. Both regions are anisotropic
with the same EM properties. Therefore, the electric field in
each respective region can be expressed in terms of SVWFs
by employing the expansions [38]

EI =
∞∑

n=1

n∑
m=−n

Emn

∞∑
l=1

αl

[
cmnl M(1)

mn(kl , r) + dmnl N(1)
mn(kl , r)

+wmnl

λl
L(1)

mn(kl , r)

]
+

∞∑
l=1

αl
w00l

λl
L(1)

00 (kl , r), (2)
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EII =
∞∑

n=1

n∑
m=−n

Emn

∞∑
l=1

∑
j=1,3

β
( j)
l

[
cmnl M( j)

mn(kl , r)

+dmnl N( j)
mn(kl , r) + wmnl

λl
L( j)

mn(kl , r)

]

+
∞∑

l=1

∑
j=1,3

β
( j)
l

w00l

λl
L( j)

00 (kl , r). (3)

In Eqs. (2) and (3), M( j)
mn, N( j)

mn, and L( j)
mn are the SVWFs of

the first ( j = 1) and third ( j = 3) kind [39], while Emn =
in{(2n + 1)(n − m)!/[n(n + 1)(n + m)!]}1/2. In addition, αl ,
β

(1)
l , and β

(3)
l are unknown expansion coefficients, whereas

cmnl , dmnl , wmnl , w00l , and λl are known quantities, obtained
by solving an eigenvalue problem whose matrix depends on
the elements of the permittivity tensor [38]. Finally, the dis-
crete wave number kl is given by kl = ω(ε3μs/λl )1/2 [38].
We note that cmnl , dmnl , wmnl , w00l , λl , and kl in the field
expansions of Eqs. (2) and (3) are the same, since regions I
and II have the same EM properties.

The radiated electric field in region III external to the
sphere—i.e., for r > d—may also be expressed as an expan-
sion of SVWFs, in the form

Erad =
∞∑

n=1

n∑
m=−n

Emn
[
amnM(3)

mn(k0, r)+ bmnN(3)
mn(k0, r)

]
, (4)

where k0 = ω(ε0μ0)1/2 and amn and bmn are unknown ex-
pansion coefficients. The expansions of the corresponding
magnetic fields HI, HII, and Hrad are obtained from the
Maxwell-Faraday equation H = −i/(ωμ)∇ × E.

Next we proceed to impose the boundary conditions for
the tangential components of the electric and the magnetic
fields on the surfaces r = d and r = R. To this end, the dipole
source at rd is taken into account by considering an equivalent
surface current density given by [33]

Js = δ(θ − θd )δ(ϕ − ϕd )

d2 sin θ
p, (5)

and the boundary conditions that must be satisfied are
er × (EII − EI )|r=d = 0, er × (HII − HI )|r=d = Js and er ×
(Erad − EII )|r=R = 0, er × (Hrad − HII )|r=R = 0. Substituting
the field expansions into the two boundary conditions for
r = d and making use of the orthogonality properties of the
spherical vector harmonics [40], we finally arrive at the fol-
lowing system of linear equations for the unknown expansion
coefficients:

∞∑
l=1

cmnl
[
β

(1)
l jn(yl ) + β

(3)
l hn(yl ) − αl jn(yl )

] = 0, (6)

∞∑
l=1

1

yl

{
dmnl

[
β

(1)
l jd

n (yl ) + β
(3)
l hd

n(yl ) − αl jd
n (yl )

]

+ wmnl

λl

[
β

(1)
l jn(yl ) + β

(3)
l hn(yl ) − αl jn(yl )

]} = 0, (7)

∞∑
l=1

yldmnl
[
β

(1)
l jn(yl ) + β

(3)
l hn(yl ) − αl jn(yl )

]

= i−2n+1ωμs

4πd
Emn

√
n(n + 1) p · B∗

mn(θd , ϕd ), (8)

∞∑
l=1

cmnl
[
β

(1)
l jd

n (yl ) + β
(3)
l hd

n(yl ) − αl jd
n (yl )

]

= − i−2n+1ωμs

4πd
Emn

√
n(n + 1) p · C∗

mn(θd , ϕd ), (9)

where jn is the spherical Bessel function, hn is the spherical
Hankel function of the first kind, zd

n (x) ≡ zn(x) + xz′
n(x) (with

zn = jn, hn and the prime denoting derivative with respect to
the argument), yl = kld , Bmn and Cmn the spherical vector
harmonics [40], and the asterisk denotes complex conjugation.
In a similar manner, the two boundary conditions for r = R
yield the following equations:

∞∑
l=1

cmnl
[
β

(1)
l jn(xl ) + β

(3)
l hn(xl )

] − amnhn(x0) = 0, (10)

∞∑
l=1

x0

xl

{
dmnl

[
β

(1)
l jd

n (xl ) + β
(3)
l hd

n(xl )
]

+ wmnl

λl

[
β

(1)
l jn(xl ) + β

(3)
l hn(xl )

]} − bmnhd
n(x0) = 0,

(11)

∞∑
l=1

xl

x0
dmnl

[
β

(1)
l jn(xl ) + β

(3)
l hn(xl )

] − bmnμsrhn(x0) = 0,

(12)
∞∑

l=1

cmnl
[
β

(1)
l jd

n (xl ) + β
(3)
l hd

n(xl )
] − amnμsrhd

n(x0) = 0,

(13)

where xl = klR, x0 = k0R, and μsr = μs/μ0. Equations (6)–
(13) comprise an infinite linear system that—upon
truncation—can be solved for the coefficients amn and
bmn of the field.

B. Dipole outside the sphere

The case of the dipole source located outside the
anisotropic sphere—i.e., d > R—is treated in a manner sim-
ilar to the one presented in the previous subsection. The
configuration of this problem is depicted in Fig. 1(b). In par-
ticular, owing to the presence of the dipole at rd , the exterior
of the sphere is separated into two regions, namely, region II
with R < r < d and region III with r > d . The electric field
in region II can be written as

EII =
∞∑

n=1

n∑
m=−n

Emn
[
cmnM(1)

mn(k0, r) + dmnN(1)
mn(k0, r)

+ fmnM(3)
mn(k0, r) + gmnN(3)

mn(k0, r)
]
, (14)

with cmn, dmn, fmn, and gmn unknown expansion coefficients,
while in region III Erad has the same expression as with
Eq. (4). The electric field at the interior of the sphere (region I)
has the same expression as Eq. (2). Again, the corresponding
magnetic fields are found by the Maxwell-Faraday equation.

The boundary conditions that must now hold are
er × (EII − EI )|r=R = 0, er × (HII − HI )|r=R = 0 and er ×
(Erad − EII )|r=d = 0, er × (Hrad − HII )|r=d = Js. Following
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the same steps as in Sec. II A, the two boundary conditions
for r = R yield the equations

cmn jn(x0) + fmnhn(x0) −
∞∑

l=1

αl cmnl jn(xl ) = 0, (15)

dmn jd
n (x0) + gmnhd

n(x0)

−
∞∑

l=1

αl
x0

xl

[
dmnl jd

n (xl ) + wmnl

λl
jn(xl )

]
= 0, (16)

dmnμsr jn(x0) + gmnμsrhn(x0) −
∞∑

l=1

αl
xl

x0
dmnl jn(xl ) = 0,

(17)

cmnμsr jd
n (x0) + fmnμsrhd

n(x0) −
∞∑

l=1

αl cmnl jd
n (xl ) = 0, (18)

and the two boundary conditions for r = d , the equations

amnhn(xd ) − cmn jn(xd ) − fmnhn(xd ) = 0, (19)

bmnhd
n(xd ) − dmn jd

n (xd ) − gmnhd
n(xd ) = 0, (20)

bmnhn(xd ) − dmn jn(xd ) − gmnhn(xd )

= i−2n+1ωμ0

4πdxd
Emn

√
n(n + 1) p · B∗

mn(θd , ϕd ), (21)

amnhd
n(xd ) − cmn jd

n (xd ) − fmnhd
n(xd )

= − i−2n+1ωμ0

4πd
Emn

√
n(n + 1) p · C∗

mn(θd , ϕd ), (22)

where xd = k0d . As in the previous subsection, Eqs. (15)–(22)
comprise an infinite linear system that—upon truncation—can
be solved for the coefficients amn and bmn of the radiated field.

C. Far field and directivity

Employing the large argument asymptotic expansions for
the Hankel function of the first kind and its derivative, it
is straightforward to express the total radiated electric far
field as

Erad ∼
k0r�1

eik0r

r
f (θ, ϕ), (23)

where f (θ, ϕ) = fθ (θ, ϕ)eθ + fϕ (θ, ϕ)eϕ is the scattering am-
plitude and

fθ (θ, ϕ) = 1

k0

∞∑
n=1

n∑
m=−n

i−nEmn

[ m

sin θ
Pm

n (cos θ )amn

+ dPm
n (cos θ )

dθ
bmn

]
eimϕ, (24)

fϕ (θ, ϕ) = 1

k0

∞∑
n=1

n∑
m=−n

i−n+1Emn

[
dPm

n (cos θ )

dθ
amn

+ m

sin θ
Pm

n (cos θ )bmn

]
eimϕ, (25)

where Pm
n the associated Legendre functions. The total radi-

ated magnetic far-field is given by Hrad = −i/(ωμ0)∇ × Erad.

The radiation pattern—i.e., the far-field response—of an
antenna is described by the directivity defined by [41]

D(θ, ϕ) = 4πU (θ, ϕ)

Prad
, (26)

where U = r2Srad · er is the radiation intensity—with Srad

the time-averaged radiated power flow—and Prad the total
radiated power in the far-field. Using the relations Srad =
1/2Re{Erad × (Hrad )∗}—where Re denotes the real part—and
Prad = ∮

Srad · erdS—where dS is the differential surface of a
r-radius sphere—Eq. (26) can be written in the form

D(θ, ϕ) = 4π2

λ2
0

| fθ (θ, ϕ)|2 + | fϕ (θ, ϕ)|2∑∞
n=1

∑n
m=−n(|amn|2 + |bmn|2)

, (27)

with λ0 the radiation wavelength.
Depending on the position and orientation of the dipole,

Eqs. (6)–(13) or Eqs. (15)–(22) can be solved for the ex-
pansion coefficients amn and bmn. Then, with the aid of
Eqs. (24), (25), and (27), D(θ, ϕ) can be readily computed.

III. TWO-ELEMENT TMDC SPHERE-DIPOLE ARRAY

The proposed nanoantenna designs are based on WS2, a
nonmagnetic (μs = μ0) multilayer TMDC material described
by a dispersive negative uniaxial (NU) anisotropic permit-
tivity tensor [19] given by Eq. (1) as ε(λ0) = ε1(λ0)(exeT

x +
eyeT

y ) + ε3(λ0)ezeT
z , where T denotes transposition. In this

tensorial form, ε1 and ε3 are the ordinary and extraordinary
elements, respectively—also called in-plane/out-of-plane di-
electric functions—and the optic axis of the material coincides
with the z axis. Throughout this paper, we employ realis-
tic dispersive properties for ε1 and ε3 in the visible-near
infrared (IR) regime of 500 nm–1200 nm, as shown in
Fig. 1(a) of Ref. [19]. For wavelengths from 500 nm up
to 826.6 nm—where 826.6 nm is the upper dispersion limit
for Si [42]—Re{ε1} > Re{εSi}, with the latter being the real
part of Si permittivity (Si is the most usual material for
all-dielectric nanostructures). These large ordinary permittiv-
ity values support MD/ED resonances similar to high-index
isotropic dielectrics. In addition, Re{ε3} is significantly lower
than Re{ε1} in the whole 500 nm–1200 nm range—thus WS2

is NU—resulting in a high AR useful in the implementation
of a functional directionality inversion.

As a first step toward the implementation of larger nanoan-
tenna arrays, we consider a two-element sphere-dipole array
consisting of a WS2 nanosphere with radius R = 100 nm and
a horizontal (y-oriented) infinitesimal electric Hertzian dipole
whose moment is directed along the +y axis and is located
at x = d = 200 nm, i.e., 100 nm from the sphere’s surface,
as illustrated in the inset of Fig. 2(a). The optic axis of the
WS2 sphere coincides with the z axis. To rigorously study this
two-element array, we employ the full-wave semianalytical
solution developed in Sec. II. The far-field response of the
sphere-dipole array is described by its directivity D(θ, ϕ) via
Eq. (27). In Fig. 2(a), we plot D0 ≡ D(90◦, 0◦) and D180 ≡
D(90◦, 180◦), as observed at +x and −x axis, respectively, as
a function of λ0. The criterion for truncating the infinite matrix
equation—i.e., the matrix constructed by Eqs. (15)–(22)—is
to establish six accurate significant figures in the value of
directivity D(θ, ϕ). To achieve this goal, an upper truncation
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FIG. 2. (a) Directivities along the x axis of the 100-nm-radius
WS2 sphere-dipole array, with the dipole located at 200 nm on x
axis. Black: D0 ≡ D(90◦, 0◦) at +x axis; black curve: semianalytical
method; black dots: HFSS. Gray: D180 ≡ D(90◦, 180◦) at −x axis;
gray curve: semianalytical method; gray dots: HFSS. Green dashed
arrowhead line: λ0 = 681 nm [close vicinity of ED resonance—see
Fig. 2(b)]. Inset: Radiation problem of a WS2 sphere excited by a
y-oriented electric dipole. The optic axis of the sphere coincides with
the z axis. (b) Plane-wave scattering spectrum of a 100-nm-radius
WS2 sphere illuminated by a TE polarized plane wave impinging
from the +x axis (via Ref. [35]). Blue: Total Qsc; red: MD term;
green: ED term. Green dashed line: Projection of 681 nm (the ED
resonance is located at 679 nm and the MD resonance at 836 nm).
Inset: Plane-wave scattering from a WS2 sphere. (c) Directivities on
xy and xz planes when the dipole radiates at 681 nm. Blue curves:
Semianalytical method; blue dots: HFSS.

bound of Nc = 8 is used in the n-index series for the compu-
tation of D(θ, ϕ) from Eq. (27) [we note that the truncation
bound Lc in the l-index series in Eqs. (15)–(18) follows the
rule Lc = 2Nc]. The black/gray curves are computed with this
Nc value by our semianalytical method and are in excellent
agreement with the HFSS’s finite-element solver (black/gray
dots). The max{D0} = 4.23 in the visible-near IR dispersive
range of WS2 is observed at λ0 = 681 nm; at this λ0, it is seen
that D180 = 1.29. To better understand the spectral response
of the WS2 nanosphere in the array, we calculate the EM
scattering from this same 100 nm-radius sphere of a transverse
electric (TE) plane wave, i.e., Einc is y polarized and kinc is
directed along the +x axis, as depicted in the inset of Fig. 2(b).
The polarization and angle of incidence considered in the
plane wave are consistent with the dipole excitation used in
Fig. 2(a), i.e., the ED response produced in the far-field of both
problems is characterized by the same spherical harmonics in-
dices. In the plane-wave incidence case, employing a rigorous
semianalytical solution for the EM scattering from anisotropic
particles [35], we find that the scattering cross section is given
by (see the first of Eq. (15) in Ref. [35])

Qsc = λ2
0

π

∞∑
n=1

n∑
m=−n

(|Amn|2 + |Bmn|2). (28)

In Eq. (28), Amn and Bmn are the expansion coefficients of the
scattered electric field, when the latter is expanded in SVWFs

as given by Eq. (4) of Ref. [35]—in Ref. [35], Amn and Bmn are
represented, respectively, by a(0)

mn and b(0)
mn. It should be clarified

that the expansion coefficients Amn and Bmn in Eq. (28) are
not the same with amn and bmn in Eqs. (24) and (25). The
former are obtained from the solution of EM plane-wave
scattering and are computed, after truncation, from the four
infinite sets of equations given by Eq. (12) in Ref. [35].
On the contrary, amn and bmn are the expansion coefficients
of the radiated electric field given by Eq. (4), obtained from
the solution of the radiation problem of an electric dipole in
the presence of an anisotropic sphere and computed, after
truncation, from the eight infinite sets of equations given
by Eqs. (6)–(13) or Eqs. (15)–(22). In the long-wavelength
limit, the spectrum is dominated by MD and ED responses
for which n = 1; the MD response is obtained from Eq. (28)
when Qsc is determined exclusively from Am1 and the ED
response solely from Bm1, with m = 0 or ±1, depending on
the angle of incidence. In the configuration of Fig. 2(b), the
nonzero expansion coefficients are A01 and B±1,1. Figure 2(b)
reveals that a WS2 nanosphere can support a MD resonance
at 836 nm and an ED resonance at 679 nm, similarly to the
subwavelength spectrum of high-index dielectrics [34]. The
radiation and scattering responses of Figs. 2(a) and 2(b) show
that max{D0} takes place when the dipole radiates in the vicin-
ity of the sphere’s ED resonance. Consequently, at the spectral
location of optimized radiation—i.e., at maximum D0—the
nanosphere can be considered as an electric dipole element
that combines with the dipole emitter to form a nanoantenna
dipole array. Figure 2(c) depicts D on the xy (top) and xz
planes (bottom), when the sphere-dipole array radiates exactly
at 681 nm, i.e., the location of max{D0}. The validity of our
computations is established, since our semianalytical method
(blue curves) is in excellent agreement with HFSS (blue dots).
This operation results in a Huygens-like directivity [43], i.e.,
significant radiation in one direction—in this case toward the
+x axis—and suppressed radiation in the opposite.

To fully elucidate the physical mechanism of this Huygens-
like radiation, we employ the decomposition Erad = Erad

s +
Erad

d for the total electric field Erad radiated from the
sphere-dipole system, where Erad

s is the field radiated—i.e.,
scattered—from the sphere, and Erad

d is the field radiated from
the dipole. We then consider the multipolar decomposition of
each of the above-mentioned radiated fields, i.e., we first ex-
press Erad

s and Erad
d in a form similar to Erad—see Eq. (4)—and

then we calculate the respective expansion coefficients (as
mn,

bs
mn for Erad

s and ad
mn, bd

mn for Erad
d ). The expansion coefficients’

magnitudes of the sphere, dipole, and sphere-dipole setups are
plotted in Figs. 3(a)–3(c), respectively (in each subfigure, we
also depict the respective setup). The normalized magnitudes
of the dominant expansion coefficients in Fig. 3(a) are plotted
in the spectral window of 500 nm–1200 nm. In this regime, the
contribution of Erad

s stems from as
01 (MD moment), bs

±1,1 (ED
moment), as

±1,2 [magnetic quadrupolar (MQ) moment], and
bs

±2,2 [electric quadrupolar (EQ) moment]. The magnitudes of
the remaining MD/ED/MQ/EQ moments—i.e., as

±1,1, bs
01,

as
02, as

±2,2, bs
02, and bs

±1,2—as well as those of higher order
moments, are negligible in this regime. In all Figs. 3(a)–
3(c), the magnitudes are plotted normalized—indicated by
the subscript N—with respect to the maximum magnitude in
this spectral window. It should be noted that the expansion
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FIG. 3. Multipolar decomposition for the independent elements
of the sphere-dipole array of Fig. 2(a)/inset and for the array as
a whole. (a) Normalized magnitudes of the dominant electric and
magnetic expansion coefficients from the sole contribution of the
sphere. Red: |as

01|N (MD moment); green: |bs
11|N (ED moment);

black: |as
12|N (MQ moment); cyan: |bs

22|N (EQ moment). The left
green dashed line indicates the position of max{|bs

11|} at 679 nm; the
right green dashed line indicates the position of max{|as

01|} at 836 nm.
(b) Normalized magnitudes of the dominant electric and magnetic
expansion coefficients from the sole contribution of the dipole. Red:
|ad

01|N (MD moment); green: |bd
11|N (ED moment); black: |ad

12|N (MQ
moment); cyan: |bd

22|N (EQ moment). (c) Top: Normalized magni-
tudes of the dominant electric and magnetic expansion coefficients
from the sphere-dipole array. Red: |a01|N (MD moment); green:
|b11|N (ED moment); black: |a12|N (MQ moment); cyan: |b22|N (EQ
moment). Bottom: absolute phase difference between MD/ED and

MQ/EQ moments. Black: ; gray: .

Green dashed arrowhead line: λ0 = 681 nm where Huygens-like
directivity is achieved [see Figs. 2(a) and 2(c)].

coefficients with spherical harmonics indices ±|m| have the
same magnitude, so only +|m| is shown. This last remark
holds for Figs. 3(b) and 3(c) as well. With respect to Fig. 3(a),
at 679 nm—indicated by a green dashed line—it is the ED
moment that exhibits its maximum and is dominant with
respect to other moments. This position corresponds to the
ED resonance of the sphere [see Fig. 2(b)]. On the other
hand, at 836 nm—also indicated by a green dashed line—the
MD moment exhibits its maximum and is dominant with
respect to other moments, and this position corresponds to
the MD resonance of the sphere [see Fig. 2(b)]. However, this
wavelength does not pertain to the optimal radiation of the
sphere-dipole array, which occurs in the vicinity of the ED
resonance [see Fig. 2(a)]. Figure 3(b) shows that the contri-
bution in Erad

d stems from the same dipolar and quadrupolar
moments as with the ones for Erad

s . The electric dipole it-
self exhibits MD and MQ/EQ moments (and not only the
ED moment) because it is placed eccentrically at x = d =
200 nm. If the dipole is placed at the origin, the contribu-
tion in Erad

d stems exclusively from the ED moment bd
±1,1.

The insights gained by Figs. 3(a) and 3(b) further establish
the above-mentioned observation that, at the spectral location
of optimized radiation—i.e., at max{D0}—the sphere-dipole
system comprises a nanoantenna array with two ED elements:

the nanosphere operating predominantly as an electric dipole,
and the electric dipole emitter itself. In Fig. 3(c)/top, we plot
the magnitudes of non-negligible expansion coefficients that
contribute to Erad for the sphere-dipole system as a whole. The
green dashed line indicates λ0 = 681 nm, where max{D0} and
Huygens-like directivity are achieved [see Figs. 2(a) and 2(c)].
The multipolar decomposition in Fig. 3(c)/top reveals that
the radiation of the array is not only due to the dipolar mo-
ments a01 and b±1,1 but also due to higher-order quadrupolar
moments a±12 and b±2,2 that are induced by the coupling
between the sphere and the emitter. In Fig. 3(c)/bottom,
we plot the absolute phase differences and

between MD/ED and MQ/EQ moments, re-
spectively. At 681 nm, the dipole moments oscillate almost
in phase—phase difference ≈4◦—while the quadrupole mo-
ments are in phase quadrature—phase difference ≈85◦. These
MD/ED moments interfere constructively toward the +x-axis
direction and destructively toward the −x-axis direction, pro-
ducing the Huygens-like directivity [43] depicted in Fig. 2(c).
This spectral behavior is similar to the first Kerker condi-
tion of plane-wave scattering [34–36], where in-phase and
equal-in-magnitude MD/ED moments result in almost zero
backscattering and enhanced forward scattering.

Next, we study the radiation of a two-element WS2 sphere-
dipole array consisting of a R = 100 nm-radius sphere and
a vertical (z-oriented) infinitesimal electric dipole. The latter
is located at d = 200 nm on the x axis and its dipole mo-
ment points toward the +z axis, as illustrated in the inset of
Fig. 4(a). The optic axis of the WS2 sphere coincides with
the z axis. In Fig. 4(a), we plot D0 ≡ D(90◦, 0◦) and D180 ≡
D(90◦, 180◦) as a function of λ0. The black/gray curves are
computed by the semianalytical method of Sec. II using the
same truncation value of Nc = 8 and are in excellent agree-
ment with the HFSS’ finite-element solver (black/gray dots).
Contrary to the response of Fig. 2(a), where in the vicinity
of the sphere’s ED resonance (i.e., at λ0 = 679 nm) a global
max{D0} occurs, here D180 acquires a local maximum in the
same vicinity at 684 nm. The global max{D180} is established
at 620 nm, which is well separated from the sphere’s ED res-
onance. The directivity values at 684 nm are D180 = 2.64 and
D0 = 0.38, with the former being much lower than the 4.23
value observed in Fig. 2(a) for the max{D0} when the dipole
is oriented horizontally. In Fig. 4(b), we plot D on the xy (left)
and xz plane (right), when the sphere-dipole array operates at
684 nm. Again, the semianalytical method (blue curves) is in
excellent agreement with HFSS (blue dots). Contrary to the
+x-axis directed pattern of D when the dipole is horizontal
[see Fig. 2(c)], the main lobe of D now points toward the
−x axis. Although the value of D180 is non-negligible and
D0 is well suppressed, this situation does not correspond to a
Huygens-like directivity since lateral lobes exist, as depicted
in Figs. 4(b)/left and 4(b)/right.

In Fig. 5, we perform a multipolar decomposition for the
total radiated electric field Erad of the sphere-dipole system,
when the dipole is oriented vertically. Only the contribution of
non-negligible expansion coefficients is depicted. The various
quantities in Fig. 5(a), which are indicated by the subscript
N , are plotted normalized with respect to the maximum mag-
nitude in the examined spectral range. The decomposition
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FIG. 4. (a) Directivities along the x axis of the 100-nm-radius WS2 sphere-dipole nanoarray, with the dipole oriented vertically and located
at 200 nm on x axis. Black: D0 ≡ D(90◦, 0◦) at +x axis; black curve: Semianalytical method; black dots: HFSS. Gray: D180 ≡ D(90◦, 180◦) at
−x axis; gray curve: Semianalytical method; gray dots: HFSS. Green dashed arrowhead line: λ0 = 684 nm [close vicinity of ED resonance—
see Fig. 2(b)]. Inset: Radiation problem of a WS2 sphere excited by a z-oriented electric dipole. The optic axis of the sphere coincides with z
axis. (b) Directivities on xy and xz planes when the dipole radiates at 684 nm. Blue curves: Semianalytical method; blue dots: HFSS.

reveals that the radiation of the array is due to the dipolar
moments a±1,1 and b01, as well as to the quadrupolar moments
a±2,2 and b±1,2 that are also induced by the coupling between
the sphere and the vertical dipole. In Fig. 5(b), we plot the
absolute phase differences and
between MD/ED and MQ/EQ moments, respectively. At
684 nm—i.e., at the vicinity of the sphere’s ED resonance
where D180 has its local maximum—the vertical dipole results
in oscillating MD/ED and MQ/EQ moments—phase differ-
ences ≈39◦ and ≈82◦, respectively, that present no strong
interference (constructive or destructive) in any direction. In
addition, this state yields a local maximum in D180 which
is lower than the global maximum of D0 when the dipole is
horizontal. To complete the analysis, we note the in-phase
oscillation of MD/ED moments—phase difference ≈1◦—at
λ0 = 627 nm [shown by the sharp draugh in Fig. 5(b)]. This
state, however, is of no interest because it corresponds to a
negligible ED moment contribution [depicted by the sharp
draugh of the |b01|N curve in Fig. 5(a)], therefore resulting
in a trivial directivity pattern, not useful for the develop-
ment of high end-fire directivity nanoantennas. In conclusion,
a vertical dipole emitter renders the WS2 sphere-dipole ar-
ray’s performance poor in terms of high directivity, owing

FIG. 5. (a) Normalized magnitudes of the dominant electric and
magnetic expansion coefficients for the sphere-dipole nanoarray of
Fig. 4(a). Red: |a11|N (MD moment); green: |b01|N (ED moment);
black: |a22|N (MQ moment); cyan: |b12|N (EQ moment). Green
dashed arrowhead line: λ0 = 684 nm [see Fig. 4(a)]. (b) Absolute
phase difference between MD/ED and MQ/EQ moments. Black:

; gray: . Green dashed arrowhead line:

Same as Fig. 5(a).

to the high AR of WS2, in contrast to a high-index isotropic
sphere-dipole array in which, due to material symmetry, the
orientation of the emitter is irrelevant. Nonetheless, the high
AR exhibited by WS2 has a unique impact on achieving direc-
tionality inversion, as discussed in Sec. V.

Next, we use our semianalytical method to further investi-
gate how the properties of the sphere-dipole nanoarray depend
on material anisotropy. We first notice that in the 500 nm–
826.6 nm regime, i.e., the common dispersion range of WS2

and Si, WS2 has average Re{ε1} and Re{ε3} values of 19.11ε0

and 6.75ε0, respectively, while Si an average Re{εSi} value of
15.08ε0. We therefore keep fixed the ordinary permittivity ele-
ment at the high value of ε1 = 20ε0 and vary the extraordinary
element ε3 so the material from isotropic (ε3 = 20ε0) becomes
NU (ε1 > ε3 with ε3 = 15ε0, 10ε0, 5ε0). In all cases, μs =
μ0. Defining the AR as AR = |(ε1 − ε3)/(ε1 + ε3)|, the ex-
treme values of (ε1, ε3) = (20ε0, 5ε0) yield AR = 0.6, while
AR = 0 for the isotropic case. In Fig. 6(a), we examine a
100-nm-radius sphere-dipole nanoarray, with the dipole ori-
ented horizontally on the x axis for three different values
of d = 150, 200, 250 nm. In particular, we plot the spe-
cific values of max{D0} for different values of AR, when
Huygens-like directivity takes place. That is to say, for each
depicted value of max{D0} in Fig. 6(a), the MD/ED moments
oscillate almost in phase, interfere constructively toward the
+x-axis direction and destructively toward the −x-axis di-
rection, and ultimately produce radiation patterns similar to
the ones depicted in Fig. 2(c). From the results of Fig. 6(a)
we observe that, as AR acquires higher values, the λ0 for
which the MD/ED moments oscillate in phase undergoes a
blueshift. For instance, for the d = 250 nm case, if we define
the λ0 = 699 nm/isotropic material (black circle) as the ref-
erence point, a NU increment in the AR such as AR = 0.14
(black square), AR = 0.33 (black diamond), and AR = 0.6
(black star), blueshifts λ0 at 694 nm, 690 nm, and 687 nm,
respectively. This behavior is also observed for the other two
examples with d = 150 and 200 nm. Although the discussion
in Fig. 6(a) concerns a horizontally oriented dipole, we have
also performed the same study for a vertically oriented dipole.
In this case, however, except for the isotropic state where (due
to material symmetry) the orientation of the dipole does not
affect the response of the system, there are no points of notable
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FIG. 6. (a) Values of max{D0} at λ0 for which Huygens-like directivity takes place, for various values of AR. The configuration consists of
an 100 nm-radius sphere-dipole nanoarray, with the dipole oriented horizontally on x axis. Red curve: d = 150 nm; green curve: d = 200 nm;
black curve: d = 250 nm. In all cases ε1 = 20ε0. Circles: ε3 = 20ε0; squares: ε3 = 15ε0; diamonds: ε3 = 10ε0; stars: ε3 = 5ε0. In all cases,
μs = μ0. (b) Directivities on xy and xz planes for d = 150 nm. Red curves: λ0 = 695 nm for which max{D0} = 4.98 [red circle in Fig. 6(a)];
green curves: λ0 = 693 nm for which max{D0} = 5.07 [red square in Fig. 6(a)]; black curves: λ0 = 690 nm for which max{D0} = 5.19 [red
star in Fig. 6(a)].

interest where the MD/ED moments oscillate in phase and
could result in strong interference (constructive or destruc-
tive) in a specific direction. Consequently, for a NU sphere,
a vertical dipole does not lead to an asymmetric Huygens-
like radiation pattern in directivity. In Fig. 6(b), we plot D
on xy and xz planes for the d = 150 nm case of Fig. 6(a)
and for the three different values of AR, i.e., AR = 0 (red
circle), AR = 0.14 (red square), and AR = 0.6 (red star). As
evident, all three states maintain an asymmetric radiation pat-
tern in D; specifically, max{D0} increases progressively from
4.98 (AR = 0) to 5.07 (AR = 0.14) and 5.19 (AR = 0.6).
The intermediate state with AR = 0.33 (red diamond), yields
max{D0} = 5.14 at λ0 = 692 nm and has a pattern similar
to the ones depicted in Fig. 6(b); these curves, however, are
not depicted to present a clear figure and avoid a dense im-
age. In conclusion, anisotropy renders the operation of the
two-element sphere-dipole array dependent on the relative
orientation of the dipole emitter, and blueshifts the desired λ0

with respect to the isotropic state.
To complete the investigation of sphere-dipole nanoarrays,

we discuss how the asymmetric Huygens-like directivity de-
pends on fine-tuning of the distance d of the dipole emitter,
as well as on λ0. To this end, we employ our semianalyti-
cal method and examine two cases of WS2 spheres having
radii 100 nm and 150 nm, respectively. In both scenarios,
we vary d in steps of 10 nm and examine how the max{D0}
and the front-to-back ratio (FBR) are affected with respect

to this parameter. We point out that each depicted value of
max{D0} and FBR in Fig. 7(a) corresponds to an almost in-
phase oscillation of MD/ED moments. We observe that, as
d changes, global maxima in max{D0} and FBR appear, for
different values of d . These optimal states, as depicted by the
green arrowhead lines in Fig. 7(a), occur at different λ0. For
instance, the peak of max{D0} = 5.0 for the 100-nm-radius
sphere occurs at d = 140 nm for λ0 = 688 nm, while the
peak of FBR = 3.79 at d = 160 nm for λ0 = 683 nm; at this
latter wavelength, max{D0} = 4.81. For the 150-nm-radius
sphere, the peak of max{D0} = 4.82 occurs at d = 220 nm for
λ0 = 945 nm, while the peak of FBR = 3.11 at d = 250 nm
for λ0 = 938 nm; at this latter wavelength, max{D0} = 4.64.
In Fig. 7(b), we plot D on xy and xz planes for the 100-nm-
radius example of Fig. 7(a) and three different values of d . As
evident, all states maintain an asymmetric radiation pattern in
D, thus proving the robustness of the results to the change of
d .

Finally, in Fig. 8 we show that the principle discussed for
the two-element TMDC sphere-dipole array can be applied
for a TMDC disk-dipole array. In Fig. 8(a), we plot D0 and
D180 versus λ0 for a 100-nm-radius and 95-nm-high WS2

disk-dipole array, when the dipole is oriented horizontally.
The max{D0} = 4.25 is observed at 679 nm, i.e., at the close
vicinity of the disk’s ED resonance [19]. The latter is located
at 675 nm, as depicted in Fig. 8(b) where we plot the total
scattering cross section Qsc due to a TE plane wave—Einc is

FIG. 7. (a) Values of max{D0} and FBR versus d for which Huygens-like directivity takes place. The configuration consists of a WS2

sphere-dipole nanoarray, with the dipole oriented horizontally on x axis. Red curves: R = 100 nm; green curves: R = 150 nm. Circles:
max{D0}; squares: FBR. Green arrowhead lines: Optimal states at which max{D0} and FBR are maximized. (b) Directivities on xy and xz
planes when R = 100 nm. Red curves: d = 140 nm and λ0 = 688 nm for which the peak max{D0} = 5.0 is observed; green curves: d = 160
nm and λ0 = 683 nm for which the peak FBR = 3.79 is observed; black curves: d = 180 nm and λ0 = 681 nm.
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FIG. 8. (a) Directivities along the x axis of the 100-nm-radius
and 95-nm-high WS2 disk-dipole array, with the dipole located at
200 nm on x axis. Black: D0 ≡ D(90◦, 0◦) at +x axis (via HFSS).
Gray: D180 ≡ D(90◦, 180◦) at −x axis (via HFSS). Green dashed
arrowhead line: λ0 = 679 nm [close vicinity of ED resonance—see
Fig. 8(b)]. Inset: Radiation problem of a WS2 disk excited by a
y-oriented electric dipole. The optic axis of the disk coincides with
z axis. (b) Plane-wave scattering spectrum of a 100-nm-radius and
95-nm-high WS2 disk illuminated by a TE-polarized plane wave im-
pinging from the +x axis. Blue: Total Qsc (via HFSS). Green dashed
line: Projection of 679 nm (the ED resonance is located at 675 nm
and the MD resonance at 804 nm). Inset: Plane-wave scattering from
a WS2 disk. (c) Directivities on xy and xz planes, when the dipole
radiates at 679 nm (via HFSS).

y polarized and kinc is directed along the +x axis—scattered
from the WS2 disk. In Fig. 8(c), we plot D on xy (top) and
xz planes (bottom) when the dipole radiates at 679 nm. The
patterns of D are Huygens-like, similar to the patterns of the
WS2 sphere-dipole array analyzed in Fig. 2(c). On the other
hand, a vertical emitter renders the performance of the WS2
disk-dipole array poor in terms of high directivity, in a manner
similar to the one discussed above.

IV. HIGH END-FIRE DIRECTIVITY TMDC
NANOANTENNA

We apply the principles presented for the two-element WS2

sphere-dipole array to demonstrate that larger arrays of WS2

elements may be used to build a high end-fire directivity
nanoantenna, useful in potential applications in the context
of all-anisotropic nanophotonics. To complement our study of
spherical WS2 elements, we also demonstrate the feasibility
of such a realization using cylindrical disk WS2 elements.
First, we consider a WS2 spherical nanoantenna array consist-
ing of four 100-nm-radius directors and one 110-nm-radius
reflector, as depicted in the inset of Fig. 9(a). The gaps be-
tween the directors, between the first director and the dipole,
and between the reflector and the dipole, are the same and
equal to 100 nm. Such reflector-director configurations are
known as Yagi-Uda nanoantennas [9], the term originating
from the Yagi-Uda antenna used for television reception [41].
To make an initial estimation of the λ0 at which the spherical
nanoantenna array yields its global max{Dmax}, with Dmax ≡

FIG. 9. Designing a high end-fire directivity WS2 nanoantenna
array. (a) Maximum directivity versus wavelength, using spherical
elements. Black: 100-nm-radius sphere-dipole array (semianalytical
method)/black dashed arrowhead line: λ0 = 681 nm; gray: 110-
nm-radius sphere-dipole array (semianalytical method)/gray dashed
arrowhead line: λ0 = 723 nm; blue: nanoantenna array (HFSS)/blue
dashed arrowhead line: λ0 = 714.28 nm. Inset: WS2 spherical
nanoantenna array consisting of four directors and one reflector, and
3D polar pattern of D(θ, ϕ) at 714.28 nm. The radii of all directors
are equal to 100 nm, the radius of the reflector is 110 nm, and
the gaps between the directors, between the first director and the
dipole, and between the reflector and the dipole, are the same and
equal to 100 nm. (b) Maximum directivity versus wavelength, using
cylindrical disk elements (via HFSS). Legends are the same as in
Fig. 9(a) except the λ0 at various max{Dmax}. Black dashed arrow-
head line: λ0 = 679 nm; gray dashed arrowhead line: λ0 = 710 nm;
blue dashed arrowhead line: λ0 = 708.96 nm. Inset: WS2 cylindrical
disk nanoantenna array consisting of four directors and one reflector,
and 3D polar pattern of D(θ, ϕ) at 708.96 nm. The heights of all
elements are equal to 95 nm, the radii of all directors are equal to
100 nm, the radius of the reflector is 110 nm, and the gaps between
the directors, between the first director and the dipole, and between
the reflector and the dipole, are the same and equal to 100 nm.

max{D(θ, ϕ)}, we apply the principles presented above for
the two-element WS2 sphere-dipole array and plot in Fig. 9(a)
the Dmax versus λ0 for the 100-nm-radius sphere-dipole array
(black curve) and for the 110 nm-radius sphere-dipole array
(gray curve), using our semianalytical method. The global
max{Dmax} for the 100-nm- and 110-nm-radius sphere-dipole
arrays are observed at 681 nm and 723 nm, respectively.
The λ0 for which the spherical nanoantenna array yields its
max{Dmax} is therefore anticipated in the neighborhood of
681 nm and 723 nm. Using HFSS, we calculate Dmax for the
spherical nanoantenna array in the 500 nm–1200 nm regime,
as depicted by the blue curve in Fig. 9(a), and conclude
that the global max{Dmax} is observed at λ0 = 714.28 nm.
At this wavelength, the three-dimensional (3D) polar pat-
tern of D(θ, ϕ)—inset of Fig. 9(a)—is highly directive with
max{Dmax} = 13.35 and a FBR of 10.67, while its main lobe
points toward the +x axis. We found that the wavelength

245432-9



ZOUROS, KOLEZAS, FIKIORIS, AND TSITSAS PHYSICAL REVIEW B 104, 245432 (2021)

FIG. 10. (a) Maximum directivity versus wavelength, using spherical elements. Black: y-oriented dipole (via HFSS); gray: z-oriented
dipole (via HFSS). Left green dashed arrowhead line: λ0 = 593.47 nm (vertical dipole); right green dashed arrowhead line: λ0 = 714.28 nm
(horizontal dipole). Top inset: WS2 spherical nanoantenna array consisting of four directors and one reflector. The radii of all directors are
equal to 100 nm, the radius of the reflector is 110 nm, and the gaps between the directors, between the first director and the dipole, and between
the reflector and the dipole, are the same and equal to 100 nm [same setup parameters as in Fig. 9(a)]. Middle inset: 3D polar pattern of
D(θ, ϕ) at 593.47 nm. Bottom inset: 3D polar pattern of D(θ, ϕ) at 714.28 nm. (b) Maximum directivity versus wavelength, using cylindrical
disk elements. Black: y-oriented dipole (via HFSS); gray: z-oriented dipole (via HFSS). Green dashed arrowhead line: λ0 = 708.96 nm. Top
inset: WS2 cylindrical disk nanoantenna array consisting of four directors and one reflector. The heights of all elements are equal to 95 nm, the
radii of all directors are equal to 100 nm, the radius of the reflector is 110 nm, and the gaps between the directors, between the first director
and the dipole, and between the reflector and the dipole, are the same and equal to 100 nm [same setup parameters as in Fig. 9(b)]. Bottom
inset: 3D polar pattern of D(θ, ϕ) at 708.96 nm.

giving the above-mentioned global maximum can be tuned
by appropriately engineering the gap and the size of the
reflector/directors.

In Fig. 9(b), we demonstrate the feasibility of a high end-
fire directivity cylindrical nanoantenna array, by employing
WS2 disk elements. Such nanodisks were recently fabricated
by combined electron-beam lithography and dry etching at
various heights, ranging from 55 nm up to 150 nm, and at
various radii ranging from 95 nm up to 200 nm [19]. The
cylindrical disk nanoantenna array is illustrated in the inset
of Fig. 9(b) and consists of four 100-nm-radius directors and
one 110-nm-radius reflector, while the heights of all elements
are equal to 95 nm. The gaps between the directors, between
the first director and the dipole, and between the reflector
and the dipole, are the same and equal to 100 nm. From the
solution of the disk-dipole array problem, we can estimate the
λ0 at which the cylindrical disk nanoantenna array yields its
global max{Dmax}. In particular, the black and gray curves
in Fig. 9(b) depict the Dmax versus λ0—via HFSS—for the
100-nm- and 110-nm-radius disk-dipole arrays, respectively.
The global max{Dmax} corresponding to the two setups are
located at 679 nm and 710 nm, respectively. The global
max{Dmax} = 12.05 for the cylindrical disk nanoantenna ar-
ray (blue curve) occurs at 708.96 nm, thus confirming the
applicability of the principles discussed above. The inset of
Fig. 9(b) depicts the highly directive 3D polar pattern of
D(θ, ϕ), having a 6.34 FBR value.

Finally, we study the performance of the WS2

spherical/cylindrical nanoantenna arrays introduced in
Fig. 9, in terms of high end-fire directivity, when the dipole
emitter is vertically oriented, and compare it with the
respective performance obtained for a horizontally oriented
dipole. This comparison is presented in Fig. 10(a) for the
case of the spherical nanoantenna array, and in Fig. 10(b)

for the cylindrical counterpart, via HFSS. The parameter
values for the two nanoantenna setups are the same as the
ones employed in Fig. 9. From Figs. 10(a) and 10(b), we
conclude that if the nanoantenna arrays are stimulated by a
vertical dipole, the maximum values of Dmax are lower than
the global maxima of Dmax when the arrays are stimulated
by a horizontal dipole. For instance, max{Dmax} = 8.96 at
λ0 = 593.47 nm for the case of the vertical dipole [gray curve
in Fig. 10(a)] is significantly lower than max{Dmax} = 13.35
at λ0 = 714.28 nm for the case of the horizontal dipole
[black curve in Fig. 10(a)]. In addition, the wavelength
λ0 = 593.47 nm is not close to the two ED resonances of
the director/reflector spheres (the ED resonances of the
100-nm-radius director and 110-nm-radius reflector are at
679 nm and 712 nm, respectively), which further implies
that D(θ, ϕ) is not as directive, with a FBR = 2.16, as
clearly illustrated in the middle inset of Fig. 10(a). We also
note that in this case, the main lobe points toward the −x
axis. For comparison, in the bottom inset of Fig. 10(a),
we also depict the 3D polar pattern of D(θ, ϕ) when the
spherical nanoantenna array is excited at λ0 = 714.28 nm
by a horizontal dipole, with FBR = 10.67 and the main
lobe pointing toward the +x axis [the respective plot for
the cylindrical nanoantenna array is given in the inset of
Fig. 10(b)]. We therefore deduce that the proposed anisotropic
WS2 configurations exhibit high end-fire directivities when
the dipole is horizontally oriented, while a poor performance
is obtained for the vertical orientation, owing to the high AR
of WS2.

V. DIRECTIONALITY INVERSION

We now show that TMDC anisotropy may be employed
to achieve directionality inversion in the directivity of a
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FIG. 11. Maximum directivity versus operating wavelength (via
HFSS) for a WS2 nanoantenna array featuring high end-fire di-
rectionality inversion. Black: Horizontal dipole; gray dots: vertical
dipole; black dashed arrowhead line: λ0 = 701.84 nm. Inset: WS2

spherical nanoantenna array and 3D polar pattern of D(θ, ϕ) at
701.84 nm. The radii of all nanospheres are equal to 100 nm, the gaps
between the particles are equal to 100 nm, and the gap between the
dipole and each adjacent sphere is 100 nm. The four elements along
the +x axis have a z-oriented optic axis, while the four elements
along the −x axis feature a y-oriented optic axis.

nanoantenna array at the same operating λ0 due to
orientation-based coupling between a free-to-rotate dipole
emitter and the fixed WS2 elements. In particular, we
design a nanoantenna array consisting of spherical WS2

elements, as shown in the inset of Fig. 11. The radii
of all nanospheres are equal to 100 nm, the gap be-
tween each of them is 100 nm, and the gap between
the dipole and each adjacent sphere is 100 nm, while the
dipole emitter is free to rotate on the yz plane. Here, taking
advantage of the anisotropic properties of WS2, we design the
array so the elements along the +x axis have a z-oriented optic
axis, while the elements along the −x axis feature a y-oriented
optic axis, as illustrated in the inset of Fig. 11. In a θ0-angle
rotated coordinate system about the x axis, the permittivity

tensor ε̂(λ0), which has the same expression as ε(λ0), can
be expressed in the global coordinate system Oxyz by the
similarity transformation

ε̂(λ0) = R−1
x (θ0)ε(λ0)Rx(θ0), (29)

where Rx(θ0) = (Ri j ), i, j = 1, 2, 3, is a rotation matrix
with R11 = 1, R22 = R33 = cos θ0, R23 = − sin θ0, R32 =
−R23, and R12 = R13 = R21 = R31 = 0. Employing θ0 = 90◦,

Eq. (29) yields ε̂(λ0) = ε1(λ0)(exeT
x + ezeT

z ) + ε3(λ0)eyeT
y . In

Fig. 11, we plot Dmax for a horizontally oriented dipole—i.e.,
the dipole moment points toward the +y axis. In this case,
the global max{Dmax} = 13.60 occurs at 701.84 nm. The 3D
pattern of D(θ, ϕ) is depicted in the inset of Fig. 11, revealing
high directivity values toward the −x axis. This means that the
spherical elements along the +x axis contribute high directiv-
ity values in the opposite direction, a behavior in accordance
with the conclusions drawn for the two-element WS2 sphere-
dipole array in Figs. 2(a) and 2(c), where the main lobe of the
directivity points to the nanoantenna’s side where the dipole is
located. Here, in addition, the spherical elements along the −x
axis do not contribute a high directivity toward the +x axis,
because their eyeT

y permittivity element is significantly smaller
in the whole visible-near IR regime than that of the exeT

x , ezeT
z

elements, due to the different orientation of those particles.

This behavior is in agreement with the conclusions of Sec. III.
When the dipole is oriented vertically, with its moment point-
ing toward the +z axis, the role between the unrotated/rotated
elements is swapped. This results in the same Dmax versus λ0

(depicted by the gray dots in Fig. 11) as with the horizontal
dipole. Now, however, inversion of the D(θ, ϕ) pattern takes
place for all λ0. Notably at 701.84 nm, i.e., at the same λ0

where max{Dmax} for the horizontal dipole is observed, the 3D
pattern of D(θ, ϕ) has the same high value of max{Dmax} =
13.60 but now toward the +x axis. Consequently, by control-
ling the orientation of the dipole emitter, we can achieve high
end-fire directionality inversion, as illustrated in the inset of
Fig. 11. Asymmetric mode propagation and radiation has also
been reported in Ref. [37] for chains of magnetodielectric
particles, when the chain is externally excited by mutually
orthogonal electric and magnetic dipoles. In the present case,
this operation is achieved using external excitation by only
one dipole. This unique feature is characteristic of the high
AR exhibited by WS2 in the optical-near IR regime and cannot
be readily realized in isotropic all-dielectric or plasmonic
spherical structures, due to their material symmetry. Thus,
our material-anisotropy-based design offers an extra degree
of freedom for the control of radiating nanostructures and
enriches the existing nanophotonics platforms by allowing for
functionalities such as directionality inversion, as well as for
the implementation of high end-fire directivity nanoantennas.

VI. CONCLUSIONS

Using a rigorous semianalytical solution for the radia-
tion problem of an anisotropic spherical particle excited by
an electric dipole and complementing this solution by full-
wave finite-element simulations, we introduced a class of
all-anisotropic WS2 TMDC nanoantennas which exhibit high
end-fire directivity and directionality inversion. Our guid-
ing principle was the two-element WS2 sphere-dipole array,
which was shown to exhibit Huygens-like directivity for an
excitation wavelength quite close to the particle’s ED reso-
nance. We also established that the same principle applies
to nonspherical particles, such as the recently fabricated
cylindrical WS2 disks. Based on this principle, we further
demonstrated that chain structures of spherical or cylindrical
disk WS2 elements may serve as high end-fire directivity
nanoantenna arrays. Furthermore, we showed that, by an ap-
propriate rotation of half the elements of the nanoantenna
array, end-fire directionality inversion can be achieved at a
fixed operating wavelength simply by adjusting the dipole’s
orientation; this unique feature is due to the high AR exhibited
by WS2 in the optical-near IR regime. Our findings enrich ex-
isting nanophotonics platforms and could pave the way toward
the design of functional and tunable devices at the nanoscale.
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