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Correlation-induced d-wave pairing in a quantum dot square lattice
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We consider an electrostatically induced square lattice of quantum dots and study the role of electron-electron
correlations in the resulting electronic features of the system. We utilize the Wannier functions methodology
to construct a Hamiltonian for interacting fermions, and find that the change of the depth of the quantum dot
confining potential results in a transition from a moderately, to strongly correlated regime of the system. We
obtain the approximate ground state by means of the variational Monte Carlo method for a wide range of dopings.
The values of microscopic parameters, charge gap, as well as spin- and pair-correlation functions obtained in the
strongly correlated regime signify the presence of antiferromagnetic spin ordering and the realization of the
Mott insulator phase. Moreover, we report on a two-dome structure of the emerging d-wave paired state residing
on both sides of the half-filled case. The obtained results are discussed in view of the well-known family of
unconventional superconducting materials, such as copper-based compounds.

DOI: 10.1103/PhysRevB.104.245430

I. INTRODUCTION

Unconventional phases which appear in the correlated elec-
tron systems have gathered a significant amount of interest
over the years. At low energies, correlated materials show
conflicting tendencies towards different symmetry-broken
states leading to complex phase diagrams and exotic physical
properties, such as unconventional forms of superconductiv-
ity, magnetism, non-Fermi liquid behavior, and Mott physics
[1]. In spite of extensive experimental and theoretical ef-
fort, the complete theoretical description of many prominent
examples of correlated system, such as cuprates [2,3] or
heavy-fermion materials [4], still remains unclear. One of the
main issues in formulating the proper theoretical approach
is related to incorporating the electron-electron interaction
with satisfactory precision. Calculation methods dedicated
to correlated systems are characterized by a high degree of
complexity, which limits their applicability only to simplified
models and/or systems with a significantly reduced size. In
this respect, the seminal Hubbard [1,5,6] and t-J [1,7] models
or their derivatives are usually considered as candidates which
can allow clarifying the nature of the strongly correlated
phenomena.

At the same time, novel correlated systems are being
discovered, which can allow for better experimental verifica-
tion of the proposed theoretical concepts. It is believed that
the recently synthesized twisted bilayer graphene [8,9], due
to its high degree of tunability, will allow answering open
questions related to the interacting electron phenomena. The
major advantage of twisted bilayer graphene with respect to
the previously known correlated systems is that the electron
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density can be easily tuned by using electronic gates, thus
avoiding the disruptive effects of chemical doping. Moreover,
the strength of correlations can be controlled by changing
the twist angle. Another system in which many microscopic
parameters can be controlled experimentally consists of ultra-
cold atoms trapped in an optical lattice [10,11]. In spite of
the fact that such a system has been discovered already some
time ago, it is still considered as one of the most promising
experimental setups to simulate the behavior of the Hubbard
model.

Furthermore, the electronic correlations may also play an
important role in the physics of nanoscopic systems. Specif-
ically, quantum dots (QDs) are often considered as artificial
atoms [12] and can be regarded as building blocks for more
complex devices in which the precise inclusion of electron-
electron interactions is indispensable for proper description.
Here, we consider the use of QDs as a route to realize highly
tunable, strongly correlated electron systems. The advance-
ment in nanofabrication methods allows for the creation of
electrostatically controlled QDs [13], as well as their pat-
terns in two dimensions [14–16]. By proper architecture of
gates, such a pattern of QDs can serve as an experimental
realization of the two-dimensional Hubbard model with both
the electron concentration and strength of correlations con-
trolled in situ by means of gate voltage [17,18]. This provides
an opportunity to clarify many of the long-standing prob-
lems related to emergent phenomena in interacting electron
systems.

In this theoretical analysis, we elucidate the phenomena
arising from electron-electron interactions by considering a
square lattice consisting of electrostatically fabricated dots
and use variational Monte Carlo (VMC) method to capture the
correlation effects. We start from an approach complementary
with respect to the previously performed studies [17,18], i.e.,
we use the real-space picture, and consequently build a trans-
lationally invariant system. Notably, we take into account the
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FIG. 1. Schematic representation of the considered structure.
Note that space between the insulator layer and the global gate is
only for presentation purposes.

screening effects resulting from the proximity of the metallic
top gate, which is important to reduce the amplitude of two-
body interactions [17] as pointed out by Byrnes et al. Our
main finding is that the QDs’ lattice realizes the correlation-
driven antiferromagnetic ordering, Mott-insulating phase, and
most importantly d-wave superconductivity. So far, the pre-
sumption of the existence of d-wave superconductivity in
such systems has been made only based on the relation be-
tween values of interaction amplitudes and the single-particle
spectrum for the effective interacting models describing QDs
lattice [17]. In this work we inspect explicitly if such a sce-
nario takes place and provide theoretical evidence of pairing
in the d-wave channel for the low-carrier density (implicitly
assumed by considering only the lowest band) and within
general interacting Hamiltonian. The obtained results are dis-
cussed in view of the well-known families of unconventional
superconducting materials such as cuprates.

In the next section, we describe the model of the QD layer.
Subsequently, the section devoted to the methodology covers
both the construction of Wannier basis and the calculation
of transfer (hopping) and interaction integrals, as well as the
solution of many-body Hamiltonian in terms of VMC method.
In Sec. III, we present the results obtained for the selected
lattice spacing and different depths of the confining potential
V C . We discuss the electronic properties of the system for the
selected confinement as a function of charge doping (carrier
density) in terms of the analysis of one- and two-body correla-
tion functions, discussing the spin order and the development
of charge-gap, as well as the evidence of singlet pairing.
Finally, we summarize the obtained results and conclude in
the very last section.

II. MODEL

We follow the concept of the device presented by Byrnes
et al. [17], based on GaAs/AlGaAs-layered heterostructure
(Fig. 1) in which a two-dimensional electron gas (2DEG) is

formed. The top global gate controls the electron concentra-
tion in the system, whereas the metallic electrodes, assembled
as a square lattice pattern, are immersed in an insulator layer
allowing for modulation of the periodic confinement. In this
manner, both doping and electron confinement are tunable,
allowing us to switch between diverse regimes characterized
by different strengths of the electronic correlation as well as
scan the resulting phase diagram.

Here, instead of considering the globally assumed periodic
potential [17], we start from the single-particle spectrum of
the isolated QD. A variety of confinement potentials V QD

have been exploited to realistically model the electrostatically
induced QD [19,20], e.g., parabolic, Gaussian, power expo-
nential. We restrict our choice to the form which exhibits
radial symmetry in the x̂ − ŷ plane, as well as, is spatially con-
vergent, i.e., limr→∞V QD(r − R) = const., where r = (x, y)
and R refers to the V QD center. The explicit form of the
exploited Gaussian potential for QD is given as

V QD
R (r) = V0 × exp

[
−

(
||r − R||

r0

)2]
, (1)

where V0 tunes quantum well depth and r0 controls its pla-
nar size. The Gaussian form of V QD

R is believed to describe
properly the shape of potential for GaAs-based devices for
the relatively small electrode radius (less than 102 nm), which
in our case is also very close to the value of r0 [19]. The
planar confinement V C originating from the whole pattern of
electrodes has the form

V C
a (r) = V0 −

∑
i

∑
j

V QD
Rij

(r), (2)

where a is the lattice spacing and Rij = (i × ax̂, j × aŷ). Note
that, when a is sufficiently larger than r0, this parametrization
leads to V C

a (i × ax̂, j × aŷ) ≈ 0 and V C
a ( i

2 × ax̂,
j
2 × aŷ) ≈

V0.

III. METHOD

We employ the following stages in the computational pro-
cedure: (i) Schrödinger equation solution for assumed V QD;
(ii) Wannier basis construction; (iii) formulation of many body
Hamiltonian; (iv) VMC solution of the interacting system. We
briefly describe each stage in the following subsections.

A. Spectrum of an isolated QD

According to the form of the confining potential adapted
here [Eq. (1)], the single QD is parametrized by {V0, r0}. An-
alytical solution of the Schrödinger equation for the radially
symmetrical power-exponential potential is not known [20],
thus single-particle eigenequation needs to be diagonalized
numerically. As the aforementioned form of the potential
exhibits radial symmetry, the time-independent Schrödinger
equation can be factorized in a regular manner, i.e., as a
product of the radial and angular parts, namely,

�nl (r, φ) = Rnl (r)�l (φ). (3)
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The angular part Rnl (r) is the solution of the equation[
r2 ∂2

∂r2
+ r

∂

∂r
+ r2 2m∗

h̄2

[
Enl − V (r)

] − l2

h̄2

]
Rnl (r) = 0,

(4)

and �l (φ) is given as

�l (φ) = exp

(
i
l

h̄
φ

)
, (5)

where n = 0, 1, 2, . . . ; l = 0,±1,±2 . . . are the principal
and angular quantum numbers, respectively. We set m∗ =
0.067me, i.e., the value of effective mass for GaAs. Equation
(4) can be transformed to the form of an eigenproblem for a
given value of l2, which can be efficiently solved within the
numerical scheme recently proposed by Laliena and Campo
[21], as we implemented in our code.

B. Wannier basis

The electron wave function in the lattice of QDs can be
defined in the basis of Wannier functions constructed with
the use of the previously specified {�nl (r, φ)} functions. Al-
though neither l nor n are good quantum numbers for the
finite lattice spacing a, we apply them for indexing also in
the resulting Wannier functions. Namely, they are defined as a
linear combination of �nl (r, φ) as

w
Ri j

nl (r) ≡
∑
n′,l ′

∑
rZ

αrZ ,n′,l ′�n′l ′ (r − Rij + rZ), (6)

where the lima→∞w
Ri j

nl (r) = �nl (r − Rij) condition defines
the values of n, l for the elements of the Wannier basis. The
coefficients {αrZ ,n,l} are to be determined where rZ are vectors
pointing to Zth nearest-neighboring lattice site. A finite num-
ber of orbitals are taken into account to perform numerical
orthogonalization of Wannier functions. Therefore, we con-
sider only those �nl for which En,l < V0 in the expansion
in Eq. (6). This basis truncation is adequate when a is suf-
ficiently large in comparison to r0, i.e., when the application
of the Wannier wave functions is justified. Also, we take into
account a finite number of neighboring sites, and consider a
finite, square cluster of size 2m + 1 × 2m + 1. Next αrZ ,n′,l ′

are obtained by means of Löwdin orthogonalization [22].
When m is systematically increased, central [i.e., those cen-
tered at Rmm = (m × a, m × a)] Wannier functions may be
treated as transitionally invariant within the desired numerical
precision [23].

We assume an infinite quantum well confinement in the ẑ
direction. Therefore, we formulate the final form of a single-
particle wave function as a product of w

Ri j

nl (r) and the ground
state of the confinement in the direction perpendicular to the
lattice, namely,

w̃
Ri j

nl (r, z) = w
Ri j

nl (r)

√
2

L
cos

(
πz

L

)
, (7)

where we take L = 10 nm—which is a reasonable value for
2DEG quantum well width [24]. Eventually, we have〈

w̃
Ri j

nl (r, z)
∣∣w̃Rpq

n′l ′ (r, z)
〉 ≈ δRi j ,Rpqδnl,n′l ′ . (8)

The above approximation becomes exact for m → ∞. For
the localized system, with a relatively small value of m (i.e.,
m < 10) a nearly (limited by the numerical precision) exact
fulfillment of the orthogonality relation occurs, as will be
shown further on.

C. Many-body Hamiltonian

In the following, we employ the description of the inter-
acting electron system by means of the second quantization
formalism. For the sake of clarity, we map Ri j positions to
lattice site indices, labeled by {i, j, k, l}, and (l, n) to a single
band index {μ, ν, γ , τ }. The full electronic Hamiltonian is
given by

Ĥ =
∑
i,μ,σ

ε
μ
i ĉ†

i,μ,σ ĉi,μ,σ +
∑
i, j

∑
μ,ν

∑
σ

tμν
i j ĉ†

i,μ,σ ĉ j,ν,σ

+ 1

2

∑
i, j,
k,l

∑
μ,ν,
γ ,τ

∑
σ,σ ′

V μνγ τ

i jkl ĉ†
i,μ,σ ĉ†

j,ν,σ ′ ĉl,τ,σ ′ ĉk,γ ,σ , (9)

where ĉ†
iμ,σ (ĉi,μ,σ ) are the fermionic creation (annihilation)

operators for particles with σ = {↑,↓}. The single-particle
amplitudes {εiμ, tμν

i j }, as well as two-body V μνγ τ

i jkl interactions
are to be determined by means of calculating the following
matrix elements:

tμν
i j = 〈wi

μ(r)
∣∣ − h̄2

2m∗ ∇2
r + V C

a (r)
∣∣w j

ν (r)
〉
, (10)

where we intentionally disregard the integration with respect
to z since, for a given {V0, r0, L, d}, this only shifts the diago-
nal elements (i.e., tμμ

ii = ε
μ
i ) by a constant value h̄2π2/2m∗L2.

The two-body interaction terms take the
form [17,23,25,26]

V μνγ τ

i jkl = 〈w̃i
μ(r, z)w̃ j

ν (r′, z′)|V̂e−e|w̃k
γ (r, z)w̃l

τ (r′, z′)〉. (11)

Note that for the considered system the electrostatic screening
resulting from the metallic gates should be included [17] that
leads to the following form of the electron-electron interac-
tion, Ve−e:

V̂e−e(r, r′, z, z′) = e2 f (r, r′, z, z′)

4πε0ε
√

|r − r′|2 + (z − z′)2
, (12)

where

f (r, r′, z, z′) = 1 −
√

|r − r′|2 + (z − z′)2√
|r − r′|2 + (z + z′ + 2d )2

(13)

is the screening function and ε = 12.9 is the dielectric
constant.

It should be emphasized that H in Eq. (9) is given in a
general form since the quantitative relations among the mag-
nitudes of microscopic parameters are not known a priori.
However, the number of terms in the Hamiltonian may be
reduced by a posteriori analysis, i.e., after obtaining integrals
for the considered system parametrization, one may exclude
the subset of terms in the Hamiltonian, based on the observa-
tion of a marginal value (i.e., close to the numerical precision)
of the corresponding microscopic amplitudes.
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D. Variational Monte Carlo

We employ the VMC method [27,28] to find the approx-
imate ground state of the interacting system. The absence
of the infamous sign problem as well as the relatively high
numerical efficiency together with the opportunity to exploit
flexible variational ansatzes make this approach very useful
for a wide class of fermionic systems for which the consistent
inclusion of electronic correlation [27] is indispensable. Par-
ticularly, fermionic lattice models formulated in the second
quantization language can be treated efficiently [23,29–33] in
the framework of VMC.

The choice of many-body variational ansatz |�T 〉 is crucial
for the valid determination of the ground-state properties in
VMC. Typically, |�T 〉 is given as the state resulting from
acting of the correlation factor P̂ and the projection operator
L̂ on the so-called noninteracting wave function |�0〉

|�T 〉 = P̂L̂|�0〉. (14)

One of the possible forms of |�0〉 is the pair-product or
Pfaffian wave function [27,34] given as

|�0〉 =
[∑

i, j

∑
μν

∑
σ,σ ′

F σσ ′
iμ, jν ĉ†

i,μ,σ ĉ†
j,ν,σ ′

]Ne/2
|0〉, (15)

where F σσ ′
iμ, jν are variational parameters to be determined, Ne is

a number of electrons in the system, and |0〉 refers to the vac-
uum state. Note that when the summation is narrowed to the
case where σ = σ ′, the so-called antiparallel wave function is
realized, which is particularly useful for systems in which the
total spin z-component is zero [34].

Before we briefly describe the P̂ and L̂ operators applied
in this work, it is suitable to sketch the idea of the sampling
scheme. The entire method is founded on the variational prin-
ciple, i.e.,

EG � ET ≡ 〈�T |Ĥ|�T 〉
〈�T |�T 〉 , (16)

where EG is the ground-state energy. As VMC operates in real
space, |�T 〉 can be expressed in terms of the expansion in the
{|x〉} basis defined explicitly below

|x〉 ≡ |x↑〉 ⊗ |x↓〉 =
∏

i,μ∈x↑

ĉ†
i,μ,↑

∏
j,ν∈x↓

ĉ†
i,ν,↓|0〉, (17)

where x↑ and x↓ refer to the set of occupied spin-up and
spin-down states, respectively. Configurations |x〉 are sam-
pled according to the probability density function ρ(x) ∝
|〈x|�T 〉|2 and trial ground state energy ET is estimated as

ET ≈ 1

M

M∑
m

ρ(xm)
〈�T |H|xm〉
〈�T |xm〉 = 1

M

M∑
m

ρ(xm)E loc
T (xm),

(18)

i.e., as an average of local energy E loc
T (x) over an assumed

number of samples M. The proper selection of |�0〉 is one of
the most important steps in the variational ansatz construc-
tion. However, disregarding the possibility of inclusion of the
so-called back-flow correlations [27] in |�0〉, we capture the
correlation effects in a standard manner [27,34], i.e., by acting

FIG. 2. The ground and the first excited states of isolated QD
as a function of V0. Note that only one bound state exists for the
considered range of V0. The values corresponding to E01 − V0 are
multiplied by a factor of 100 for clarity.

with a Hermitian operator P̂

P̂
({giμ}, {viμ, jν},

{
αd4

nμ,tν, α
h4
nμ,tν

})
= P̂G({giμ})P̂J ({viμ, jν})P̂d−h

({
αd4

nμ,tν, α
h4
nμ,tν

})
(19)

on |xm〉.
In the above P̂G, P̂J , and P̂d−h are Gutzwiller, Jastrow, and

doublon-holon correlators, respectively [27,34], and {gi,μ},
{viμ, jν}, {αd4

nμ,tν, α
h4
nμ,tν} are related variational parameters.

While |�0〉 defined in Eq. (15) explicitly describes a constant
number of particles, we also apply the projection on Sz

tot = 0
state leading to an antiparallel form of |�0〉.

Subsequently, the trial energy ET can be minimized within
the stochastic reconfiguration method, which allows for the
efficient optimization with respect to the set of variational
parameters [23,32,33]. We perform VMC simulations using
a recent, highly efficient, general-purpose package MVMC[34]
elaborated by Misawa et al.

We also remark that other computational methods suitable
for the description of strongly correlated systems may be
applied for the solution of the developed interacting Hamil-
tonian, therefore in the Appendix we provide the values of the
computed integrals.

IV. RESULTS

In this section, we first describe the details of the single-
particle picture on which the interacting model is founded.
Subsequently, we focus on the electronic properties of the
system obtained by means of VMC calculations.

A. Single-particle picture

The choice of r0 = 20 nm and V0 ∈ [1.0, 5.0] meV pro-
vides us with the spectrum of isolated QD containing only
a single bound state �0,0. The energy levels corresponding to
the ground, as well as to the first excited state as a function of
V0 are presented in Fig. 2.

As expected, by changing V0 we can tune the bound-state
energy and as a result modify the band structure of the QD
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FIG. 3. The evolution of radial part R00(r) for r0 = 20 nm and
selected values of V0.

pattern as well as the strength of electronic interactions as we
show explicitly in the following. For the chosen form of the
V QD

R potential, a should be sufficiently larger than r0 so that
the potentials of subsequent QDs are relatively well separated
and do not overlap. On the other hand, a has to be adequately
small to allow for nonzero electron hopping and the devel-
opment of an electronic band characterized by the reasonable
width. We identify that a being few (four to five) times larger
than r0 fulfills both conditions as legitimated in view of the
periodic potential formation, i.e., V C

a (m × a/2, n × a/2) ≈ V0

holds. In our calculations, we take a = 100 nm and r0 =
20 nm. For such a choice the decay of the radial part of the
wave function R0,0 is presented in Fig. 3.

The considered quantum dot lattice, where only the lowest
band is occupied and thus the number of electrons per QD
is limited, is suitable for quantum transport measurements as
the high-mobility 2DEG can be realized already for electron
densities substantially below 1011/cm2 at T = 0.3 K [35].

As one can see from Fig. 3 for larger values of V0 the
decay of �0,0(r) is faster with increasing r. It is unknown
a priori what is the reasonable cutoff for rZ in Eq. (6).
We find that Z � 5 should be considered as suitable choice
for systems with V0 � 2 meV, i.e., for those for which the
stronger correlation regime is expected. On the other hand for
the weaker confinement the rZ cutoff has to be significantly
expanded. This observation is natural since for V0 → 0 the
system reduces to a 2DEG with no QD confinement potentials
in the x̂–ŷ plane, thus a highly delocalized basis has to be
utilized.

In Figs. 4 and 5 we show w
R00
0,0 for V0 = 2.5 meV as an

example. One finds that the function is well localized in the
vicinity of the central lattice site. However, local extrema
are also present (see Fig. 5), which correspond to r = (a, 0),
r = (a, a) and r = (2a, 0), i.e., to the first-, second-, and the
third-nearest neighbor QDs, respectively. The more distant
extrema are below the numerical resolution. Subsequently, we
validate the entire procedure by inspecting the orthogonality
condition given in Eq. (8), i.e., by computing 〈w̃R00

00 |w̃R00+ri j

00 〉,
where ri j are vectors pointing to the neighboring sites up to
the fifth-nearest neighbor. All the numerical integrations pre-
sented in this paper were carried out with the use of the Cuba

FIG. 4. The projection of w
R0,0
00 (x, y)—i.e., the radial part of

Wannier function—onto the x̂ − ŷ plane for V0 = 2.5 meV.

library [36]. The orthogonality discrepancy does not exceed
the value of ∝ 10−4, which we also estimate as the numerical
accuracy of Wannier function overlap integrals. Therefore, we
find the construction of the Wannier basis as well founded.

Next, we compare the dispersion relations ε(k) for the
noninteracting system, resulting from our Wannier basis, with
those computed directly from numerical diagonalization of
the Schrödinger equation for a QD layer within the KWANT

package [37]. Obviously, such a calculation is also biased,
e.g., by the finite mesh density. We consider a discrete compu-
tational mesh 100 nm × 100 nm with discretization constant
�a = 1 nm containing a single QD. The mesh is than pe-
riodically repeated, effectively describing a translationally
invariant, two-dimensional QD lattice. We find very good
agreement between both approaches as shown in Fig. 6 where
the bare dispersion relations ε(k) are plotted for the repre-
sentative set of V0. As supposed, small albeit still noticeable
differences are present for k = (0, 0), i.e., for the � point
in the momentum space. As one can see for the stronger
confinement an indirect gap opens in the band structure. For
V0 = 2.5 meV the gap is about 0.5 meV and increases with
increasing V0.

FIG. 5. Wannier states w
R00
0,0 obtained for V0 = 2.5 meV and a =

100 nm as a function of r = (x, 0) and r = (x, y = x). Well-defined
local extrema are visible in the vicinity of location of the nearest,
second, and third nearest sites as shown in the inset.
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FIG. 6. Bare dispersion relations ε(k) resulting from the first
two lowest-lying bands for the selected values of the confinement
potential. The lower bands refer to the constructed Wannier basis
(symbols) matching the results obtained numerically for the transla-
tionally invariant QD lattice (solid blue lines). Also the band-gap
enhancement between the first two lowest bands with increasing
value of V0 is noticeable.

For the sake of completeness, in Fig. 7 we present the
values of hopping integrals for the considered range of V0. We
relabel each calculated integral t00

i(Z ), j(Z ) ≡ tZ , in such a way
that the pair (i, j) of lattice sites correspond to the Zth nearest
neighbor. Namely, for Z � 5 the sets of corresponding vectors
Ri j which connect the i-site with j-site are given as

Z = 1 : Ri j ∈ {(±a, 0), (0,±a), }, (20a)

Z = 2 : Ri j ∈ {(±a,±a), (∓a,±a)}, (20b)

Z = 3 : Ri j ∈ {(±2a, 0), (0,±2a)}, (20c)

Z = 4 : Ri j ∈ {(±2a,±a), (∓2a,±a),

(±a,±2a), (∓a,±2a)}, (20d)

Z = 5 : Ri j ∈ {(±2a,±2a), (∓2a,∓2a)}. (20e)

FIG. 7. The evolution of hopping integrals as a function of V0.
Note that the value referring to ε is divided by a factor of 10, whereas
values of tZ related to Z > 1 are multiplied by the same factor for the
sake of clarity.

FIG. 8. Density-density interactions as a function of V0 for d =
10 nm. The dominant role of intrasite Hubbard interaction U is
clearly evidenced.

The absolute value of the hopping integral to the nearest
neighbor is the dominant one, as expected. The characteristic
hopping energies correspond to temperatures |t1|/kB ∼ 0.1 −
1K (for V0 ∼ 1–3.5 meV), which are reachable by the mod-
ern dilution refrigerators. The hoppings referring to the more
distant neighbors are substantially smaller (c.a. ×10). We find
|t3| > |t2| for the entire considered range, and |t4| > |t2| for
V0 � 3 meV. This can be caused by the particular choice of
the gauge implicitly encoded in the adopted procedure for the
generation of Wannier basis. Notably, the obtained Wannier
basis reproduces the band structure obtained directly in the
momentum space (cf. Fig. 6).

Moreover, as one may deduce from Fig. 7, for Z > 0 all
amplitudes of hopping integrals taken into account decay with
increasing V0. It is a natural consequence of the stronger
localization of Wannier functions with increasing planar con-
finement. Finally, the role of t5 is marginal—its absolute value
does not exceed 6 × 10−4 meV.

B. Electronic interactions and many-particle Hamiltonian

Whereas the single-particle energy spectrum for a given
value of L is only shifted by the ground-state energy of in-
finite confinement in the ẑ direction, it is not the case for
the interaction amplitudes defined in Eq. (12). Furthermore,
the thickness of the spacer layer d impacts the magnitude of
electronic interactions and can be regarded as a parameter to
be tuned in the experimental setup [18].

In Figs. 8–10 we present the values of two-center interac-
tions obtained for d = 10 nm. We use the following notations
for each type of integrals, omitting band labels, since we
consider only a single lowest lying band as presented above.
Namely, we define

Viiii ≡ U, (21a)

Vi ji j ≡ Ki j, (21b)

Vii j j = Vi j ji ≡ Ji j, (21c)

Vi j j j = Vji j j = Vj ji j = Vj j ji ≡ Vi j . (21d)
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FIG. 9. Exchange integral amplitudes J as a function of V0 ob-
tained for the screening parameter d = 10 nm. All values are positive
and therefore refer to the tendency of ferromagnetic order.

One identifies U as the onsite Coulomb repulsion (the
so-called Hubbard term), whereas Ki j are density-density in-
tersite Coulomb interactions. The exchange-type interactions
Ji j , as well as the so-called correlated-hopping terms Vi j ,
are invariant under the index exchange due to the fact that
the obtained Wannier functions are real. We also follow the
nomenclature defined for one-body integrals [see Eq. (20)]
e.g., K1 refers to the density-density interaction between the
nearest-neighboring QDs.

As we find that the values of three- and four-center inter-
action integrals are � 10−3 meV, i.e., close to the estimated
numerical precision, we disregard their analysis and exclude
them from the final form of the interacting Hamiltonian. How-
ever, their role can be regarded as quantitatively influential
for multiband models as it has been evidenced for isolated
QD-like systems [26].

In Fig. 8 we present the values of KZ up to Z = 5, where we
follow the convention assumed also for hopping integrals, e.g.,
Ki(Z ), j(Z ) = KZ . As expected, the value of U increases with
the increasing depth of the confinement potential, becoming
dominant for deep potentials. The density-density interaction

FIG. 10. Correlated-hopping amplitudes as a function of V0 for
d = 10 nm. Note that |V1| is of order of K1 and its dependence on the
gate potential value is nonmonotonical in the considered range of V0.

FIG. 11. Relations between electron-electron interaction mag-
nitude and kinetic ingredient for the three different regimes of
screening tuned by value of d . The ratio between U and bare
dispersion bandwidth (a) W ≡ ε(k)max − ε(k)min; (b) charge density-
density K1 related to t1; (c,d) correlated hopping V1 and exchange
interaction J1 divided by t1, respectively. The dashed line in (a) re-
lates to U/W = 1, i.e., the conventional limit of strong correlations
regime.

amplitudes gradually decay as the height of the barrier be-
tween QDs is increased. Note that K1 is of the order of |t1|,
therefore intersite interactions are nonnegligible and the sys-
tem has to be described with the use of the Hamiltonian, which
is more complex than that related to pure Hubbard model. The
exchange integrals are positive (see Fig. 9), thus indicating the
tendency for a ferromagnetic ordering. J1 is the dominant one
and JZ for Z > 1 do not exceed ∼10−3 meV therefore they
may be considered as insignificant.

The last type of two-center interactions are correlated hop-
pings V whose values are presented in Fig. 10. Intriguingly,
|V1| is of the order of magnitude of K1 and does not behave
monotonically in the considered range of V0. Namely, it attains
a minimum V1 ≈ −0.05 meV for V0 ≈ 2.75 meV. The lack
of monotonicity is also present for V4 and V5, however, their
values are orders of magnitude smaller than V1.

Whereas the parameter d which tunes the screening effect,
does not influence the kinetic energy landscape, it changes
the magnitude of interactions. Notably, the relation between
electron-electron amplitudes and kinetic energy scale governs
the role of electronic correlations in the system. In Fig. 11(a)
we depict the conventional measure of correlation strength,
which is the ratio between on-site U Hubbard term and a bare
dispersion relation width W . One finds that for the considered
values of V0 this ratio systematically grows with the depth of
the confinement potential and from this point of view a wide
range of strong correlation regimes is accessible in the system.
Furthermore, the impact of screening is relatively small when
compared to the ratio between density-density interactions K1

and hopping t1 [Fig. 11(b)]. For 1.5 � V0 � 4.5 meV a plateau
appears, which becomes less prominent with decreasing value
of d . Nevertheless, each depicted value of d provides the
magnitude of ratio |K1/t1| � 0.5. This observation suggests
that these types of interactions should be taken into account
in the many-body interacting Hamiltonian. Although the ab-
solute values referring to the analogous ratios defined for the
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correlated hopping and exchange amplitudes [see Figs. 11(c)
and 11(d)] are substantially smaller, specifically for lower val-
ues of V0, they still can be regarded as meaningful at least for
Z = 1. Moreover, they depend more weakly on d as compared
to K1/t1.

As the decay of K,V , and J with increasing rZ is of dif-
ferent rate, and, it is a priori difficult to state which terms
in Hamiltonian can be safely neglected (especially for such
a subtle phenomenon as the superconducting pairing), we
decided to include all the two-center terms up to Z = 5. This
choice rather overestimates the role of more distanced (i.e.,
for Z > 1) interaction amplitudes of V and J , however, it
allows reducing the doubts concerning the role of each type
of interaction in the final picture. Eventually, we analyze the
Hamiltonian of the form

ĤQDL = T̂ + Û + K̂ + V̂ + Ĵ , (22)

where T̂ are one body-terms and, Û , K̂, V̂ , and Ĵ refer to the
two-body interaction terms corresponding to U, K,V , and J ,
respectively, for the neighboring sites corresponding to Z � 5.

Here, we intend to focus on an experimental setup which
potentially may reproduce electronic properties similar to
those observed in the typical strongly correlated materials,
i.e., the emergence of antiferromagnetic (AF) order, charge
gap development for the half-filled band, and finally the cre-
ation of superconducting pairing for the doped cases. Whereas
the conventional prerequisite for a strong correlation, i.e.,
U/W is � 1, is already realized in the system, the relations
between other interactions and hopping terms may still play
an important role.

Notably, the ferromagnetic interaction J1 may overcome
the AF tendency. This tendency is an inherent feature of the re-
pulsive Hubbard model at half filling as it can be transformed
to the t–J model when double occupancies are projected
out [7]. Therefore, before selecting the set of microscopic
parameters to be applied for the variational solution of our
Hamiltonian, we carried out the following reasoning. The in-
clination for AF ordering close to half-filling can be estimated
by comparing the coupling Jt−J = 4t2/U derived for the t–J
model and the value of the ferromagnetic exchange integral,
J1. As shown in Fig. 12, such an estimation suggests that when
screening is enhanced, i.e., d decreases, the antiferromagnetic
order can be expected to dominate. Note also, that d < L/2
must hold to satisfy the consistency of model. For d = 7.5 nm
the thickness of layer below the pattern of electrodes which is
not penetrated by electrons from 2DEG is still 2.5 nm.

Moreover, the pair-hopping term associated with J1 can
lead to Cooper pair modulation of the on-site s-wave paired
state [38]. However, in the regime of relatively large on-site
repulsion U the intersite paired state is much more likely to be
expected. The mentioned mechanism of inducing the Cooper
pair modulation is not going to be operative in such a case of
intersite pairing. Thus, we turn to a detailed investigation of
the homogeneous intersite paired state.

Finally, we consider the general Hamiltonian given in
Eq. (22) for d = 7.5 nm and V0 ∈ [2.0, 4.0 meV], which we
suspect have properties similar to those of the descendants of
the repulsive Hubbard model in the strong correlation regime.

FIG. 12. The relation (4t2
1 /U )/(J1) as a function of V0.

The dashed horizontal line separates estimated applicability of
Hubbard/t − j (upper) and ferromagnetic Heisenberg (lower) mod-
els close to the half-filling. The red rectangle surrounds cases
considered in our VMC calculations.

C. VMC solution for the interacting system

As mentioned in Sec. II the variational ansatz employed in
this work can be regarded as highly generic, i.e., capable of
describing a variety of complex phases. However, as it is a
challenging task from the optimization perspective, even for
the less complex model Hamiltonians, we exclude the possi-
bility of long-range charge ordering in our analysis assuming
a 1 × 1 variational parameters sublattice [34]. Nevertheless,
the adopted form is flexible enough to cover singlet s- and
d-wave pairing as well as antiferromagnetic spin ordering.
Namely, we do not impose any rotational symmetry for F↑↓

i j
and Jastrow-type variational parameters. Also, as we consider
a single-band model, the final set of variational parameters
is augmented with the single Gutzwiller projector parame-
ter g, as well as, with ten parameters associated with local
electron occupancy configurations supplying single doublon-
holon correlator.

For a lattice consisting of Nx × Ny sites the number of
variational parameters scales as the number of considered
QDs since the pattern of connections between sites is repeated
for each site, eventually forming a translationally invariant
scheme.

1. Spin-spin correlation functions and charge gap

As stated, we are mainly interested if the considered sys-
tem exhibits properties characteristic for strongly correlated
systems such as cuprates. Namely, we expect that for the
half-filled band, AF ordering should appear. The analysis of
the magnetic properties was carried out by calculating the
correlation functions defined for the spin z-component as

Sz(r) = 1

Nx × Ny

∑
i

〈(n̂i↑ − n̂i↓)(n̂ f (Ri+r)↑ − n̂i f (Ri+r)↓)〉,

(23)

where function f (r) maps vector r onto the proper lattice
index. Also, we consider correlation functions defined in the
momentum space which are Fourier transforms of their real-
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FIG. 13. Momentum-resolved spin-spin correlation functions for
the representative values of k at δ = 0 as a function of V0 for the
system consisting of 8 × 8 QDs.

space counterparts Sz(r), i.e.,

Sz(k) =
∑

j

eik·R j Sz(R j ). (24)

First, we intend to verify if our conjectures regarding the
AF ordering at half-filling for the selected range of V0 and
d = 7.5 nm are valid. Therefore, we performed preliminary
calculations for the system of size 8 × 8 and for doping δ = 0,
where

δ = 1 − Nel

Nx × Ny
. (25)

To reduce the finite-size effects, we imposed periodic bound-
ary conditions on the lattice.

The resulting evolution of Sz(k) with V0 for different mag-
netic modulation vectors is presented in Fig. 13. It is clearly
visible that the antiferromagnetic type of spin ordering dom-
inates for 2.5 � V0 � 3.5 meV. Already here we can see that
the ground-state magnetic properties of the system can be
tuned by changing the gate potential V0.

In Fig. 14 we show how the spin-spin correlation function
changes in real space along the (1,0), (0,1), and (1,1) direc-
tions of the QD square lattice for a larger system (16 × 16)
and for the gate potential V0 = 3 meV. In agreement with the
results presented in Fig. 13 we observe the behavior char-
acteristic for the AF ordering. It should be noted that small
differences between the (1,0) and (0,1) directions are visible
in Fig. 14 in spite of the fact that the system itself is C4 sym-
metric. Such a spontaneous symmetry breaking is possible
since the exploited variational ansatz is not constrained to be
symmetric with respect to the spatial directions. Despite these
circumstances, the AF ordering is strongly manifested. In
addition, the (1,0)/(0,1) asymmetry decreases with increasing
distance as well as it weakens as the system becomes larger.
Therefore, the observed C4 symmetry breaking can vanish in
the thermodynamic limit for the considered variational ansatz.

For the sake of completeness in Fig. 15 we present Sz(k)
as a function of both electron and hole doping δ ∈ [−0.5, 0.5]
for k ∈ {(π, π ), (0, π ), (π, 0), (π/2, π/2)}. As expected, AF
ordering dominates. For one electron per single QD, a well-

FIG. 14. Real-space spin-spin correlation functions at δ = 0, for
V0 = 3 meV and lattice consisting of 16 × 16 QDs. The discrepancy
between x̂ and ŷ directions is observed, however, this difference
decays with increasing |l|. The statistical error is smaller than the
symbol’s size.

pronounced peak emerges and the values corresponding to the
remaining directions are marginal.

The appearance of the AF ordering close to the zero-
doped case is typical for the family of copper-based high-
temperature superconductors [2]. For the later systems, the
(π, π ) magnetic modulation is accompanied by the electron-
electron interaction-induced insulating state. Therefore, here
we also analyze the possibility of charge gap creation which is
a signature of the Mott insulator. For this reason, we calculate
the approximate value of the chemical potential

μ(δ) ≈ E (Nel ) − E (Nel − �Nel )

�Nel
, (26)

which allows us to determine the value of the charge gap in
the following manner:

�CG = lim
δ→0−

μ(δ) − lim
δ→0+

μ(δ). (27)

In Fig. 16 we present μ(δ) for 16 × 16 QD lattice within res-
olution �Nel = 8. An abrupt change of the chemical potential

FIG. 15. Momentum space spin-spin correlation functions for
V0 = 3 meV and lattice consisting of 16 × 16 QDs as a function of
doping.
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FIG. 16. Estimated chemical potential μ as a function δ. The
arrow represents the resulting charge-gap estimation. In most cases,
errors are smaller than the symbol size.

for δ = 0, resulting in �CG ≈ 0.6 meV indicates an insulating
character of the system. Since in our case the Hubbard inter-
action is U ≈ 1.2 meV and the bandwidth is W ≈ 0.45 meV,
the simplest estimate of the charge gap for the case of the
Hubbard model can be given roughly as �CG = U − W ≈
0.75 meV—a value which is close to the one obtained here.
We find that the principal features of the considered system are
determined by the intrasite repulsion together with the form
of band structure, which is the case known from the Hubbard
model.

It should be noted that in general the intersite Coulomb
repulsion terms may induce the insulating state at the δ =
±0.5 dopings and/or the charge ordered states. However, as
shown in Fig. 8, the intersite Coulomb repulsion integrals are
relatively small in the considered parameter range. Therefore,
the mentioned effects are not expected here.

Another prominent phenomenon related to the physics of
strongly correlated systems is the formation of the supercon-
ducting state upon electron or hole doping. The appearance of
superconductivity in the considered system is analyzed in the
following subsection.

Since even for the pure Hubbard model, the full phase
diagram is not indisputably settled [6,39], one may expect
that for the more complex Hamiltonian considered here, a
variety of charge and spin ordered states should be put under
examination. This is, however, beyond the scope of the present
study, which focuses on archetypal properties of strongly cor-
related systems in view of Hubbard-like models.

2. Pairing correlation functions

We analyze the possibility of singlet pairing by considering
the pair correlation functions defined in the following manner:

Pq(Ri j ) =
∑
a,a′

gq(a)gq(a′)〈�̂†
i, f (Ri+a)�̂ j, f (Rj+a′ )〉, (28)

where q stands for pairing channel (d or s), a (a′) is
the (±a, 0), (0,±a) vector, and gq(a) is the symmetry-
related factor which takes the form gs(a) = gd (±a, 0) =
−gd (0,±a) = 1. The singlet-pairing operators �̂

†
i j are

FIG. 17. Pairing Pq at maximal possible distance Rmax for 8 × 24
QD lattice as a function of doping. Dashed horizontal line refers to
van Hove singularity obtained for the noninteracting system.

defined as

�̂
†
i j = 1√

2
(ĉ†

i↑ĉ†
j↓ − ĉ†

i↓ĉ†
j↑). (29)

As the tendency for pairing should be analyzed for
lim|Rij|→∞ Pq(Ri j ), which cannot be realized in practice for
a finite lattice, nonzero values of Pq(Ri j ) can be falsely in-
terpreted as signatures of the superconducting state [40]. To
overcome this difficulty, we compute the vertex pairing func-
tions [40–43] given as

Pq(Ri j ) = Pq(Ri j ) −
∑
a,a′

gq(a)gq(a′)

× [〈ĉ†
i↑ĉ j↑〉〈ĉ†

f (Ri+a)↓ĉ f (Rj+a′ )↓〉
+ 〈ĉ†

i↑ĉRj+a′↑〉〈ĉ†
f (Ri+a)↓ĉ j↓〉

+ 〈ĉ†
i↓ĉ j↓〉〈ĉ†

f (Ri+a)↑ĉ f (Rj+a′ )↑〉
+ 〈ĉ†

i↓ĉRj+a′↓〉〈ĉ†
f (Ri+a)↑ĉ j↑〉]. (30)

The subtraction of the products of the hopping averages
allows finding a reliable estimation of the tendency for the
pairing in the finite-size system [40]. We obtain the ver-
tex functions for Ri j oriented along x̂ for V0 = 3 meV, d =
7.5 nm and for the lattice size Lx × Ly = 8 × 24. In Fig. 17
we present Pq for both d- and s-wave pairing symmetries as
a function of doping δ, calculated for Rmax = (0, 11a). As
the pairing amplitude in general is relatively small and may
be affected by statistical noise, the averaging procedure is
performed within ∼108 Monte Carlo steps and repeated ten
times for each considered doping to estimate the statistical
error.

As shown in Fig. 17 a dome-like behavior for the d-wave
amplitude appears in the electron-doped region of the phase
diagram. Namely, nonzero vertex pairing functions are ob-
tained for −0.37 � δ � −0.12, as well as for the hole-doped
case 0.1 � δ � 0.18. The later case exposes a noticeable
smaller amplitude than the first and poses a less smooth shape.
Nevertheless, both doping regimes show a clear tendency to-
wards the superconducting phase formation within the d-wave
pairing channel.
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FIG. 18. Pairing Pq as function of distance R(0, y) for 8 × 24
QDL for the selected values of doping δ.

In Fig. 18 the spatial dependency of Pq is shown for
three representative cases. We find that the chosen system
dimensions allow capturing the asymptotic tendency. Namely,
for R(0, y) � 8 pairings related to d-wave channel converge
within the estimated statistical error. The s-wave pairing ver-
tex function decays to the value close to zero even more
rapidly, i.e., for R(0, y) � 4 only the residual values are ob-
served. Furthermore, we disregard the analysis of inconclusive
cases, i.e., those for which related statistical errors and/or val-
ues are greater of the order of magnitude than those exhibited
by majority.

The two peaks related to the d-wave pairing regions sepa-
rated by the AF phase resemble the phase diagram identified
for the cuprate superconductors. However, in our case, the
paired state is more pronounced at the electron-doped site
instead of the hole-doped situation. This can be understood
in view of the so-called van Hove singularity scenario [44]
according to which the peak in the density of states for
the layered structures has a significant influence on the en-
hancement of the paired state regardless of the particular
pairing mechanism. Although the Bardeen-Cooper-Schrieffer
(BCS)-type mechanism is not often discussed in view of the
cuprate physics and is surely absent in the QD lattice analyzed
here, the peak in the density of states may also influence the
correlation-driven pairing as it is suggested in [45]. Since
for the cuprates the van Hove singularity is reached at the
hole-doped site of the phase diagram, the superconducting
dome is more pronounced for δ > 0. On the other hand, for the
case analyzed here, the bare band-structure calculations reveal
the singularity at δ ≈ −0.22, i.e., inside the electron-doped
regime. As shown in Fig. 17, this value coincides with the
doping range for which the obtained amplitudes of d-wave
pairing are characterized by the largest magnitude. Addition-
ally, close to δ = 0 the emergence of AF state appears (see
Fig. 15) together with the Mott insulating state, which leads
to the suppression of the paired state in the close proximity of
half-filling and leaving an asymmetric two-dome structure of
the superconducting pairing amplitudes.

Finally, as shown the d-wave symmetry dominates over
the extended s-wave pairing in the considered doping range.
This fact comes as a result of the relative position of the
Fermi surface and the nodal lines corresponding to the

particular symmetry factor. The symmetry that results in less
suppression of the superconducting gap at the Fermi surface
is chosen by the system as it makes the paired state more
stable. The obtained result is in agreement with the previous
calculations made for the simple Hubbard model where the
d-wave symmetry is also stable in the range around the
half-filled situation [46].

V. SUMMARY

We developed a model describing the QD lattice and
numerically analyzed the electronic characteristics in the
strongly correlated regime within the low carrier density
regime.

We showed that the system can be described by a single
band of interacting electrons. We found that, by properly
tuning the gate potential, we can reach the situation in which
the width of the band is relatively small when compared to the
electron-electron interaction amplitudes and thus making the
properties of the system dominated by electronic correlations.
Furthermore, by estimating the antiferromagnetic coupling
within the approach based on the t-J model we found that the
inherent correlation-driven effective antiferromagnetic order-
ing can overcome the trend of ferromagnetic spin alignment.

The variational Monte-Carlo simulations for the obtained
model showed that the QD lattice exhibits three main features
of strongly correlated high-temperature superconductors: (i)
tendency towards AF ordering when the charge density is
close to one electron per QD; (ii) development of charge gap
which can be related to the Mott insulating state; and (iii)
emergence of the d-wave pairing which exhibits a two-dome
structure. We found that the pairing is stronger in the electron-
doped regime, in contrast to the situation observed in cuprates.
This can be related to the character of the bare band structure,
which exhibits a peak in the density of states for the case of
electron-doped case.

Therefore, one may conclude that the main features of
the system under consideration qualitatively resemble those
known from cuprates, rendering such a QD lattice as an
experimentally accessible, electrically tunable, artificial ma-
terial that would allow studying the physics of correlated
systems.

The code and the data behind the presented figures can be
downloaded from an open repository together with the values
of the adopted microscopic parameters [47].
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APPENDIX: MICROSCOPIC PARAMETERS FOR THE
INTERACTING HAMILTONIAN

In this Appendix we provide values of microscopic pa-
rameters up to Z = 5 for V0 = 3.0 meV and d = 7.5 nm, i.e.,
for the system for which the analysis of magnetic as well
as pairing properties has been carried out for the interacting
Hamiltonian (see Tables I–IV). An estimated error is ∝ 10−4.

245430-11



A. BIBORSKI, M. P. NOWAK, AND M. ZEGRODNIK PHYSICAL REVIEW B 104, 245430 (2021)

TABLE I. Values of single-particle parameters; note that ε ≡ t0.

Single-particle parameters (meV)

ε t1 t2 t3 t4 t5

2.657 −0.061 −0.002 0.007 0.001 0.000

TABLE II. Values of Coulomb density-density interaction ampli-
tudes, here U ≡ K0.

Density-density Coulomb interactions (meV)

U K1 K2 K3 K4 K5

1.262 0.032 0.006 0.002 0.001 0.001

TABLE III. Values of exchange interaction amplitudes.

Exchange interactions (meV)

J1 J2 J3 J4 J5

0.010 0.000 0.000 0.000 0.000

TABLE IV. Values of correlated hopping interaction amplitudes.

Correlated hoppings interactions (meV)

V1 V2 V3 V4 V5

−0.037 0.004 0.001 0.000 0.000
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