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Metasurfaces for de Broglie waves
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Metasurfaces have been employed to control the electromagnetic and acoustic waves. We suggest that the
quantum particles can be manipulated with a de Broglie wave metasurface. The effect was achieved by using
the dielectric films milled with subwavelength slits, which behave as the quantum meta-atoms with an effective
potential energy. The calculations show that ∼100% transmission of de Broglie waves may appear in certain
conditions. Moreover, by tuning the effective potential of the slits, a full 360° coverage of transmission phase
is attainable. With a carefully designed annular metasurface, highly efficient and subwavelength focusing of de
Broglie waves has been theoretically demonstrated. Our work may render a way to manipulate quantum particles.
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I. INTRODUCTION

Interaction of waves with artificial materials has been an
important topic in physics for decades. The research on this
topic has led to a variety of interesting physical effects and
various valuable applications. On the one hand, when the
wave propagates along the periodically modulated structure,
the bandgap effect may be induced because of the Bragg
reflection. Some well-known examples include the propaga-
tion of de Broglie waves in semiconductor superlattices, light
waves in photonic crystals, and elastic waves in phononic
crystals [1–6]. On the other hand, when the wave propagates
perpendicular to the modulated structure, especially the quasi-
two-dimensional array of subwavelength components (called
the metasur f aces), anomalous transmission effects will be
present. For example, metal films milled with periodic aper-
tures can support enhanced optical transmission, beaming of
light, and polarization rotation, etc. [7–10]. With the phase
gradient along the metasurface, for another example, anoma-
lous reflection/refraction, focusing, and holographic display,
etc., can be achieved [11–16].

As we know, progress from optical to electron microscopes
represents a significant step toward modern microscopic
imaging techniques, where de Broglie waves or quantum
particles play a crucial role. Existing ways to manipulate
quantum particles are based on the electric field [17,18],
magnetic field [19,20], and light field [21,22], which usu-
ally need bulky and complicated instruments. Although the
metasurfaces have been explored extensively to control the
wave front of electromagnetic and acoustic waves [23–25],
no such manmade materials have been reported for de Broglie
or matter waves. In addition to the shorter wavelength, this
may be limited by the transmission property of matter waves.
Generally, the transmission of matter waves through small
apertures is dominated by tunneling and is negligible. Al-
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though the transmission may be increased by introducing the
surface potential well and surface matter waves [26–28], the
resulting system will become complicated, and the transmis-
sion peak is extremely narrow. On the other hand, in optical
metasurfaces consisting of metallic nano-antennas, light can
penetrate the metal and drive the plasmonic resonance, thus
inducing radiation of light with phase shift covering the full
2π range [12–14]. A similar effect is not available for matter
waves.

In this paper, we propose that a metasurface for de Broglie
waves can be constructed which may control the transmis-
sion amplitude and phase simultaneously. The metasurface is
composed of a single-layer dielectric film tailored with sub-
wavelength slits of designed sizes, acting as meta-atoms with
effective and adjustable potential energy that can perturb the
motion of particles. We suggest that, at the Rayleigh anomaly
or waveguide resonances, ∼100% transmission of de Broglie
waves can be achieved. Moreover, by tuning the effective
potential energy of meta-atoms, the full 2π coverage of the
transmission phase is attainable. Based on these results, we
show that highly efficient and subwavelength focusing of de
Broglie waves can be obtained with an annular gradient meta-
surface. In this paper, we show the possibility of controlling
matter waves with planar microstructured insulator materials
(instead of semiconductor materials), which may be valuable
for the microscopic imaging and lithography, etc.

II. RESULTS AND DISCUSSIONS

Figure 1 presents the schematic view of the quasi-two-
dimensional structure (the side length is much larger than the
wavelength of de Broglie waves), consisting of a single-layer
dielectric film tailored with subwavelength slits of equal spac-
ing d and gradient or homogeneous slit width ai (i = 1 − n).
The dielectric film, with a thickness of h, is assumed to be in
vacuum. The matter waves (e.g., the electron waves), with the
de Broglie wavelength λ, normally impinge on the structure
along the −z direction. The dielectric film will block the
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FIG. 1. Schematic view of the de Broglie wave metasurface. The
dielectric film of thickness h is tailored with subwavelength slits
of equal spacing d (the distance between the centers of the slits)
and gradient or homogeneous slit width ai (i = 1 − n). The plane
matter waves (with the wavelength λ) are normally incident on the
metasurface along the −z direction.

matter waves, and the subwavelength slits function as the
channels or new sources of matter waves, giving rise to emis-
sion with certain amplitude and phase. If the amplitude and
phase of matter waves at the exits of slits can be engineered
properly, the wavefront could be controlled at will.

A. Properties of single slits

The issue involves the interaction between particles and
the dielectric medium. Generally, the particles, e.g., the
high-energy incident electrons, can penetrate the dielectric
medium, leading to various effects such as electron scattering,
phonon excitation, x-ray radiation, etc. Here, the situation is
different, as discussed below. We take the normal incidence of
electrons at a flat vacuum/dielectric interface as an example.
The matter waves studied here are of low energy, and the de
Broglie wavelength (∼100 nm) is much larger than the atomic
lattice constant. Thus, the waves experience an averaged re-
sponse near the dielectric surface, where the dielectric is
characterized by a mean inner potential VI (VI ∼ + 10–20 V)
[29–31]. Because of the normal wave vector mismatching at
the interface, the waves are usually reflected and/or transmit-
ted. The transmission of matter waves into the dielectric is
[32]

ψT

ψI
= 2

1 +
√

1 + VI e
E0

, (1)

where e and E0 are the charge (absolute value) and energy
of the electrons, respectively. For the low-energy electrons
with E0 � VI e (or λ � h/

√
2mVI e ∼ 0.3 nm), the transmis-

sion will be very small (ψT /ψI ≈ 1% for the wavelength
considered here). The transmission further degenerates when
the incident angle is increased. Therefore, the wave function
in the dielectric medium can be neglected, like the case that
the dielectric has an infinite potential or a light wave impinges
on a metal film.

The behavior of matter waves in the subwavelength slits
(sandwiched between two dielectric walls) is crucial for

determining the transmission properties of the system. To un-
derstand this point, one should solve the Schrödinger equation
in the slit and use the boundary conditions on the slit walls
(where the wave function is set as zero, according to the
above discussion). Note that, for the larger film thickness,
one need only to consider the fundamental waveguide mode
in the slits; the higher-order modes decay rapidly and can be
neglected. Thus, the wave function of the fundamental slit
mode has the following format: ψslit = f (z) cos(πx/a), where
x ∈ [−a/2, a/2]. By substituting this format of wave function
into the Schrödinger equation, one can obtain

− h̄2

2m

∂2ψslit

∂z2
+ h̄2π2

2ma2
ψslit = Eψslit, (2)

where m and E are the mass and energy of the particles.
Equation (2) means that the subwavelength slits act as

quantum meta-atoms which present an effective potential en-
ergy Ueff = h̄2π2/2ma2. Correspondingly, the propagation of
matter waves in the slits turns into the motion of particles in
the meta-atoms. Just like the role of permittivity/permeability
in the electromagnetic Helmholtz equation, the effective po-
tential energy Ueff in the Schrödinger equation will influence
the wave propagation behavior as well. By using Eq. (2),
the propagation constant of the slit mode can be determined
as q0 = √

2m(E − Ueff )/h̄. Obviously, when the energy of
particles E is larger than the effective potential energy Ueff ,
the matter wave propagates in the slits, which may cause
an efficient transmission (otherwise, the wave is evanescent,
and a weak tunneling process will take place). The balance
between E and Ueff gives rise to a cutoff wavelength for the
fundamental mode (FM) λc = 2a [33], where λ = h/

√
2mE

is the wavelength of matter waves in free space. Because the
effective potential energy Ueff is inversely proportional to the
square of the slit width (the smaller the slit width a, the larger
the Ueff ), a variation of slit width will change Ueff significantly.
Consequently, the propagation constant q0 of waves and the
motion of particles in the slits can be modified. This gives us
the possibility to manipulate the matter waves with an array
of meta-atoms (in the propagating cases).

B. Transmission amplitude and phase
of homogeneous slit arrays

A simple case is that the metasurface is degenerated into a
periodic structure with homogeneous slit width ai = a. Such
a case can be treated theoretically with the modal expansion
method, like that used in the electromagnetic diffraction prob-
lems [34,35]. The zero-order transmission coefficient of the
de Broglie waves can be derived as [see Appendix]

T0 = τ1τ2eiq0h

1 − ρ2e2iq0h
. (3)

Equation (3) suggests that the structured film behaves
like an effective Fabry-Perot cavity for the matter waves,
with the two cavity boundaries defined by the upper and
lower film interfaces. Here, τ1 = 2θ0/(1 + θ ) and τ2 =
2/(1 + θ ) are the effective transmission coefficients at the
two boundaries; ρ = (1 − θ )/(1 + θ ) is the internal effective
reflection coefficient of the cavity; θ = (2k0a/q0d ) 	nunX 2

n

and θ0 = (2k0a/q0d )X 2
0 , where un =

√
1 − G2

n/k2
0 , Xn =
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FIG. 2. (a) Calculated transmittance and transmission phase of
the periodically structured film. The inset shows the phase shift of the
slit mode in a round trip (solid line) and at the openings (dash line) as
a function of wavelength, where the vertical dotted lines denote the
three peak wavelengths. (b)–(d) Near-field distributions (normalized
to the amplitude of incident wave) in the xz plane of a unit cell at
the peak wavelength (b) 100 nm, (c) 105 nm, and (d) 113 nm. Here,
d = 100 nm, a = 58 nm, and h = 200 nm.

(1/a)
∫ a/2
−a/2 cos(πx/a)e±iGnxdx is the mode-overlapping inte-

gral, k0 is the wave vector in free space, and Gn = 2πn/d is
the reciprocal lattice vector. With Eq. (3), the transmittance
t0 = |T0|2 and phase ϕt = arg(T0) of matter waves can be ob-
tained easily. Note that, in Eq. (3), T0 is closely correlated with
the slit propagation constant q0 and thus with the effective
potential energy Ueff or the slit width a. Indeed, this provides
the space for controlling the transmission amplitude and phase
of the matter waves.

For the structures with subwavelength period and narrow
slits (λ > d � 2a), the slits work in the cutoff region, and
the transmittance was found to be very low. However, for
the structures with subwavelength period but wide slits (2a >

λ > d), the slit mode is propagating, and efficient transmis-
sion can be achieved. To demonstrate this point, the structural
parameters were set as follows: the period d = 100 nm,
the width of the slits a = 58 nm (a > d/2), and the film
thickness h = 200 nm. The transmittance and phase as a func-
tion of wavelength are calculated and shown in Fig. 2(a).
Remarkably, three transmission peaks locating around the
wavelengths 100, 105, and 113 nm can be found, with the
transmission efficiency very close to unity. The total band-
width of the three peaks is ∼20 nm (relative band width

is ∼20%), much larger than that achieved with the surface
waves [19]. The ∼100% transmission of matter waves through
dielectric films with wider slits (without the surface potential
wells) provides an efficient way for manipulating the quan-
tum particles. When the wavelength approaches the cutoff
wavelength (116 nm), the transmission of matter waves will
decrease rapidly. In addition, the calculation also shows that
the transmission phase (the dash line) will vary with the wave-
length almost linearly.

It is well known that the excitation of surface modes, e.g.,
the surface plasmon polariton and surface matter waves, is
a major mechanism responsible for the enhanced transmis-
sion [7,26]. However, here, the surface matter waves are not
present. To understand the mechanism of efficient transmis-
sion, the near-field distributions for the three transmission
peaks are calculated and plotted in Figs. 2(b)–2(d). The results
show that the slit mode exhibits a stationarylike pattern, and its
amplitude is greatly enhanced at the transmission peaks. Thus,
the enhanced transmission might be related to the waveguide
resonance. According to Eq. (3), the condition for waveguide
resonances can be expressed as 2q0h + 2 arg(ρ) = 2πm [m is
an integer and arg(ρ) represents the phase shift of slit mode
at the upper or lower openings]. Our calculation, as shown in
inset of Fig. 2(a), indicates that the peaks at the wavelengths
113 and 105 nm correspond to the zero (m = 0)- and first
(m = 1)-order waveguide resonances, respectively. However,
the peak at the wavelength 100 nm, just matching the lattice
period d , cannot be attributed simply to the waveguide mode.
In this case, the first-order diffraction modes of the matter
waves are tangent to the film surface, thus corresponding to
the Rayleigh anomaly. As shown in the following, this peak
always exists in the transmission spectra with the peak posi-
tion independent of the slit sizes (λ = d < 2a), different from
other transmission peaks.

Figures 3(a) and 3(b) show the transmission efficiency and
phase for different slit width a, where the lattice constant and
film thickness were fixed as d = 100 nm and h = 300 nm, and
the slit width a was varied from 59 to 85 nm. Figure 3(a) in-
dicates that, for each slit width a, multiple transmission peaks
are present. Generally, the positions of these peaks rely on
the value of a, corresponding to the resonances of waveguide
mode. Importantly, for all cases, a common transmission peak
with the efficiency approaching 100% can be found at the
wavelength of the Rayleigh anomaly (λ = d = 100 nm). On
the other hand, Fig. 3(b) shows that, for each slit width, the
transmission phase varies with the wavelength almost linearly.
For a given wavelength, the phase will increase with the slit
width gradually. For example, at the Rayleigh anomaly, a
phase increment ∼60° can be achieved when the slit width
a increases from 59 nm to 62, 66, 70, 76, and 85 nm (when
the wavelength deviates from the Rayleigh anomaly, the trans-
mittance can still maintain at a high level, and a similar phase
increment can be kept). Therefore, by varying the slit width, a
full 360° phase control is attainable.

C. Focusing of matter waves with gradient slit arrays

By utilizing the above transmission characters at the
Rayleigh anomaly, i.e., the insensitivity of transmission am-
plitude and sensitivity of transmission phase to the slit width,
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FIG. 3. (a) Transmittance and (b) phase as a function of wave-
length for periodic structure with different slit widths a. Here, d =
100 nm and h = 300 nm. The vertical dash line corresponds to the
Rayleigh anomaly.

efficient wavefront shaping of matter waves can be realized.
For instance, if the dielectric film is structured with super
unit cells, each consisting of six slits of the same spacing
but gradient slit width (as used in Fig. 3), one can obtain a
de Broglie wave metasurface which owns a constant phase
gradient along the surface. Such a metasurface can be applied
to realize the bending of matter waves.

Now we will design a flat metalens based on the gradient
metasurface to focus the matter waves. The metalens is con-
structed by a dielectric film tailored with concentric annular
slits, which have the same slit spacing d but gradient slit width
an along the radial direction (note that a two-dimensional
array of rectangular holes of gradient size ax can also work,
where ax � ay and dx < dy). The schematic view of the met-
alens and the related coordinate system are shown in Fig. 4(a).

For simplicity, here, only six annular slits in the film are
considered, where the spacing of slits and film thickness are
fixed as d = 100 nm and h = 300 nm, respectively. The mat-
ter waves with the wavelength λ are normally incident on the
metalens along the +z direction. To function as a flat lens with
the focal length f , the phase profile at the metalens surface
needs to follow

ϕn = ϕ1 − 2π

λ

(√
rn

2 + f 2 −
√

r1
2 + f 2

)
, (4)

where ϕn (n = 1–6 denotes the nth annular slit counted from
the center of the metalens) is the transmission phase at the
opening of the nth slit and rn = nd represents the central
radius of the nth slit.

For the incident scalar matter waves, the concentric an-
nular slits of equal spacing feel like the one-dimensional
slits in the radial direction. Moreover, due to the excitation
of the localized waveguide mode, the transmission phase
is largely governed by the individual slits. This enables us
to determine the width of each slit based on the previous
calculation [Eq. (3)] and the required phase profile at the
metalens [Eq. (4)]. Here, we set the incident wavelength as
λ = d = 100 nm and aim at focusing with the focal length
of f = 500 nm. The slit widths an and transmission phase
ϕn for each annular slit that comprise the flat metalens are
thus determined, as listed in Table I. Because of the Rayleigh
anomaly, the transmittance of each slit is around unity.
Consequently, each annular slit acts as the source of wavelets,
with the transmitted matter wave function at the slit opening
written simply as ψn

z=0 = eiϕn . The superposition of wavelets
emitted by the annular slits gives rise to the focusing wave
fields of the metalens.

Based on Kirchhoff’s diffraction formula [36], the total
wave function passing through the annular metalens can be
obtained as

ψt (x, y, z)= 1

2iλ

6∑
n=1

eiϕn

∫
σn

eik0sn

sn

[
1+ z

sn

(
1− 1

ik0sn

)]
dσn,

(5)

FIG. 4. (a) Schematic view of the matter wave metalens. The matter wave is normally incident on the metalens along the z axis.
(b) Distribution of the intensity of matter waves at the xz plane (the color scale is of arbitrary units). (c) The intensity of matter waves
along the x axis at the focal plane. Here, the spacing of annular slits is d = 100 nm, the film thickness is h = 300 nm, and the wavelength of
matter waves is fixed as 100 nm.
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TABLE I. The slit widths an and transmission phase ϕn for each
annular slit shown in Fig. 4(a). Here, n denotes the nth slit counted
from the center of the metalens.

n an (nm) ϕn (deg)

1 80 122
2 68 10
3 60 −130
4 68 10
5 80 122
6 60 −130

where sn is the distance between the observation point (x, y, z)
and the source point P (r cos α, r sin α, 0) at the opening of
the nth annular slit, r is the distance between the point P
and the coordinate origin O (nd − an/2 � r � nd + an/2),
α is the angle between the line OP and the x axis, and σn

denotes the integral area covering the whole area of the nth
annular slit. With the transmission phase φn and slit width
an listed in Table I, the wave function and the intensity of
matter waves at arbitrary observation point (x, y, z) have been
numerically calculated by using Eq. (5). Figure 4(b) maps the
distribution of the intensity of matter wave in the xz plane.
Clearly, a focusing of matter waves at the focal length of
500 nm with high intensity has been suggested. In addition,
Fig. 4(c) plots the intensity of matter waves along the x axis at
the focal plane (z = 500 nm). The full width at half maximum
(FWHM) of the focal intensity is ∼58 nm, which is smaller
than the wavelength (100 nm) but slightly larger than the half
wavelength of the incident wave, indicating that the focusing
is diffraction limited. The results show that highly efficient
focusing of matter waves can be achieved with a flat metalens.
It should be noticed that our theoretical treatment is based
on the single-particle approximation, and the space charge
effect was not accounted. The approximation holds for the
electron beams with low current densities. When the current
density is increased, the repulsion of electrons will modify the
diffraction pattern, and the FWHM of the focal intensity will
be enlarged. A similar effect also exists in the conventional
electron lenses.

III. CONCLUSIONS

In summary, metasurfaces for the de Broglie waves have
been proposed and studied. We showed that, at the waveg-
uide resonances or Rayleigh anomaly, ∼100% transmission of
matter waves through the subwavelength slits can be achieved.
Moreover, the subwavelength slits may function as quantum
meta-atoms, where the particles will feel an effective potential
energy dominated by the slit width. Thus, by varying the
effective potential energy, a full coverage of 360° of the trans-
mission phase is attainable. Employing an annular gradient
metasurface, highly efficient and subwavelength focusing of
matter waves has been demonstrated theoretically. The wave-
front shaping of matter waves with flat metasurfaces may
be valuable for subwavelength resolution imaging, lithogra-
phy, and holography, etc. Our results could be extended to
the region of shorter de Broglie wavelength, such as several

nanometers, but this may raise challenges for nanofabrication
techniques.
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APPENDIX

We assume that the low-energy particles, with the de
Broglie wavelength much larger than the atomic lattice con-
stant, are incident normally upon the freestanding dielectric
film that is milled with the subwavelength slits. The spatial
potential experienced by the particles is set as zero except
for the dielectric region. As discussed previously, the particles
will be prevented from entering the dielectric medium (where
the wave function is ∼0), equivalent to an infinite potential
for the dielectric. Moreover, the incident particles (e.g., elec-
trons) have a low density; thus, the space charge effect can be
neglected, and the problem is simplified as the single-particle
one. For a given particle energy E , the wave functions in
the free space are governed by the single-particle stationary
Schrödinger equation:(

∇2 + 2mE

h̄2

)
ψ (x, z) = 0. (A1)

As is well known, Eq. (A1) is like the Helmholtz equation of
the time-harmonic electromagnetic fields.

When the metasurface is degenerated into a periodic struc-
ture (see Fig. 5), the wave functions of Eq. (A1) in regions I,
II, and III can be expressed with the modal expansion method
as (ignoring the time-harmonic items)

ψ I(x, z) = e−ik0z +
±∞∑
n=0

Rnei(Gnx+unk0z),

ψ II(x, z) = (A0eiq0z + B0e−iq0z )C0(x),

ψ III(x, z) =
±∞∑
n=0

Tnei[Gnx−unk0(z+h)]. (A2)

Here, k0 = √
2mE/h̄ = 2π/λ is the wave vector in free

space (λ is the de Broglie wavelength), Gn = 2πn/d (n is an
integer) is the reciprocal lattice vector, and un =

√
1−G2

n/k2
0 ;

Rn and Tn are, respectively, the reflection and transmission
coefficients corresponding to the nth-order diffraction modes

FIG. 5. Schematic view of the de Broglie wave metasurface in
the periodic case, where the subwavelength slits are cut in the film
with homogeneous slit width ai = a. The h and d denote the thick-
ness and period of the slits, respectively. The plane matter waves
(with the wavelength λ) are normally incident on the metasurface
along the −z direction.
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(for subwavelength structure, only the zero-order mode is
propagating, and the other modes are all evanescent); A0

and B0 are, respectively, the amplitudes of the backward and
forward waves in the slits, q0 =

√
k2

0 − (π/a)2 is the propa-
gation constant of the fundamental slit mode, and C0(x) =
cos(πx/a) (|x| � a/2) or C0(x) = 0 (a/2 < |x| < d/2) (the
single-mode approximation is used in the slits, as the FM will
play a dominant role in our case).

The wave functions of de Broglie waves satisfy the bound-
ary conditions at the two horizontal film interfaces. One
boundary condition is the continuity of wave functions in a
lattice period (|x| � d/2):

ψ I(x, 0+) = ψ II(x, 0−),

ψ II(x,−h+) = ψ III(x,−h−). (A3)

The other boundary condition is the continuity of gradient
of wave functions at the slit openings (|x| � a/2):

∇zψ
I(x, 0+) = ∇zψ

II(x, 0−),

∇zψ
II(x,−h+) = ∇zψ

III(x,−h−). (A4)

The boundary conditions can be treated using the follow-
ing way. We replace ψ [Eq. (A2)] into Eq. (A3), multiply
both sides of Eq. (A3) with e−iGmx, and perform the inte-
gral over one period. Likewise, we replace ψ in Eq. (A4),
multiply both sides of Eq. (A4) with cos(πx/a), and per-
form the integral over the slit width. By utilizing the
orthogonal conditions (1/d ) ∫d/2

−d/2 eiGnxe−iGmxdx = δmn and

(2/a) ∫a/2
−a/2 cos2(πx/a)dx = 1, we have the following equa-

tions:

Rm = w(A0 + B0)Xm − δm0, (A5)

Tm = w(A0e−iq0h + B0eiq0h)Xm, (A6)

A0 − B0 = 2k0

q0

(
−X0 +

±∞∑
m=0

RmumXm

)
, (A7)

A0e−iq0h − B0eiq0h = −2k0

q0

±∞∑
m=0

TmumXm. (A8)

Here, w = a/d is the duty cycle of the slits, and Xm rep-
resents the overlapping integral between the fundamental slit
mode and surface diffraction modes at the openings of the
slits:

Xm = 1

a

∫ a/2

−a/2
cos

πx

a
e±iGmxdx. (A9)

By using Eqs. (A5)–(A8), one can obtain A0, B0, Rm,
and Tm, thus determining the wave functions in the space
[Eq. (A2)]. The zero-order transmission coefficient of the
system, in which we are mostly interested, can be derived
as

T0 = τ1τ2eiq0h

1 − ρ2e2iq0h
, (A10)

where τ1 = 2θ0/(1 + θ ) and τ2 = 2/(1 + θ ) are the
effective transmission coefficients at the upper and
lower film interfaces, respectively; ρ = (1 − θ )/(1 + θ )
is the effective reflection coefficient in the cavity
defined by the dielectric film; θ0 = (2k0a/q0d )X 2

0 and
θ = (2k0a/q0d )	nunX 2

n . With Eq. (A10), the amplitude and
phase of zero-order transmission of de Broglie waves can be
obtained.
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