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Spin waves in doped graphene: A time-dependent spin density functional approach to collective
excitations in paramagnetic two-dimensional Dirac fermion gases
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In spin-polarized itinerant electron systems, collective spin-wave modes arise from dynamical exchange and
correlation (xc) effects. We consider here spin waves in doped paramagnetic graphene with adjustable Zeeman-
type band splitting. The spin waves are described using time-dependent spin density functional response theory,
treating dynamical xc effects within the Slater and Singwi-Tosi-Land-Sjölander approximations. We obtain spin-
wave dispersions and spin stiffnesses as a function of doping and spin polarization, and we discuss the prospects
for their experimental observation.
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I. INTRODUCTION

Graphene is a material with many fascinating structural and
electronic properties [1]. Most notably, it has a Dirac cone
feature in its energy bands that leads to the electrons behav-
ing as massless particles. In its pristine form, graphene is a
semimetal; it can be made metallic through doping or gating,
which then leads to a wealth of applications, for instance
in plasmonics [2–5]. Together with many other new two-
dimensional (2D) materials, graphene also shows promise for
spintronics applications [6].

Plasmons are collective charge-density excitations, which
can be characterized as the collective response of an electron
gas to an induced electrostatic perturbation. Typically, plas-
mon mode frequencies and dispersions are calculated using
the random-phase approximation (RPA); such calculations
were done for graphene early on [7–11]. The left panels of
Fig. 1 give a schematic illustration of plasmons in doped
graphene, showing inter- and intraband single-particle exci-
tations and the plasmon dispersion. The latter is very similar
to the plasmon dispersion in a two-dimensional electron gas
(2DEG) [12], with a characteristic

√
q behavior for small

wave vectors q. However, in graphene there are also interband
excitations from the lower to the upper cone, and the associ-
ated interband single-particle continuum affects the plasmon
dispersion for larger q. Such interband excitations are absent
in the 2DEG model.

In this paper, we study a type of collective excitation that
has so far not attracted much attention in graphene, namely
spin waves. As illustrated on the right side of Fig. 1, we
consider doped, magnetized graphene in which the spin-up
and spin-down bands are split by an effective Zeeman energy
Z∗. The upper right-hand panel shows inter- and intraband
spin-flip excitations, and the lower right-hand panel shows the
dispersion of a collective spin-flip mode or spin wave.

The corresponding spin waves in magnetic 2DEGs have
been well studied theoretically and experimentally [13–26].

On the other hand, apart from a recent study based on Fermi-
liquid theory [27], spin waves in doped graphene have not
been investigated to our knowledge. A different type of col-
lective excitation, known as magnetoplasmon, has been more
widely studied in graphene, including edges, nanoribbons, and
other graphene nanostructures [28–36]. Magnetoplasmons oc-
cur in the presence of Landau level quantization induced by
perpendicular magnetic fields. Here, by contrast, we will con-
sider situations in which the spin splitting can be thought of
as being induced by in-plane magnetic fields, hence there are
no Landau levels.

Traditional band theory, based on density-functional theory
(DFT), has been extremely successful in describing materials
with Dirac-like topological features [37]. Thus, in principle,
we could calculate the graphene band structure using, for
instance, the local spin-density approximation (LSDA), and
then obtain the spin-wave dispersions using linear-response
theory based on time-dependent density-functional theory
(TDDFT) [38], similar to the standard way of calculating
magnons in magnetic materials from first principles [39–41].

On the other hand, electrons in graphene and other topo-
logical materials close to the Dirac points are well described
by simple tight-binding model Hamiltonians [1,42], which de-
fines the model system of a 2D Dirac fermion gas; the purpose
of this paper is to study spin waves within this model sys-
tem. This simplifies the task enormously, since a full-fledged
band-structure calculation is not needed, and the electronic
single-particle states are known analytically.

However, when it comes to the calculation of spin waves,
the Dirac fermion model presents us with an interesting
challenge. The formation of spin waves in itinerant electron
systems is due to electronic many-body effects beyond the
RPA. Many-body effects in graphene have been studied in
the literature; see, e.g., [43,44]. In the language of TDDFT,
these are dynamical exchange-correlation (xc) effects, which
have to be approximated as functionals of the (spin) density.
Most standard approximations in DFT, such as the LSDA or
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FIG. 1. Top left: spin-conserving single-particle transitions of
doped, nonmagnetic graphene near a Dirac point. Bottom left: as-
sociated plasmon dispersion and intra- and interband single-particle
continua. Top right: spin-flip transitions of doped, magnetized
graphene near a Dirac point. The bands are split by the Zeeman en-
ergy Z∗. Bottom right: associated single-particle spin-flip continuum
and spin-wave dispersion, where ωL denotes the Larmor frequency.

gradient-corrected functionals [45], are based on the homoge-
neous electron gas (or the 2DEG [46,47]); but a homogeneous
electron gas is not an appropriate reference system for Dirac
fermions. The reason is that Dirac fermions are massless with
an energy dispersion linear in the wave vector k, whereas the
homogeneous electron gas is made up of particles with finite
mass m and an energy dispersion quadratic in k; thus, the xc
effects in the two systems will be quite different, which means
that the standard DFT functionals are not applicable.

A way out of this dilemma is to use xc functionals which
are not tied to any reference system, such as the so-called
“orbital functionals” of (TD)DFT [48]. In this paper, we will
use two orbital-dependent approximations, namely the local
exchange functional of Slater [49], and the Singwi-Tosi-Land-
Sjölander (STLS) approach to include correlation [12,50].
These functionals were recently used to study the struc-
ture and dynamics in Hubbard systems with noncollinear
magnetism [51,52]. Here, we will use them to analyze the
spin-wave dispersion and spin stiffness of doped magnetized
graphene as a function of doping concentration and degree of
spin polarization.

This paper is organized as follows: Section II presents
the necessary formal background for describing collective
excitations within spin-TDDFT, namely linear-response the-
ory for noncollinear spins and the definitions of the Slater
and STLS approximations. In Sec. III we define our model
for Zeeman-split Dirac fermions in graphene, and we show
how to calculate spin waves using the Slater and STLS ap-
proximations. Section IV then presents results for spin-wave
dispersions and spin stiffnesses for various parameters, and

discusses prospects for experimental observation. Conclu-
sions are given in Sec. V. Further information regarding the
derivation of the noninteracting response function, a discus-
sion of the magnetic fields required to produce spin-split
bands, and additional numerical details are given in the Ap-
pendices. Atomic units (e = m = h̄ = 4πε0 = 1) are used
throughout.

II. COLLECTIVE EXCITATIONS WITH SPIN-TDDFT

A. Linear response formalism

The excitations of interacting electronic systems are en-
coded in the many-body response function [12]. Here, we
are specifically concerned with spin waves, which are collec-
tive spin-flip modes; thus, a spin-dependent linear-response
formalism is required, which will be based on TDDFT for
noncollinear spins. In this framework, the basic variable is the
spin-density-matrix,

n(r) =
(

n↑↑(r) n↑↓(r)

n↓↑(r) n↓↓(r)

)
. (1)

Alternatively, the theory can be formulated in terms of the
particle density n(r) = n↑↑(r) + n↓↓(r) and the magnetiza-
tion vector m(r) = tr{σn(r)}, where σ is the vector of Pauli
matrices.

Let us now consider the response of the system to a
frequency-dependent perturbation δv(r, ω), which has a sim-
ilar matrix form as the spin-density matrix (1), and couples
to the charge and spin degrees of freedom. The linear spin-
density-matrix response is given by

δn(r, ω) =
∫

dr′x(r, r′, ω)δv(r′, ω), (2)

where x is the many-body spin-density-matrix response ten-
sor. In TDDFT, Eq. (2) is rewritten as

δn(r, ω) =
∫

dr′x(0)(r, r′, ω)δveff (r′, ω), (3)

where x(0) is the response tensor of the noninteracting Kohn-
Sham system, and the effective perturbation is defined as the
sum of the physical perturbation plus a Hartree and exchange-
correlation (Hxc) contribution, δveff = δv + δvHxc. The latter
is given by

δvHxc(r, ω) =
∫

dr′ fHxc(r, r′, ω)δn(r′, ω). (4)

The Hartree part of the Hxc kernel is diagonal in the spin
indices, f H

σσ ′,ττ ′ (r, r′, ω) = δσσ ′δττ ′/|r − r′|. The remainder,
the xc kernel fxc(r, r′, ω), needs to be approximated.

To obtain the excitation energies of the physical systems,
we need an explicit expression for the interacting spin-density
matrix response tensor x. Comparing the two response equa-
tions, Eqs. (2) and (3), leads to

x = (1 − x(0)fHxc)−1x(0). (5)

The excitations are at those frequencies where x diverges. This
can happen in two ways: when x(0) diverges, or when 1 −
x(0)fHxc is not invertible. The former yields the single-particle
excitation spectrum, the latter the collective excitations.
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Thus, all we need is the noninteracting response ten-
sor x(0) and an approximation for fxc. Here, we consider
the special case in which the ground state is such that
the system is uniformly magnetized, i.e., the spins are
collinear. In that case, x(0) only has four nonvanishing compo-
nents: χ

(0)
↑↑,↑↑, χ

(0)
↓↓,↓↓, χ

(0)
↑↓,↑↓, χ

(0)
↓↑,↓↑, which directly follows

from its explicit form; see Eq. (28) below. The xc ten-
sor, on the other hand, has the nonvanishing elements
f xc
↑↑,↑↑, f xc

↓↓,↓↓, f xc
↑↑,↓↓, f xc

↓↓,↑↑, f xc
↑↓,↑↓, f xc

↓↑,↓↑ [53]. With this,
we find that 1 − x(0)fHxc can be represented in the following
4 × 4 matrix form:

1 − x(0)fHxc =

⎛
⎜⎜⎜⎜⎜⎝

1 − (w + f xc
↑↑,↑↑)χ (0)

↑↑,↑↑ 0 0 −(w + f xc
↑↑,↓↓)χ (0)

↑↑,↑↑

0 1 − f xc
↑↓,↑↓χ

(0)
↑↓,↑↓ 0 0

0 0 1 − f xc
↓↑,↓↑χ

(0)
↓↑,↓↑ 0

−(w + f xc
↓↓,↑↑)χ (0)

↓↓,↓↓ 0 0 1 − (w + f xc
↓↓,↓↓)χ (0)

↓↓,↓↓

⎞
⎟⎟⎟⎟⎟⎠, (6)

where w represents the Coulomb interaction. This matrix is
noninvertible if its determinant is zero. We can rearrange the
matrix in block diagonal form, so that the determinant factors
into a product of the determinants of two 2 × 2 matrices:

det|1 − x(0)fHxc| = det|M
L
| det|M

T
| , (7)

where the longitudinal block is

M
L

=
(

1 − (w + f xc
↑↑,↑↑)χ (0)

↑↑,↑↑ −(w + f xc
↑↑,↓↓)χ (0)

↑↑,↑↑

−(w + f xc
↓↓,↑↑)χ (0)

↓↓,↓↓ 1 − (w + f xc
↓↓,↓↓)χ (0)

↓↓,↓↓

)

(8)
and the transverse block is

M
T

=
(

1 − f xc
↑↓,↑↓χ

(0)
↑↓,↑↓ 0

0 1 − f xc
↓↑,↓↑χ

(0)
↓↑,↓↑

)
. (9)

Here, longitudinal and transverse refers to the spin quan-
tization axis. Thus, the condition det|M

L
| = 0 yields the

longitudinal (or spin-conserving) collective excitations, and
det|M

T
| = 0 yields the transverse (or spin-flip) collective

excitations. The former are the usual plasmon mode and a
longitudinal spin excitation, and the latter are the spin waves.
In the following, we will make the adiabatic approximation
for the xc kernel, i.e., we ignore the frequency dependence of
the f xc’s.

B. Construction of dispersion relations

We see that both longitudinal unpolarized charge (plas-
mon) and transverse spin (spin-wave) collective excitations
satisfy equations of the schematic form

1 − f (q)χ (q, ω) = 0, (10)

where f and χ are place holders for the corresponding func-
tions specific to the underlying system.

To obtain the dispersion relation, ω(q), that satisfies this
condition, one must be able to invert the function χ (q, ω)
for ω. It is possible to approximate the inverse of χ to an
arbitrary degree using a technique called series reversion [54].
The procedure consists of obtaining a series approximation of
χ in ω to an arbitrary degree, obtain the inverse of the series
using series reversion, and finally evaluate the inverse series
at 1/ f (q).

We expand the response in ω around ω(q = 0) ≡ ω0:

Xn[q, ω0](ω) =
n∑

l=0

χ (0,l )(q, ω0)

l!
(ω − ω0)l , (11)

where Xn[q, ω0](ω) is the truncated series approximation of
χ (q, ω), and we define a shorthand for the partial derivatives
of a function of the form g(x, y):

g(m,n)(a, b) =
(

∂m

∂xm

∂n

∂yn
g(x, y)

)
x=a,y=b

. (12)

We then use X in place of χ in Eq. (10),

χ (q, ω) ≈ Xn[q, ω0](ω) = 1

f (q)
, (13)

and inversion of this yields

ω(q) ≈ X inv
n [q, ω0]

(
1

f (q)

)
. (14)

The details of this inverse series are left to the specifics of the
system.

C. The Slater and STLS approximations

To calculate spin-wave excitations, the transverse xc
kernels f xc

↑↓,↑↓, f xc
↓↑,↓↑ are needed. As discussed in the Intro-

duction, we shall work with two orbital-dependent approxi-
mations: Slater and STLS. Both xc kernels are independent of
the frequency ω.

The Slater exchange kernel [12,55] was generalized for
noncollinear spin dynamics in Ref. [51]. In the limit where
the ground state has collinear spin, the Slater exchange kernel
has the following elements:

f x,S
σσ,σσ (r, r′) = − |γσσ (r, r)|2

nσσ (r)nσσ (r′)|r − r′| , (15)

f x,S
σ σ̄ ,σ σ̄ (r, r′) = −4

γσσ (r, r′)γσ̄ σ̄ (r′, r′)
n(r)n(r′)|r − r′| , (16)

where γσσ ′ (r, r′) is the spin-resolved reduced one-body den-
sity matrix of the Kohn-Sham system.

For an unpolarized 2DEG, the Fourier transform of the
Slater exchange kernel was worked out in Ref. [56]. The
generalization to the spin-polarized 2DEG, with spin densities
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nσ and total density n = n↑ + n↓ and corresponding Fermi
wave vectors kFσ = √

2πnσ and kF = √
2πn, is as follows:

f x,S
σσ,σσ (q) = − 8π

k2
Fσ

∫ ∞

0

dx

x2
J0(qx)J2

1 (kFσ x), (17)

f x,S
σ σ̄ ,σ σ̄ (q) = −8πkFσ kF σ̄

k4
F

∫ ∞

0

dx

x2
J0(qx)J1(kFσ x)J1(kF σ̄ x),

(18)

where J0 and J1 denote Bessel functions of the first kind.
The corresponding expressions for graphene will be discussed
below in Sec. III D.

The STLS approach was originally introduced to describe
correlations in the homogeneous electron gas [12,50]. The
idea is to write fxc as a function of the static structure factor
of the electron gas, S (q); the latter is related to the imaginary
part of the response function χ via the fluctuation-dissipation
theorem. Since χ in turn depends of fxc, see Eq. (5), one ends
up with a self-consistent scheme, which leads to excellent
correlation energies over a wide range of densities [57].

The STLS xc kernel [12,50] was generalized to systems
with noncollinear spin in Ref. [51]. More precisely, the non-
collinear formulation of Ref. [51] involved a simplified, scalar
form of the original STLS scheme, termed sSTLS. Again,
let us consider the special case in which the ground state is
collinear. The elements of the xc tensor fxc,sSTLS(r, r′) are then
given by

f xc,sSTLS
σσ ′,αα′ (r, r′) = 1

|r − r′|Rσσ ′,αα′ (r, r′)

×[Sσσ ′,αα′ (r, r′) − δσαδ(r − r′)nα′σ ′ (r)],

(19)

where Rσσ ′,αα′ are the elements of the following matrix:

R =

⎛
⎜⎜⎜⎜⎝

1
n↑(r)n↑(r′ )

2
n(r)n↑(r′ )

2
n(r)n↑(r′ )

1
n↓(r)n↑(r′ )

2
n↑(r)n(r′ )

4
n(r)n(r′ )

4
n(r)n(r′ )

2
n↓(r)n(r′ )

2
n↑(r)n(r′ )

4
n(r)n(r′ )

4
n(r)n(r′ )

2
n↓(r)n(r′ )

1
n↑(r)n↓(r′ )

2
n(r)n↓(r′ )

2
n(r)n↓(r′ )

1
n↓(r)n↓(r′ )

⎞
⎟⎟⎟⎟⎠. (20)

Sσσ ′,αα′ (r, r′) are the elements of the generalized static struc-
ture factor:

S(r, r′) = − 1

π

∫ ∞

0
Imx(r, r′, ω)dω. (21)

The response tensor x, in turn, follows from Eq. (5) evaluated
with the sSTLS kernel (19), which closes the self-consistency
loop. If in the first step of the iteration Eq. (21) is initialized
with x(0), then Eq. (19) yields the Slater exchange kernel.
Correlation enters in the subsequent iteration steps.

Consider again the homogeneous 2D case and carry out a
Fourier transformation of Eq. (19); specifically, for the trans-
verse xc kernel in sSTLS approximation we obtain

f xc,sSTLS
σ σ̄ ,σ σ̄ (q) = 4

n2

∑
q′

vq′ [Sσ σ̄ ,σ σ̄ (q − q′) − nσ̄ σ̄ ], (22)

where vq = 2π/q. We also introduce an alternative form of
the xc kernel, which directly generalizes the original STLS

approach [50]:

f xc,STLS
σ σ̄ ,σ σ̄ (q) = 4

n2

∑
q′

q · q′

q2
vq′[Sσ σ̄ ,σ σ̄ (q − q′) − nσ̄ σ̄ ].

(23)
The difference between the two schemes is that the scalar
sSTLS is based on the effective potential, whereas the full
STLS is based on the effective force [12]. Expressing the full
STLS kernel in real space and for inhomogeneous systems
causes some technical complications, since forces formally
couple to currents rather than densities [57]. However, in the
homogeneous case the transition from Eq. (22) to (23) is
straightforward.

For graphene, the construction of the (s)STLS xc kernels
involves some subtleties, which we will discuss below.

III. COLLECTIVE EXCITATIONS IN GRAPHENE

A. Model: Dirac fermions with Zeeman splitting

The tight-binding model is commonly used to describe the
band structure of graphene [1]. We consider a generalization
in which the spin-up and spin-down bands are split by a
Zeeman energy Z∗.

For isolated atoms in strong magnetic fields, the Zeeman
effect includes contributions from both spin and orbital an-
gular momentum. In graphene, on the other hand, the orbital
angular momentum of the 2pz electrons is quenched [58] and
the tight-binding model only needs to include the spin. Thus,
we consider a Hamiltonian of the form

Ĥ = −t
∑

〈l,m〉,σ
(ĉ†

lσ ĉmσ + H.c.) + Z∗

2

∑
j,σ

sσ ĉ†
jσ ĉ jσ , (24)

where t (≈2.8 eV) is the nearest-neighbor hopping energy,
ĉ†

lσ (ĉlσ ) is the creation (annihilation) operator for an electron
with spin σ at the lth site, and sσ = +1 and −1 for σ =↑ and
↓, respectively. The sum over 〈l, m〉 is restricted to nearest-
neighboring sites.

In our model, Z∗ is treated as an adjustable parameter.
Notice that Z∗ denotes the Zeeman energy renormalized by
electronic many-body effects, which in general differs from
the bare Zeeman energy Z [21]. To determine Z∗ from first
principles would require a self-consistent calculation of the
band structure in the presence of an externally applied uni-
form in-plane magnetic field, or a magnetic field induced by
proximity to a ferromagnetic substrate; how this could be
realized will be further discussed in Sec. IV B. In Appendix B,
we calculate the effective magnetic field strengths required to
produce given values of Z∗ in graphene.

Notice that here we neglect any effects resulting from
the coupling of in-plane magnetic fields to orbital cur-
rents. The orbital motion of the electrons is not affected by
in-plane magnetic fields up to field strengths of order 103 T,
since the magnetic length � = √

h̄/eB is much larger than
the single-atom width of graphene [59]. However, for rippled
graphene or for graphene bilayers or multilayers, magnetic
orbital effects may no longer be negligible [60–65].
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FIG. 2. Spin-split Dirac cones of doped graphene. The Zeeman
splitting gives rise to different Fermi surfaces for the majority and
minority spins.

We are particularly interested in the electronic states close
to the Dirac points. Instead of working with the eigenstates of
the full tight-binding Hamiltonian (24), one can consider the
eigenstates of the reduced Hamiltonian ĤK , valid around the
K point of the graphene Brillouin zone [1,66]:

ĤK = γ
(
σ̂ (b)

x kx + σ̂ (b)
y ky

) + Z∗

2
σ̂ (s)

z . (25)

Here, γ = 3at/2, where a is the C-C bond length in graphene,
σ̂x,y,z are Pauli matrices operating on the band (b) or spin
(s) degrees of freedom, and k = (kx, ky) is a wave vector
measured with respect to the Dirac point K . The energy eigen-
values of ĤK are

εkbσ = bγ |k| + sσ

Z∗

2
, (26)

where b = ±1 is the band index. The spin-split Dirac cones
are illustrated in Fig. 2. The associated eigenstates are

ψK
kbσ (r) = eik·r

√
2

(
e−iφk

b

)
⊗ sσ , (27)

involving the product of a two-component pseudospinor
(since there are two sites within a unit cell) with the two-
component (up/down) spinor sσ . The eigenstates ψK ′

kbσ (r)
around the K ′ point are obtained by replacing b with −b in
Eq. (27).

We note that our model for graphene is isotropic in the
plane and does not include spin-orbit coupling. Therefore,
all spin-wave results will be independent of the direction of

the spin quantization axis (which is, in turn, defined by the
in-plane magnetic field).

B. Noninteracting response function

As discussed in Sec. II A, the noninteracting response
tensor x(0) is the fundamental object needed to calculate col-
lective excitations. The generic definition is

x(0)(r, r′, ω) =
∑

jl

( fl − f j )
ψ j (r)ψ†

l (r)ψ†
j (r′)ψl (r′)

ω − (ε j − εl ) + iη
, (28)

where the ψ j are single-particle spinor wave functions labeled
by a set of quantum numbers j, ε j are the associated single-
particle energies, f j are occupation numbers (here, either 0 or
1), and η is a positive infinitesimal.

The noninteracting response function of graphene (within
the Dirac fermion model) is obtained by substituting the
single-particle energies (26) and eigenstates (27) into Eq. (28).
The spin-independent form of the graphene response function
is well known from the literature [7,9,66]; here, we generalize
it to the spin-dependent case. Details of the derivation are
given in Appendix A. Furthermore, instead of real frequencies
ω, we evaluate the response function for complex frequencies
z, which has certain technical advantages, as discussed in
Appendix C. The result for the non-spin-dependent response
function at Z∗ = 0, χ (0) = χ

(0)
↑↑,↑↑ + χ

(0)
↓↓,↓↓, is as follows:

χ (0)(q, z)

gsgv

= − kF

2πγ
− q

16γ

√
1 − (

z
γ q

)2

+
±1∑
α

q

16πγ
G

(
αz

γ q
,
αz + 2γ kF

γ q

)
, (29)

where gs and gv are the spin and valley degeneracies,
respectively, kF = √

4πn/gsgv is the Fermi wave vector
associated with the 2D electron density of the upper bands n,
and the function G(a, x) is defined as

G(a, x) = x(x2 − 1) − √
1 − x2 arcsin x

(ax − 1)
√

(1−x2 )(1−a2 )
(1−ax)2

. (30)

Equation (29) reduces to the real frequency form from
previous work by taking limη→0+ (z = ω + iη). It is important
to note that Eq. (30) cannot be further reduced since the
proper branch cuts must be preserved.
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FIG. 3. The renormalized Zeeman energy, Z∗, as a function of
doping concentration n and spin polarization ζ .

The transverse spin-dependent response functions at finite
Z∗, χ

(0)
↑↓,↑↓ and χ

(0)
↓↑,↓↑, are given by

χ
(0)
σ σ̄ ,σ σ̄ (q, z)

gv

= −kFσ + kF σ̄

4πγ
− q

16γ

√
1 − ( z+εσ σ̄

γ q

)2

+ q

16πγ

[
G

(
z + εσ σ̄

γ q
,

z + εσ σ̄ + 2γ kFσ

γ q

)

− G

(
z + εσ σ̄

γ q
,

z + εσ σ̄ − 2γ kF σ̄

γ q

)]
, (31)

where σ̄ =↓ if σ =↑ and vice versa, kFσ = √
2πnσ is

the Fermi wave vector associated with the spin density of
the upper band nσ , and εσ σ̄ = εkbσ − εkbσ̄ = sσ −sσ̄

2 Z∗ is the
single-particle spin-flip energy, which is independent of b and
k for the simple Zeeman splitting considered here.

The renormalized Zeeman energy can be expressed as

Z∗ = γ |kF↑ − kF↓| = γ
√

πn
∣∣√1 + ζ −

√
1 − ζ

∣∣, (32)

where ζ = (n↑ − n↓)/n is the spin polarization of the
conduction electrons. Figure 3 shows Z∗ within the density-
polarization parameter space. The range of doping densities
n (1011–1013 cm−2) is chosen such that the Dirac model is
still valid, i.e., the Fermi level does not reach those parts
of the conduction band where the band dispersion deviates
significantly from linearity. We find that Z∗ can reach values
of a few hundreds of meV for strong doping and high degrees
of spin polarization.

C. Mode dispersions and spin stiffness

1. Plasmons

Let us first consider the spin-unpolarized case. The
graphene plasmon dispersion energy goes to zero as q ap-
proaches zero; see Fig. 1. This is problematic for the inverse
series procedure because the response function has a singu-
larity in the q-ω plane at (0,0). The limit of the response
function depends on the direction as (0,0) is approached. For
collective excitations, it is important to calculate the disper-
sion in the dynamical long-wavelength limit (DLWL) [12],

i.e., ω � vF q, where vF is the Fermi velocity. It is useful to
introduce the parameter ν = ω/γ q, which defines the slope of
a line passing through the origin and thus the direction of the
limit. To obtain the low-q behavior and still be in the DLWL,
we expand the response function in ν near infinity. This is
equivalent to expanding in 1/ν near 0.

The first few terms of the series expansion of the response
function of Eq. (29) in ν are

χ (0)(q, γ qν) = kF

πγ ν2
+ kF

2πγ ν4
+ O

(
1

ν6

)
. (33)

The corresponding inverse series is

ν(y) = ω(y)

γ q
≈

√
γ kF

π

(
1

γ
√

y
+ π

4kF

√
y

)
+ O(y3/2), (34)

where y = 1/ f Hxc(q). Thus, the plasmon dispersion relation
becomes

ωpl(q) =
√

γ kF /π

f xc(q) + 2π
q

[
2π + q

(
f xc(q) + γπ

4kF

)]

+ O

(
1

f Hxc(q)

)3/2

. (35)

In principle, it is straightforward to obtain higher-order terms
by including more terms in Eq. (33). However, it is best to stop
at the fourth-order terms because of the DLWL. The series
diverges quickly for higher-order terms.

2. Spin waves

The spin polarization ζ of the conduction electrons can be
positive or negative. Let us consider the case in which ζ > 0:
this implies n↑ > n↓, and therefore, from Eq. (26), the upper
(lower) of the two spin-split conduction bands has spin σ =↓
(σ̄ =↑). Hence, (sσ − sσ̄ )/2 = −1. The spin waves are ob-
tained from Eq. (9), but only the condition 1 − f xc

↓↑,↓↑χ
(0)
↓↑,↓↑ =

0 is needed. The case ζ < 0 works in an analogous fashion,
except that σ and σ̄ are reversed.

The spin waves in graphene have a finite dispersion energy
as q goes to 0; see Fig. 1. The series can be calculated directly
with ω. The low-q spin-wave dispersion relation becomes

ωsw(q) = εσ σ̄

(
−1+ f xc

0

2πγ
(kFσ + kF σ̄ )

)
+q

k2
F ζ (sσ − sσ̄ ) f xc

0
′

2π

+ q2

2

(sσ − sσ̄ )

2
S + O(q3), (36)

where

S = γ (
√

1 + sσ ζ + √
1 + sσ̄ ζ )

2kF ζ
+ πγ 2

k2
F ζ f xc

0

+ (sσ − sσ̄ )

2

f xc
0

4π

(
ln

∣∣∣∣ f xc
0 − 4πγ

√
1 + sσ̄ ζ

kF ζ (sσ − sσ̄ )

∣∣∣∣
− ln

∣∣∣∣ f xc
0 + 4πγ

√
1 + sσ ζ

kF ζ (sσ − sσ̄ )

∣∣∣∣
)

+ k2
F ζ f xc

0
′′

2π
. (37)

Here, we use the abbreviations f xc
0 , f xc

0
′, and f xc

0
′′ for the q =

0 limit of f xc
σ σ̄ ,σ σ̄ (q) and its first and second derivatives with

respect to q, respectively. Notice that for the Slater and STLS

245422-6



SPIN WAVES IN DOPED GRAPHENE: A … PHYSICAL REVIEW B 104, 245422 (2021)

approximation we consider here, we have f xc
0

′ = 0, and the
linear term in the spin-wave dispersion (36) vanishes.

The generic form of spin-wave dispersions in itinerant
paramagnetic electron liquids for small q is as follows:

ωsw(q) = ωL + Ssw

2
q2 + O(q4). (38)

Here, ωL is the Larmor frequency, which indicates a collective
precessional motion of all spins about the magnetic field direc-
tion. For the case of graphene we find ωL = Z∗(1 + f xc

0 /2γ 2),
which is smaller than Z∗ since f xc

0 < 0. From electronic
many-body theory one would have expected that ωL = Z (Lar-
mor’s theorem), where Z is the bare Zeeman energy, i.e., all
many-body effects cancel out exactly in the Larmor preces-
sional state [21]. However, Larmor’s theorem does not apply
here since the band structure is obtained from a tight-binding
Dirac fermion Hamiltonian and not from first principles; in
other words, Z∗ is given but Z remains unknown. One should
therefore refer to ωL more appropriately as pseudo-Larmor
frequency.

The spin-wave stiffness, Ssw, determines the curvature of
the spin-wave dispersion for small q; it can have positive or
negative values depending on the parameters characterizing
the electron liquid. Here, we have Ssw = (sσ − sσ̄ )S/2.

D. Slater and STLS kernels for Dirac fermions

The Slater approximation for Dirac fermions uses the same
expressions as for the 2DEG, Eqs. (15) and (16). We use the
graphene eigenstates (27) to construct the density matrix:

γσσ (r, r′) =
occ∑
bk

ψ
†
bkσ

(r′)ψbkσ (r) = 2
occ∑
bk

eik·(r−r′ ), (39)

where the factor 2 accounts for the valley degeneracy. Within
the Dirac model, the so defined density matrix nominally
involves a diverging integral over an infinite lower band. To
avoid this problem, we impose a finite cutoff to the lower
band at a wave vector kv . The natural choice for this cutoff
is that which reproduces the undoped density of graphene,
nv = 1.91 × 1015 cm−2:

kv = √
πnv = 0.41 a−1

0 . (40)

Since γσσ (r, r′) only depends on the coordinate difference,
we can make the substitution r − r′ = ρ, and we also define
an occupation function fb(k) which depends on the band
index b:

γσσ (ρ) = 2

(2π )2

∑
b

∫ ∞

0
kdk fb(k)

∫ 2π

0
dθeikρ cos(θ )

= 1

π

∑
b

∫ ∞

0
kdk fb(k)J0(kρ)

= 1

πρ
[kFσ J1(kFσ ρ) + kvJ1(kvρ)]. (41)

With this, the transverse Slater kernel for Dirac fermions
becomes

f x,S
σ σ̄ ,σ σ̄ (ρ) = −4

π2n2ρ3
[kFσ J1(kFσ ρ) + kvJ1(kvρ)]

× [kF σ̄ J1(kF σ̄ ρ) + kvJ1(kvρ)]. (42)

x,S

, ( )f q(0)

, ( )qS(0)

, ( , )q

( )h q

zeroth order sSTLS:

xc,STLS

, ( )f q, ( )qS
, ( , )q

self-consistent full STLS:

FIG. 4. Modified STLS approach for Dirac fermions. To obtain
the STLS xc kernel, an integration cutoff h(q) is needed, which
follows from the requirement that the zeroth iteration of the sSTLS
scheme yields the Slater exchange kernel.

Fourier transform of this yields

f x,S
σ σ̄ ,σ σ̄ (q) = − 8

πn2

∫ ∞

0

dρ

ρ2
[kF↑J1(kF↑ρ) + kvJ1(kvρ)]

×[kF↓J1(kF↓ρ) + kvJ1(kvρ)]J0(qρ). (43)

The Slater kernel is typically dominated by the valence-band
contribution because of the larger number of particles com-
pared to the conduction band.

Let us now discuss how to implement the STLS scheme
for Dirac fermions. As for the Slater approximation, a cutoff
for the lower Dirac cone is necessary; otherwise, the static
structure factor S (q) diverges as q → ∞ (this happens be-
cause the structure factor is proportional to the density in the
high-q limit). We introduce the same cutoff as above, Eq. (40),
which ensures that the static structure factor remains finite and
bounded for all q.

The next problem arises from the shape of the structure
factor itself. The calculation of the xc kernel converges only
when S (q) − n is asymptotically smaller than 1/q. However,

the tail of the structure factor goes as nv/2 + 2k3
F −k3

v

6πq , which
approaches the wrong value for the density as 1/q. This pro-
duces an unavoidable singularity in the integrand of the xc
kernel. As a remedy, we alter the integration limits in Eq. (22)
such that the sSTLS xc kernel remains finite for all q. We
fix this limit by enforcing that the zeroth sSTLS iteration
reproduces the Slater kernel [12,51]:

4

n2

∫ h(q)

0

q′dq′

(2π )2

∫ 2π

0
dθ vq′

(
S (0)

σ σ̄ ,σ σ̄ (q − q′) − nσ̄ σ̄

)
= f x,S

σ σ̄ ,σ σ̄ (q). (44)

The integration limit h(q) can be determined numerically us-
ing standard root finding algorithms. We then use the same
integration limit for the nonscalar, full STLS kernel, Eq. (23).
Our modified STLS scheme is schematically illustrated in
Fig. 4. In the following, all spin-wave results are obtained with
the so defined full STLS kernel.
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FIG. 5. Slater and STLS transverse-spin local field factors
gxc

↓↑,↓↑(q) for n = 1.89 × 1013 cm−2 and ζ = 0.82. The region in
which spin-waves can exist is to the left of the dashed gray line
corresponding to the wave vector Z∗/γ = |kF↑ − kF↓|.

Figure 5 shows the Slater and STLS spin-flip local-
field factors, defined via f xc

↓↑,↓↑(q) = −vqgxc
↓↑,↓↑(q), for n =

1.89 × 1013 cm−2 and ζ = 0.82. The xc kernels are domi-
nated by the scale set by the valence electron density nv .
For the spin-wave dispersions, only the region of small q
values is relevant, in which the local-field factors have a linear
behavior, as indicated in the figure by the vertical dashed
lines. It can be seen that Slater has a larger slope than STLS,
which directly affects the spin-wave dispersions, as we will
see below.

IV. RESULTS AND DISCUSSION

A. Spin-wave characteristics

Figure 6 shows spin-wave dispersions, calculated using
STLS, for ζ = 0.4 and three doping densities: n = 1011, 1012,
and 1013 cm−2. For smaller densities, the dispersion curves
lie closer to the boundary of the spin-flip continuum; Z∗ − ωL

increases with n. The inset to the figure shows a close-up of
the spin-wave dispersions for small q: this illustrates how, for
smaller n, the spin waves are more and more squeezed into
a narrow corner below the spin-flip continuum, which causes
the spin-wave stiffness Ssw to increase.

To summarize the characteristic behavior of the spin-flip
waves, Fig. 7 shows 1 − ωL/Z∗ and Ssw as a function of n
and ζ , calculated using Slater (left panels) and STLS (right
panels). The quantity 1 − ωL/Z∗ represents the q = 0 offset
of the spin wave with respect to Z∗, i.e., the position of the
Larmor mode with respect to the spin-flip continuum. Large
values of 1 − ωL/Z∗ indicate that the Larmor mode is well
separated from the continuum, which increases its lifetime
and the chance of it being experimentally observable (see the
discussion below). The red line in the top panels of Fig. 7
indicates that Z∗ − ω0 = 0.5 meV, which is comparable to
typical linewidths of spin waves found in 2DEGs [17].

Comparing Slater and STLS, we find that the STLS spin
waves tend to lie significantly closer to the continuum than
Slater. This is because exchange is negative and correlation

FIG. 6. Spin-wave dispersions for various doping densities and
polarization ζ = 0.4. The dispersions are scaled by the renormalized
Zeeman energy, Eq. (32). The gray region is the spin-flip continuum.
The response function has a finite imaginary part in this region, and
thus the spin-wave damps away.

gives a positive correction. We also see this from the slopes in
Fig. 6.

The associated spin-wave stiffnesses Ssw are shown in the
lower panels of Fig. 7. The stiffnesses in Slater and STLS are
very similar. We find that Ssw diverges as n and ζ approach
zero. This is because the window in which the spin wave can
exist is shrinking: 0 < ω < Z∗ − γ q. The curvature must get
larger in order to fit in this window. At some point this window
shrinks to the point of physical irrelevance, which implies that
the spin wave merges with the continuum and ceases to exist
as a well-defined collective mode; however, it will still show
up as a resonance feature that can be distinguished from the
broad background of the continuum. We also mention that
it is, in principle, possible to observe positive values of Ssw;
however, these would be for much larger values of n, where
the Dirac model is no longer applicable.

B. Prospects for experimental observation

For the experimental observation of spin waves in
graphene, doping concentrations of order n ∼ 1011–
1013 cm−2 and significant spin polarizations ζ are needed.
In Appendix B, we show that for free-standing graphene
this would require the applications of in-plane magnetic
fields of tens to hundreds of Tesla, which is clearly not
practical. Instead, suitable values of n and ζ should be
attainable by depositing graphene on a magnetic substrate.
For instance, experimental and theoretical studies of graphene
on Ni(111) have shown that interfacial hybridization of
graphene atoms with the top interface atoms of the magnetic
layer causes a spin polarization in the graphene layer [67–69].
Similarly, Wang et al. [70] demonstrated proximity-induced
ferromagnetism in graphene/YIG (yttrium iron garnet)
structures. Wei et al. [71] observed strong interfacial exchange
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FIG. 7. Top left: The pseudo-Larmor frequency, ωL , of spin waves calculated with the Slater approximation and scaled by the renormalized
Zeeman energy, Z∗. The red line indicates where Z∗ − ωL = 0.5 meV. Bottom left: The spin-wave stiffness calculated with the Slater
approximation. The stiffness diverges as it approaches the origin. Right: The same as the left but calculated with the STLS scheme.

fields (in excess of 14 T) in graphene/EuS structures, with
the potential to reach hundreds of Tesla; device properties
may be further improved by encapsulation of the graphene
sheet in hexagonal boron nitride [72]. The proximity-induced
spin polarization in graphene may even be controlled through
electric gating [73,74].

Assuming, then, that the necessary conditions (doping
and spin polarization) can be achieved in graphene, the
next question is how to create and detect spin waves. For
2DEG systems in semiconductor quantum wells, spin-flip
excitations and spin waves have been studied using inelastic
light scattering (also known as electronic Raman scatter-
ing) [13–19,26]. For this technique to work, the presence of
spin-orbit coupling in the material is essential to satisfy the
optical selection rules for spin-flip scattering [75]; clearly,
this rules out pristine graphene, where the spin-orbit coupling
is very small [1]. Proximity-induced Rashba-type spin-orbit
coupling in graphene has been well documented in the lit-
erature [6,76,77]. However, for light-induced spin dynamics,
L · S-type spin-orbit coupling in deeper valence bands is
needed to enable spin mixing of interband electron-hole pairs
in the 1 eV energy range. Whether these conditions can be
achieved by proximity is an open question. Alternatively, one
could excite the magnetization dynamics in the ferromagnetic

proximity layer and in this way trigger the spin dynamics
in graphene. However, the resulting hybrid spin modes are
expected to be more complex than the pure spin waves con-
sidered here, requiring a theoretical description beyond the
model considered in this paper.

An alternative approach could be to use microscopy.
Plasmons in graphene have been studied using near-field
microscopy [78–80]. Spin-sensitive scanning probes such as
spin-polarized scanning tunneling microscopy (SP-STM) [81]
have been used to probe spin structure and dynamics of
ferromagnets at the atomic scale, including magnon ex-
citations [82–84]. There have been STM studies of the
electronic and magnetic properties of quantum Hall states
in graphene [85–87], and it seems conceivable that similar
techniques could be used for spin waves.

V. CONCLUSION

In this paper, we have presented a detailed study of spin
waves in doped graphene with in-plane spin polarization,
using linear-response TDDFT. From a (TD)DFT perspective,
many-body effects in graphene pose an interesting challenge,
since Dirac fermions do not lend themselves to a treat-
ment using approximate density functionals derived from the
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homogeneous electron gas. Thus, we placed some empha-
sis on the development and implementation of orbital-based
functionals, and we showed that the Slater and STLS approx-
imations can be successfully used for the charge and spin
dynamics in doped graphene.

We calculated spin-wave dispersions and spin stiffnesses
for a wide range of doping concentrations and spin polar-
izations, and we identified regions where the spin waves are
well separated from the spin-flip continuum, which means
that they should be sufficiently long-lived to be observable.
Creating and detecting spin waves in graphene is without
a doubt a significant practical challenge, and we discussed
various experimental techniques that appear promising.

Our calculations are based on the ideal model of free-
standing graphene with a given Zeeman splitting. In practice,
achieving a spin-polarized Dirac fermion gas most likely in-
volves interaction with a magnetic substrate, which will also
introduce spin-orbit coupling. To account for these effects, our
model can be generalized to include Rashba-type spin-orbit
coupling; if the Rashba terms are not too strong, this will
preserve the essential features of the spin waves (as is the case
in the 2DEG [17–21]). On the other hand, if the spin waves
in graphene are coupled with spin excitations in the magnetic
substrate, more complex hybrid modes may occur. This will
be the subject of future studies.
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APPENDIX A: DERIVATION OF THE NONINTERACTING
RESPONSE FUNCTIONS

Starting from Eq. (28), we get the definition of the non-
interacting response function for a Dirac model. We first
consider the nonmagnetic case with Z∗ = 0, where the single-
particle energies are εkb = bγ |k|, and the occupation factors
become fkb = θ (εF − εkb). The labels j and l of the single-
particle states are replaced with j → (b, k) and l → (b′, k′),
where b, b′ = ±1 are the band indices. The summation over k
implies the substitution

∑
k

→
∫ ∞

0

kdk

(2π )2

∫ 2π

0
dφk . (A1)

Setting k′ = k + q, we introduce the orbital overlap function

Fβ (k, q) = 1
2 [1 + β cos(φk′ − φk )], (A2)

where

cos(φk′ − φk ) = k + q cos φk√
k2 + q2 + 2kq cos φk

= k′ − q cos φk′√
k′2 + q2 − 2k′q cos φk′

. (A3)

The response function then becomes

χ (0)(q, ω) = gsgv

∑
bb′k

( fkb − fk′b′ )F bb′
+ (k, q)

ω + εb(k) − εb′ (k′) + iη
, (A4)

where gs and gv are the spin and valley degeneracies, and η is a
positive infinitesimal required to preserve causality. Next, we
introduce the complex frequency z and separate the response
function based on the b = ±1 terms:

χ (0)(q, z) = χ+(q, z) + χ−(q, z), (A5)

where

χ+(q, z)

gsgv

=
∑
αβk

Fβ (k, q)

αz + εkb − εk′β
(A6)

and

χ−(q, z)

gsgv

=
∑
αk

F−(k, q)

αz + εk− − εk′+

= − q

16γ

√
1 − (

z
γ q

)2
, (A7)

where α = ±1 comes from separating the fkb − fk′b′ terms
and transforming the integration limits of the k′ integrals, and
β = bb′ = ±1 is the (intra)interband transition. The χ− term
is a direct continuation from Ref. [7].

Next, we perform the β sum in χ+ to eliminate difficult
terms:

χ+(q, z)

gsgv

=
∑
αk

1

2γ k

⎛
⎝ 1 − (

αz̃+2k
q

)2

1 − αz̃
q

(
αz̃+2k

q

) + 2k
q cos φk

− 1

⎞
⎠,

(A8)
where z̃ = z/γ . The angular integral evaluates to∫ 2π

0

dφ[1 − (a + b)2]

1 − a(a + b) + b cos φ
= 1 − (a + b)2

[1 − a(a + b)]

× 2π√
1 − b2

[1−a(a+b)]2

(A9)

and therefore

χ+(q, z)

gsgv

= − kF

2πγ
+

∑
α

1

4πγ

∫ kF

0
dk

1 − (
αz̃+2k

q

)2

[
1 − αz̃

q

(
αz̃+2k

q

)]
× 1√

1 − ( 2k
q )2

[1− αz̃
q ( αz̃+2k

q )]2

. (A10)

The radial integral evaluates to∫
dx(1 − x2)

(1 − ax)
√

1 − (x−a)2

(1−ax)2

= x(x2 − 1) − √
1 − x2 arcsin x

2(ax − 1)
√

(1−x2 )(1−a2 )
(1−ax)2

= 1

2
G(a, x). (A11)

This finally gives

χ+(q, z)

gsgv

= − kF

2πγ
+

∑
α

q

16πγ
G

(
αz̃

q
, x

)∣∣∣∣
x= αz̃+2kF

q

x= αz̃
q

= − kF

2πγ
+

∑
α

q

16πγ

[
G

(
αz̃

q
,
αz̃ + 2kF

q

)
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−G

(
αz̃

q
,
αz̃

q

)]

= − kF

2πγ
+

∑
α

q

16πγ
G

(
αz̃

q
,
αz̃ + 2kF

q

)
.

(A12)

The spin-resolved response functions at finite Z∗ follow
in a similar way, except that the occupation factors are
now spin-dependent and the frequency is shifted by εσ σ̄ .
We substitute j → (b, σ, k) and l → (b′, σ ′, k′), we use the
single-particle energies εkbσ = bγ |k| + sσ

Z∗
2 and the occupa-

tion factors fkbσ = θ (εF − εkbσ ), and we define

zστ = ω + εσ σ̄ + iη. (A13)

The response function then becomes

χ
(0)
σ σ̄ ,σ σ̄ (q, ω)

gv

=
∑
kbb′

( fkbσ − fk′b′σ̄ )
F bb′

(k, q)

ω + εkbσ − εk′b′σ̄ + iη
.

(A14)

To do the k-integration, we then follow the same procedure
as in the non-spin-polarized case above, taking care to note
the different spin occupation factors; in this way, we arrive at
Eq. (31).

APPENDIX B: MAGNETIC FIELD ESTIMATES

The effective Zeeman energy can be written as

Z∗ = gμB(Bext + Bxc) = gμBBeff , (B1)

where μB is the Bohr magneton, and the effective magnetic
field Beff is the sum of the externally applied magnetic field
Bext and an additional magnetic field Bxc due to exchange-
correlation many-body effects [21]. Using the experimental
g-factor of graphene, g = 1.952 [88], we can calculate the
Beff that produces a given value of Z∗. Using Eq. (32) we
can then relate Beff to the spin polarization ζ and doping
concentration n.

This is illustrated in Fig. 8, which shows lines of constant
Beff in the n-ζ parameter space. Clearly, a high degree of spin
polarization in strongly doped graphene would require very
large field strengths. Notice that Bxc is not available in our
tight-binding model. Therefore, we cannot obtain the external
magnetic field Bext that produces ζ for a given n; however, Beff

provides a reasonable estimate for Bext since xc effects can be
expected to be comparatively small.

As discussed in Sec. IV B, the most promising way to
achieve significant degrees of spin polarization in graphene
is via the magnetic proximity effect. This is different from
the simple picture in which a ferromagnetic substrate causes a
magnetic field Bext in the adjacent graphene due to its bound
surface currents [89]; in the case of YIG, this would produce
a field strength of about 0.25 T, which is too low to cause the
desired effect.

FIG. 8. Contour lines of constant magnetic field in the n-ζ
parameter space, illustrating that rather large magnetic fields are
required to generate significant spin polarization in graphene via the
Zeeman effect.

APPENDIX C: SOME NUMERICAL DETAILS

1. Nonuniform q-grid

It is important that our choice of grid spacing for q be sen-
sitive to all of the relevant scales in the model, determined by
the three characteristic wave vectors kF , kv , and |kF↑ − kF↓|. It
is also important for the q-grid to extend all the way to infinity
to account for the integration limits in Eqs. (22) and (23).
We satisfy these conditions through the repeated use of the
following transformation:

t =
(

1 + q

k

)−1
, (C1)

where k is one of the aforementioned wave vectors, and q/k ∈
[0,∞) maps to t ∈ (0, 1]. We then create a uniformly spaced
t-grid and transform back to a nonuniform q-grid. This results
in about half of the q points lying below k and the remaining
points having a successively larger spacing. Finally, we repeat
this procedure for each wave vector and merge all of the grids
together. The integration along q is then carried out using
integration routines appropriate for nonuniform grids.

2. Frequency integration

It is numerically convenient to use an alternate definition of
the structure factor. One can use a special construction of the
Cauchy integral theorem to show that the integral in Eq. (21)
can be transformed into

S(r, r′) = − 1

π

∫ ∞

0
Rex(r, r′, iu)du. (C2)

This expression for the structure factor, involving integration
along the imaginary frequency axis, is numerically much bet-
ter behaved than Eq. (21). The reason is that Imx(r, r′, ω)
has minute details along the ω-axis, whereas Rex(r, r′, iu)
is quite smooth away from the real frequency axis. This
transformation is the reason why in Sec. III B we formulate
the noninteracting response function with a fully complex
frequency as the argument.
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