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Thermal-field electron emission from three-dimensional Dirac and Weyl semimetals
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A model is constructed to describe the thermal-field emission of electrons from a three-dimensional (3D)
Dirac and Weyl semimetal hosting Dirac/Weyl node(s). The traditional thermal-field electron emission model
is generalized to accommodate the 3D nonparabolic energy band structures in the Dirac/Weyl semimetals, such
as cadmium arsenide (Cd3As2), sodium bismuthide (Na3Bi), tantalum arsenide (TaAs), and tantalum phosphide
(TaP). Due to the nontrivial energy decomposition of the energy dispersion and the vanishing transverse density
of states, an unusual dual-peak feature is observed in the total energy distribution spectrum. This nontrivial
dual-peak feature, absent from traditional materials, plays a critical role in manipulating the magnitude of the
emission current through the variation of an applied field, temperature, and Fermi level. This feature suggests
that a higher Fermi level will achieve a larger current density (apart from low work function). At zero temperature
limit, a F 3 scaling law for pure field emission is derived and it is different from the well-known Fowler-Nordheim
F 2 scaling law. Furthermore, these new behaviors have shown to exist beyond the Dirac cone approximated
model. This model expands the recent understandings of electron emission studied for the Dirac two-dimensional
(2D) materials into the 3D regime, and thus offers a theoretical foundation for the exploration in using Dirac
semimetallic materials as novel electrodes.

DOI: 10.1103/PhysRevB.104.245420

I. INTRODUCTION

Dirac/Weyl semimetals (D/WSM)s, a subset of Dirac ma-
terials, have been studied rapidly over the past decade [1–10]
due to its electronic [11–14], optical [14–17], and magnetic
[14,17,18] properties. The unconventional band structures
about its Dirac point have bought about many interesting ap-
plications in electronics [19–21], spintronics [22], photonics
[23,24], nonlinear optics [25–27], and topological electronics
(topotronics) [28]. Apart from these applications, the physics
of electron emission from Dirac materials like carbon-based
nanomaterials [29–31] or graphene [32–41] have also received
attention over the past two decades.

Field-induced electron emission describes the quantum
tunneling of electrons from a material surface into a vac-
uum under a strong electric field. The most well-known
field emission physics is described by the Fowler-Nordheim
(FN) based models developed for traditional bulk materials
[42–44]. Compared to the conventional field emitters [45–50],
these novel quantum materials exhibit Dirac conic band struc-
ture about its Fermi level with nonparabolic energy dispersion
[9], and have also been experimentally shown to exhibit
large field enhancement and stable current emission [51–53].
However, the physics of thermal-field emission of some re-
cently discovered quantum materials (such as 3D Dirac/Weyl
semimetals) has not been studied in detail, which immediately
leads to the following questions: (i) How can the conventional
thermal-field emission model be generalized to accommodate
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the nonparabolic band structure of Dirac and Weyl semimet-
als? (ii) How does the Dirac conic band structure affect the
thermal-field emission behaviors of 3D D/WSM? (iii) What
key differences can be observed for a D/WSM emitter in
terms of their current, voltage, and temperature scaling laws
at both the field and thermal-field emission regimes?

In this paper, we address the above questions by con-
structing a generalized thermal-field emission model for the
newly discovered 3D D/WSMs. In particular, the total energy
distribution (TED) and the emission current density are cal-
culated. Our model applies the Dirac cone approximation for
D/WSMs and considers the Schottky-Nordheim (SN) barrier
[42,54] at the material-vacuum interface, as seen in Fig. 1(a).
The electron emission can reside from either the conduction
(orange) or valence (blue) bands and are then replenished
(purple) at the intrinsic Fermi level εF0. The differing (lin-
ear) energy dispersion from a Dirac cone allows us to study
the thermal-field emission of 3D DSMs/WSMs. Due to the
nontrivial decomposition of the energy dispersion and the
vanishing transverse density of states (TDOS), we predict an
unconventional feature in the TED, and a new F 3 scaling
law at the zero temperature limit, which is different from
the FN law. Consequently, the presence of this nontrivial
feature produces an additional requirement, a higher Fermi
level, for a larger emission current (apart from having a low
work function). Furthermore, by tuning the applied electric
field strength, temperature, and Fermi level of a D/WSM
emitter, we can manipulate the magnitude of the emission
current density through the energy profile of the TED. These
findings can pave the way for the theoretical study of other
Dirac materials, in particular, materials that are described by
Dirac cone(s) and Weyl nodes in the band structure, which
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FIG. 1. (a) Schematic diagram of a material with a linear dispersion under the Dirac cone approximation. Under an electric field, the
electrons emit through a Schottky-Nordheim (SN) barrier [54] with work function � into vacuum. Orange/blue electrons are emitted,
respectively, from the conduction/valence bands. The emitted electrons are then replenished at the Fermi level εF (gray dotted line)
immediately by replacement electrons (purple) entering the Dirac cone [47]. The relationship of the energy dispersion, carrier density (green
solid line), tunneling probability (yellow dotted line), and in particular, the transverse density of states (DOS) (red dotted line), help sculpt
the total energy distribution (TED) P(εk ) of (b) a conventional metal with a parabolic dispersion, giving us a single peak TED, and (c) of a
DSM/WSM using the Dirac cone approximation, giving us a dual-peak feature in the TED. The vertical black solid line in (c) represents the
location of the Dirac or Weyl node in the εk space.

cannot be modeled by the traditional thermal-field emission
models [54].

II. GENERALIZED THERMAL-FIELD EMISSION MODEL

A. Generalized emission current density

We consider a generalized thermal-field electron emission
model in the form of

J⊥ = eg

(2π )3

∫
v⊥(εk ) f (εk )T (ε⊥)d3k, (1)

where J⊥ is the electron current density emitted vertically
from a surface, e is the charge of an electron, g is the degener-
acy factor, f (εk ) is the Fermi-Dirac distribution function, and
T (ε⊥) is the tunneling probability. The group velocity along
the emitting direction (denoted as ⊥) is

v⊥(εk ) = 1

h̄

∂εk

∂k⊥
. (2)

In the following, we define ⊥ to be pointing in the z
direction and ‖ along the x-y plane. The tunneling probability
T in Eq. (1) can be modeled after the SN barrier model [42,54]
to account for the image charge potential, given by

T (ε⊥) ≈ DF exp
{ε⊥ − εF

dF

}
, (3)

where DF ≡ exp(−bv
√

�3/F ) is the tunneling exponent term
and dF ≡ 2F/3b

√
�t is the decay width of the wave function

through the barrier, b = 4
√

2m/3eh̄ is a Fowler-Nordheim
(FN) constant [43] with m being the electron mass, � is the
work function of the material, and F is the applied field. The
image charge effect can be approximated with the following
correction terms [42]:

v ≈ 1 − fs + fs

6
ln fs, t ≈ 1 + fs

9
− fs

18
ln fs, (4)

with fs = e3F/4πε0�
2, where ε0 is the vacuum permittivity.

B. Generalized thermal-field models for nonparabolic
energy dispersion

To accommodate the nonparabolic energy dispersion, we
transform Eq. (1) into an alternative form. We first consider
a generic energy dispersion εk[ε‖(k‖), ε⊥(k⊥)] with ε‖(k‖)
and ε⊥(k⊥) as the energy component transverse and along the
tunneling direction, respectively. By rewriting Eq. (1) in terms
of the ⊥ and the ‖ components through d3k = k‖dk‖dφk‖dk⊥,
with φk‖ = tan−1(ky/kx ), we have

J⊥ = ge

(2π )3h̄

∫∫∫
f (εk )T (ε⊥)

�⊥
�‖

dε⊥dφk‖dε‖, (5)

where the following transformation identity is used:

∂εk

∂|k⊥|k‖dk‖dk⊥ = ∂εk

∂ε⊥
dε⊥

k‖
∂ε‖/∂k‖

dε‖.

This allow the definition of the energy dispersion factors as

(�⊥,�‖) ≡
(

∂εk

∂ε⊥
,

1

k‖

dε‖
dk‖

)
, (6)

where �⊥ is only nontrivial with the existence of a non-
parabolic dispersion, while �‖ encapsulates the transverse
density of states (TDOS). These energy dispersion factors in
Eq. (6) play crucial roles in understanding the electron field
emission with nonparabolic energy dispersion.

Consider an isotropic 3D parabolic energy dispersion εk =
h̄2(k2

‖ + k2
⊥)/2m where m is the electron effective mass and

k = (k‖, k⊥) with k‖ representing the wave vector compo-
nent transverse to the emission direction, the total energy is
partitioned into the emission component ε⊥ ≡ h̄2k2

⊥/2m, the
transverse component ε‖ ≡ h̄2k2

‖/2m, and εk = ε‖ + ε⊥. In
doing so, Eq. (6) becomes

(�⊥,�‖)parabolic ≡
(

1,
h̄2

m

)
, (7)

which is a constant term (independent of ε‖ and ε⊥). Solving
Eq. (1) with Eq. (7) will yield the classic Fowler-Nordheim
(FN) law for cold field emission, and the Murphy-Good (MG)
model for thermal-field emission.
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For a nonparabolic (or linear) energy dispersion, we have

εk =
√

ε2
k⊥ + ε2

k‖ . (8)

For Dirac/Weyl semimetals (D/WSMs), the quasiparticles
around the Dirac point(s) are described by the effective Hamil-
tonian Hk = h̄

∑
i,a vFi,aki,aσi where i = {x, y, z} and σi is

the Pauli matrix along î and the subscript a labels the ath
Dirac cone [9,57,58,60,61]. The energy dispersion of these
Dirac/Weyl semimetals (SM) is

εSM
k =

N∑
a=1

√∑
i

h̄2v2
Fi,ak2

i,a, (9)

where ε‖,a ≡ h̄(v2
Fx,ak2

x,a + v2
Fy,ak2

y,a)1/2 and ε⊥,a ≡
h̄vFz,a|kz,a|. The corresponding energy dispersion factors
for a Dirac conic dispersion are

(�⊥,a,�‖,a)SM ≡
(

ε⊥,a

εk,a
,

h̄2ṽ2
a

ε‖,a

)
, (10)

where ṽa ≡ vFy,a

√
(vFx,a/vFy,a)2 cos2 φk‖,a + sin2 φk‖ , a is the

Fermi velocity along the ‖ direction. This is in stark contrasts
to the parabolic dispersion case as shown in Eq. (7) and will
lead to a drastically different thermal-field emission charac-
teristics for D/WSMs to be reported below.

III. THERMAL-FIELD EMISSION FROM DIRAC AND
WEYL SEMIMETALS

A. Emission current density and scaling law from Dirac cones

For an isotropic parabolic energy dispersion, Eq. (5) can be
simplified as

J parabolic
⊥ = gsme

(2π )2h̄3

∫
f (εk )T (ε⊥)dε⊥dεk, (11)

gs is the spin degeneracy, ∂εk
∂εμ

= 1, μ ∈ {⊥, ‖} which can be
approximately solved to yield the well-known Murphy-Good
(MG) thermal-field emission model [54]:

J MG
⊥ = aFNF 2

�t2
DF

kBT π/dF

sin (kBT π/dF )
, (12)

where aFN = e3/(16π2h̄) is the FN constant and kB is the
Boltzmann constant.

The FN plot (for FN scaling) can be obtained by rearrang-
ing Eq. (12) such that

ln

(J MG
⊥
F 2

)
= −bv

√
�3

F
+ ln

(
aFNkBT π/dF

�t2 sin (kBT π/dF )

)
. (13)

At T = 0 K (cold field emission), it recovers the classical FN
scaling of ln(J MG

⊥ /F 2) ∝ −1/F . Note the F 2 component in
the logarithm term is a signature of field emission from 3D
bulk materials.

In contrast, Eq. (5) of a D/WSM exhibits a nontrivial
difference due to Eq. (10). This difference is first seen from

Eq. (2) which can be written as

J SM
⊥ =

N∑
a=1

gae

(2π h̄)3

∫ (∫
|ε⊥,a|T (ε⊥,a) f (εk,a)dε⊥,a

)
dεk,a

×
(∫

dφk‖,a

ṽ2
a

)
, (14)

where ∂εk/∂ε‖ = ε‖/εk is used and ε⊥ → |ε⊥| can be made
as the emission energy is non-negative. ga is the spin and
node degeneracy for each contributing Dirac cone, N is the
number of contributing Dirac cone(s) to the emission. The
dφk‖,a integration is simply 2π for an isotropic dispersion
and 2π/(vxvy) for an anisotropic dispersion as derived in
Appendix A. Equation (14) can be further simplified and
numerically solved as

J SM
⊥ =

N∑
a=1

cSM,aF 2

�t2
DF

∫ ∞

−∞
f (εk,a)λ(εk,a/dF )dεk,a, (15)

where cSM,a = e3ga/(32mπ2 h̄vFx,avFy,a) is a constant. The
dimensionless tunneling function λ(εk,a/dF ) is defined as

λ(εk,a/dF ) = exp

{
εk,a − εF

dF

}(
εk,a

dF
− 1

)
sgn(εk,a)

+ 1 + sgn(εk,a)

2
. (16)

The FN plot now takes the form of

ln

(J SM
⊥

F 2

)
= − bv

√
�3

F
+

N∑
a=1

[
ln

(
cSM,a

�t2

)

+ ln

(∫ ∞

−∞
f (εk,a)λ(εk,a/dF )dεk,a

)]
. (17)

At T = 0 K (cold field emission), Eq. (15) becomes

J SM
⊥,T =0 =

N∑
a=1

cSM0,aDF√
�3t2

F 3

(
εF

dF
− 1

)
, (18)

where cSM0,a = 4cSM,a/3. The scaling law at T = 0 then
becomes

ln

(J SM
⊥,T =0

F 3

)
= −bv

√
�3

F
+

N∑
a=1

ln

[
cSM0,a√

�3t2

(
εF

dF
− 1

)]
,

(19)

Thus, this produces an unexpected scaling of

ln

(J SM
⊥

F 3

)
∝ − 1

F
, (20)

which is different from the classical FN scaling of
ln(J MG

⊥ /F 2) ∝ −1/F for bulk solids with parabolic
dispersion.

B. Total energy distribution (TED) of Dirac cones

The energy spectrum of the emitted electrons is determined
from the total energy distribution (TED): P(εk ) by considering
∂J⊥/∂εk such that

P(εk )dεk = ge

(2π h̄)3

(∫
f (εk )T (ε⊥)

�⊥
�‖

dε⊥dφk‖

)
dεk,

(21)
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FIG. 2. The emission current density J⊥ is plotted at room temperature (300 K) in (a) for Cd3As2 (blue), Na3Bi (red), TaAs (green),
and TaP (orange). The inset is a magnified plot showing the overtaking of J⊥ for Cd3As2 over TaP at high fields. The J⊥ line for Na3Bi
terminates after 3.84 V/nm to indicate the transition from field emission to field-induced ballistic emission [62]. By fixing F = 2 V/nm in
(b), and F = 5 V/nm in (c), the normalized total energy distributions (TED)s (with respect to its peak) P(εk )/PMax of these four semimetals
are plotted. The dual-peak feature is only visible for Cd3As2 in (b). The F 3 scaling law is plotted in (d) for all aforementioned D/WSMs. Due
to the termination in (a), the Na3Bi plot does not appear in (c) and does not start from 0.2 (V/nm)−1 in (d).

where the transverse density of states is D(εk ) =
g/[(2π )2�‖(εk )] with

∫
D(ε‖)dφk‖dε‖ = ∫

D(εk )dφk‖dεk.
With a constant transverse density of states (TDOS) and

a trivial decomposition of the dispersion, the TED of 3D bulk
metallic material takes on a conventional single peak behavior
as seen in Fig. 1(b). This is due to the trivial energy dispersion
factors �⊥/�‖ in Eq. (7), which gives a constant TDOS, i.e.,
D(εk ) = gm/(2π h̄)2, and an exponential tunneling probabil-
ity to achieve the well-known MG TED,

PMG(εk ) = cT
F√
�t

DF f (εk ) exp

{
εk − εF

dF

}
. (22)

On the contrary, Eq. (10) produces a nontrivial ε⊥ and ε‖
dependence term in its energy dispersion factors as illustrated
in Fig. 1(c). The additional ε⊥ dependence in �⊥ in Eq. (14)
have a vanishing tunneling probability (yellow dotted line) at
the vicinity of the Dirac/Weyl node (black solid line), which
produces a nontrivial tunneling function in Eq. (16). Likewise,
the additional ε‖ → εk dependence in �‖ produces a van-
ishing TDOS (red dotted line), i.e., D(εk ) = gεk,a/(2π h̄ṽa)2.
Notably, these two factors must appear simultaneously to
prevent the occurrence of a singularity (unphysical) in the
TED from �⊥/�‖ in Eq. (21). The product of these two
factors with the Fermi-Dirac distribution (green solid line) can
produce a distinctive dual-peak feature in the vicinity of the

Dirac or Weyl node in the TED of a D/WSM, i.e.,

PSM(εk ) =
N∑

a=1

cSM,aF 2

�t2
DF f (εk,a)λ(εk,a/dF ). (23)

This shows that the key ingredients to the dual-peak feature
are the existence of a nontrivial decomposition of the energy
dispersion and the vanishing TDOS. As seen below, this un-
conventional behavior in Eq. (23) is only present under a range
of parameters, and have implications towards the emission
current density.

Notably, the dual-peak feature and the F 3 scaling law from
Eq. (20) are not artifacts from the Dirac cone approxima-
tion. This is shown in Appendix B, where a physical TED
proportional to Eq. (23) can be derived due to the nontrivial
decomposition of the dispersion and the vanishing TDOS for
a realistic Hamiltonian for both Dirac and Weyl semimetals
[63–65].

IV. RESULTS

A. Additional criteria for larger current density and
unconventional scaling law

In Fig. 2(a) the emission current densities J⊥ in Eq. (15)
are plotted against F for two DSMs, Cd3As2 (blue) and
Na3Bi (red), and two WSMs, TaAs (orange) and TaP (green),
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TABLE I. Material parameters of the DSM: Cd3As2 and Na3Bi, and WSMs: TaAs and TaP, are listed in this table. The parameters consists
of the work function �, the energy difference of the intrinsic Fermi level εF0 from the Dirac or Weyl node(s) at εk = 0, the Fermi velocities
in the transverse direction vFx and vFy, and the degeneracies of the nodes in the dispersion space g. WSMs must have at least a pair of distinct
Weyl nodes [9].

DSMs/WSMs � (eV) εF0 (eV) vFx (106 m/s) vFy (106 m/s) g

Cd3As2a 4.5 0.1 1.3 1.28 4
Na3Bib 2.35 0.025 0.374 0.374 4
TaAsc 4.65 −0.0221, −0.0089 0.250,0.240 0.120,0.350 8,16
TaPd 5.405 −0.0531, 0.0196 0.310,0.230 0.150,0.300 8,16

aReferences [6,8,55,56].
bReferences [7,55].
cReferences [57–59].
dReferences [57,59].

with the materials parameters shown in Table I. Notably, the
abnormally large magnitude of J is due to the low work
function � of Na3Bi. These emitters can transit to the ballistic
field emission regime at lower F values. However, ballistic
emission cannot be accurately modeled within the frame-
work of the MG model [62]. Hence, the upper bound of J⊥
for Na3Bi is approximately given by F = 0.695�2/(eV)2 ≈
3.84 V/nm [62].

Apart from the expected proportional increase of J⊥ with
F , the � dependency, i.e., J⊥ ∝ −1/�, does not follow ex-
cept for F > 4.6 V/nm as highlighted in the inset for both
Cd3As2 and TaP. This is attributed to the relationship between
vanishing TDOS in the Dirac conic dispersion and the intrin-
sic Fermi level εF0 of a D/WSM. Indeed, as the height of
the potential barrier is gradually lowered, the dependency of
DF λ(εk/dF ) in Eq. (23) makes it easier for carriers below the
εF0 to tunnel across the surface barrier. However, this also
gradually allows the carriers in the vicinity of the vanishing
TDOS, below the εF0 for Cd3As2, to dominate the emis-
sion process, which suppresses the increment of the current
density.

Particularly, only Cd3As2 have the dual-peak feature in
the normalized (with respect to their peaks) TEDs for F <

4.6 V/nm as shown in Fig. 2(b) for 2 V/nm. This can be
resolved by further lowering the barrier height, which allow
the carriers in the lower Dirac cone to dominate the emis-
sion process. As evident in Fig. 2(c) at F = 5 V/nm, the
normalized TEDs do not have the aforementioned feature,
which explains why D/WSMs satisfy the J⊥ ∝ 1/� relation
for higher F . Comparatively, D/WSMs with lower εF0 can
activate the lower Dirac cone with a lower F , which is evident
by the lack of the nontrivial feature even at 2 V/nm. Hence,
an additional criterion (higher εF0) apart from a lower � is
required for emitting a larger J⊥ from a D/WSM emitter.
Notably, Na3Bi is not plotted here as F > 3.84 V/nm.

Interestingly, Fig. 2(d) shows that the field emission
follows an unconventional scaling of ln(J⊥/F 3) ∝ −1/F
[Eq. (20)] for all D/WSMs. The excellent linearity of
ln(J⊥/F 3) ∝ −1/F reveals that a D/WSM emitter follows
an unconventional non-FN scaling not commonly seen in
traditional materials, i.e., ln(J⊥/F 2). Similarly, the gradual
crossover of the Cd3As2 scaling with TaAs and TaP is due
to the aforementioned criteria. Notably, Na3Bi does not start
from 1/F = 0.2 (V/nm)−1 due to the transition.

B. Functional control of emission current density

Next, as the thermal-field J⊥ does not scale much with
T , the J⊥/J0 is plotted instead in Fig. 3(a) at 2 V/nm. J0

is defined to be the zero-temperature J⊥ and is chosen as
the normalization term to highlight the nontrivial behavior
under low T , which is enlarged in the inset. J⊥ increases
proportionally with T as expected from Eq. (15) for Cd3As2

and TaP at 2 V/nm. For an emitter with a higher εF0 like
Cd3As2, the suppression from the dual-peak feature is present
and away from the peak of the TED, which implies that the
increment of T will not be detrimental to its J⊥.

Interestingly, this differs for TaP as both of its Weyl nodes
have εF0 lower than Na3Bi. However, unlike TaAs, TaP has
a Weyl node above and below the Fermi level (Table I). This
can be understood near half-filling (10 K), where the carriers
from the Dirac cone with εF0 = 0.0196 eV, reduce the sup-
pression from the dual-peak feature from the Dirac cone with
εF0 = −0.0531 eV, and hence forming an obvious plateau in
Fig. 3(b). This effect magnifies at higher T for TaP which is
reinforced by the increment and the lack of suppression of J⊥
in the inset of Fig. 3(a).

In contrast, the existence of a minimal J⊥ �= J0 for both
Na3Bi and TaAs implies that J⊥ is heavily suppressed with
increasing T , as highlighted in the inset of Fig. 3(a). This is
reinforced by Fig. 3(b), where the dual-peak feature is close
to the maxima of the TED, which signifies the suppression of
the majority of its carriers.

Although the magnitude of J⊥ can be recovered to at least
J0 at T (J0), it becomes increasingly harder with increasing
F as seen in Fig. 3(c). Indeed, the lowering of the barrier
height allows the suppressed region to have a higher emission
probability, as regulated by DF λ(εk/dF ) in Eq. (15). Hence,
additional thermal energy is required to include more carriers
from the upper Dirac cone to dampen the effect of the suppres-
sion of J⊥ from the dual-peak feature in the TED. As shown
in Fig. 3(d) for Na3Bi and TaAs at 300 K (solid line) and
3.5 V/nm, the normalized TEDs have broad widths and do
not have the dual-peak feature, unlike at 10 K (dotted line).
Notably, the suppression is even greater for TaAs due to the
existence of an additional Weyl node below εF0, as evident by
the node summation in Eq. (15) and the small plateau in the
normalized TED, which implies the suppression of carriers
even below the Weyl nodes at very low T .
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FIG. 3. The normalized emission current density J⊥/J0 are plotted for Cd3As2 (blue), Na3Bi (red), TaAs (green), and TaP (orange) at
2 V/nm in (a) with J0 defined as the zero temperature emission current density. The inset highlights the low temperature behavior, particularly
showing a decrease in J⊥ for both Na3Bi and TaAs. The markers in the inset are plotted for visual purposes. By fixing T = 10 K, the normalized
total energy distribution (TED) (with respect to peak) P(k)/PMax, are plotted in (b). Evidently the dual-peak feature for both Na3Bi and TaAs
are nearer to the peak as compared to both Cd3As2 and TaP. The temperature at which J0 can be recovered, i.e., T (J0) for both Na3Bi and
TaAs while varying F is plotted in (c). By fixing F = 3.5 V/nm, the normalized TEDs of Na3Bi and TaAs are plotted for 300 K (solid line)
and 10 K (dotted line). Note that Na3Bi terminates at F = 3.84 V/nm as it becomes ballistic at higher fields. Evidently the dual-peak feature
is only visible at T = 10 K, below the T (J0) lines in (d). The effects of the variation of εF0 → εF1 (dotted and solid lines, respectively) are
plotted in (e) and (f) for Na3Bi (+0.05 eV) and TaAs (−0.05 eV). In (e), the Fermi level shifting clearly removes the decrease of J⊥ at low T
as seen for F = 2 V/nm. This is supported by (f), where the dual-peak feature in the normalized TEDs shift away from the peak of the TEDs
when the Fermi level is varied from εF0 to εF1.

Apart from increasing T , the suppression of J⊥ can be re-
moved by varying (either increasing or decreasing) the Fermi
level εF for Na3Bi and TaAs. To illustrate this, J⊥/J0 is
plotted for Na3Bi at εF0 + 0.05 eV and TaAs at εF0 − 0.05 eV
(both solid lines) and compared against its εF0 counterparts
(dotted line) in Fig. 3(e). Indeed, by shifting the Fermi level
away from the nodes in either direction, the low T suppression
is mitigated as shown in the inset. This is further reinforced
by the contrasting normalized TEDs in Fig. 3(f), where the
dual-peak feature is shifted away from the peak of the TED
of Na3Bi and is absent for TaAs due to the lack of thermal
excited carriers. A drawback however for the lowering of εF

is the reduction of J⊥. Thus, the variation of F , T , and εF

can act as a functional control for J⊥ through the dual-peak
feature in the TED of the D/WSM emitter.

V. DISCUSSION

In this work, the thermal-field emission of D/WSM are
modeled under a Dirac cone and the general behavior is also
extended up to O(k2) in Appendix B. However, there are
several other theoretical considerations and proposals that can
be further discussed for experimental implementations.

First, the nontrivial feature in the TED in Eq. (23) and the
F 3 scaling law in Eq. (17) can be extended to other gapless
semimetals as long as it satisfies the two factors discussed in
Sec. III B. An example can be gapless semimetallic bismuth,
which exhibits a parabolic dispersion along z and a linear
dispersion along both x and y [66]. Indeed, the vanishing
TDOS and nontrivial decomposition of the energy dispersion
comes from the gapless bulk state and the differing dispersion
along different spatial axis, respectively.

Second, under the bulk emitter assumption, F is assumed
to not penetrate the bulk states, which indicates that the energy
scale for emitting Dirac electrons can be modeled up to 460 K
for these materials. Beyond this energy scale, the thermal-field
emission include massless Kane electrons for Cd3As2 and
Na3Bi [67], which can bring about nontrivial consequences
to the field emission quantities.

Lastly, even though these four materials have been shown
to exhibit protected topologically protected surface states, i.e.,
Fermi arcs [6,7,9,10,12,26,57,64], it has been predicted that
these Fermi arcs will diffuse into the bulk states for a topo-
logical Dirac or Weyl semimetal under a strong electric field
(orders of V/nm) [68]. These Fermi arcs can be preserved
and contribute to field emission by lowering the field strength
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to below 10 V/μm. This implies that the Fermi arcs can
only be determined within the transition region between the
thermionic and field emission [54], which cannot be described
by the current model. Alternatively, a topological DSM phase
was experimentally achieved within 0.1 V/nm for Cd3As2

and Na3Bi thin film emitters [69]. Hence, these Fermi arcs
can be safely assumed to be diffused into the bulk states,
and hence not contributing within the thermal-field emission
regime for 3D bulk D/WSM emitters.

VI. CONCLUSION

In conclusion, a thermal-field emission model for 3D
Dirac semimetal (DSM) and Weyl semimetal (WSM) with
a linear Dirac conic energy dispersion have been developed
in this work, with particular emphasis on Cd3As2, Na3Bi,
TaAs, and TaP. Our results predict the existence of a new
ln(J/F 3) ∝ −1/F scaling law and a nontrivial dual-peak fea-
ture in the total energy distribution (TED), which is absent
in an electron field emitter composed of traditional metals
with a conventional 3D parabolic energy band structure. The
differing scaling law stresses the importance of this current
work for D/WSM emitters as compared to the traditional
Murphy and Good model [54]. The dual-peak feature stems
from the nontrivial decomposition of the energy dispersion
and the vanishing transverse density of states in the Dirac
conic dispersion, which enforces an additional requirement
(apart from a lower work function), a higher Fermi level, for
a larger emission current density.

Furthermore, the functional control of the emission current
density is intertwined with the dual-peak feature in the TED
through the variation of the applied field, temperature, and
Fermi level. This highlights the vital role of this feature in
regulating the emission current density. The low work func-
tion of Na3Bi can be beneficial for field emission application
due to its high emission current density and its experimentally
achievable field ballistic emission transition. With the addi-
tional criteria, Cd3As2 with its sufficiently high Fermi level
(despite a higher work function), is also a suitable candidate
for achieving a larger emission current density. Although that
TaP can generate a higher emission current density than TaAs,
the material consideration of a Weyl semimetallic emitter
is highly dependent on each contributing Weyl node. Dirac
semimetallic emitters with high work functions and low Fermi
levels, however, can still achieve a relatively larger emission
current density by exploiting the high sensitivity of the dual-
peak feature with the variation of F , T , and εF . Finally, we
remark that our model does not consider effects such as field-
induced topological effects [9,14,68–70], band bending [71],
space charge [72,73], and Fermi velocity shifting [59,68].
Such effects could be included in future works to investigate
their roles on the thermal-field emission characteristics of 3D
D/WSM.
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APPENDIX A: DERIVATION OF TOTAL ENERGY
DISTRIBUTION (TED) AND EMISSION CURRENT

DENSITY (J⊥) FOR DSM/WSM(s)

The generalized emission electrical current density from
a 3D bulk electron emitter with a linear (nonparabolic)
dispersion is shown in Eq. (5) of Sec. II as

J L
⊥ = ge

(2π )3h̄

∫∫∫
f (εk )T (ε⊥)

�⊥
�‖

dε⊥dφk‖dε‖, (A1)

where the superscript L indicates a linear dispersion. Inserting
Eq. (10) into Eq. (5) gives Eq. (14),

J SM
⊥ =

N∑
a=1

gae

(2π )2h̄3vxvy

∫
ε⊥,aT (ε⊥,a) f (εk,a)dε⊥,adεk,a,

(A2)

where the φk‖,a integration can be done

by applying the identity
∫ 2π

0 (a2 cos2 φk‖ +
sin2 φk‖ )−1dφk‖ = 2π/a and ∂εk/∂ε‖ = ε‖/εk, with

ṽ ≡ vFy

√
(vFx/vFy)2 cos2 φk‖ + sin2 φk‖ . Note that for an

isotropic dispersion, i.e., vx = vy = vz, the φk‖,a integration
is simply 2π . The superscript SM indicates a DSM or WSM.
Without loss of generality, the Dirac node label a can be
dropped by focusing on a Dirac node.

The ε⊥ integration then gives∫
|ε⊥|T (ε⊥)dε⊥ = DF

∫ εk

−∞
|ε⊥|e(ε⊥−εF )/dF dε⊥, (A3)

where the approximation (0 → −∞) can be made as the
emission takes place near the Fermi level and ε⊥ → |ε⊥| can
be done as the emission energy is non-negative.

Two integration regions must be considered for the upper
(εk � 0) and lower (εk � 0) Dirac cone for the emission of
electrons. Hence, Eq. (A3) becomes(∫ εk�0

0
+

∫ εk�0

−∞

)
|ε⊥|e(ε⊥−εF )/dF dε⊥. (A4)

For the upper cone,∫ εk�0

0
|ε⊥| exp

{
ε⊥ − εF

dF

}
dε⊥

= d2
F

(
exp

{
εk − εF

dF

}(
εk

dF
− 1

)
+ exp

{
− εF

dF

})
. (A5)

For lower cone,∫ εk�0

−∞
|ε⊥| exp

{
ε⊥ − εF

dF

}
dε⊥

= d2
F exp

{
εk − εF

dF

}(
1 − εk

dF

)
. (A6)

Hence, the solution to the ε⊥ integration can be expressed
by a dimensionless tunneling function such that

λ(εk/dF ) = sgn(εk ) exp

{
εk − εF

dF

}(
εk

dF
− 1

)

+ exp

{
− εF

dF

}(
1 + sgn(εk )

2

)
, (A7)
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TABLE II. Relevant ab initio parameters used for Cd3As2 [63] and Na3Bi [64].

Materials A (eV Å) M0 (eV) M1 (eV Å2) M2 (eV Å2)

Cd3As2 2.75 −0.01 −960 −18
Na3Bi 2.46 −0.0869 −10.64 −10.36

where

λ(εk/dF ) =
{

exp
{

εk−εF
dF

}(
εk
dF

− 1
) + exp

{− εF
dF

}
, εk � 0,

exp
{

εk−εF
dF

}(
1 − εk

dF

)
, εk � 0.

Hence, the ε⊥ integration becomes∫
|ε⊥|T (ε⊥)dε⊥ = DF d2

F λ(εk/dF ). (A8)

This changes Eq. (14) into Eq. (15):

J SM
⊥ =

N∑
a=1

cSM,aF 2

�t2
DF

∫ ∞

−∞
f (εk,a)λ(εk,a/dF )dεk,a, (A9)

where the SM represents the emission current density of a
topological semimetal cSM = e3g/32mπ2 h̄vFxvFy is a con-
stant, with me being the rest mass of the electron.

The total energy distribution (TED) takes a general form of

P(εk )dεk = ge

(2π h̄)3

(∫
f (εk )T (ε⊥)

�⊥
�‖

dε⊥dφk‖

)
dεk,

(A10)

where the transverse density of states is defined as

D(εk ) =
∫

gεk

(2π )2�‖
dφk‖dεk. (A11)

The transverse density of states vanishes at εk = 0 and the
linear εk term is canceled with the 1/εk term in �⊥. Since the
TED is related to the current density by P(εk ) = ∂J⊥/∂εk,
the TED of DSM/WSM(s) takes the form

PSM(εk ) =
N∑

a=1

cSM,aDF F 2

�t2
f (εk,a)λ(εk,a/dF ). (A12)

APPENDIX B: DERIVATION OF TED AND J USING
REALISTIC HAMILTONIAN

To show that the dual-peak feature is not just an artifact
from the Dirac cone approximation, the derived model can be
further applied on realistic low-energy Hamiltonian for both
Dirac and Weyl semimetals.

Consider the effective low-energy Hamiltonian for Cd3As2

and Na3Bi [63,64] is given by

Heff = ε0(k) +

⎛
⎜⎝

M(k) Ak+ Dk− B∗(k)
Ak− −M(k) B∗(k) 0
Dk+ B(k) M(k) −Ak−
B(k) 0 −Ak+ −M(k)

⎞
⎟⎠,

(B1)

where the four-band model in the minimal Hamiltonian is
around the � point. Equation (B1) can be approximated to
two, two-band models by expanding up to the quadratic terms,
i.e., B, D ≈ 0. Furthermore, note that ε0(k) is approximately
an energy shift and can be set at zero. Hence, the effective
energy dispersion is given by

εk = ±
√

M2(k) + A2k2
‖ , (B2)

where M(k) = M0 − M1k2
⊥ − M2k2

‖ and the emission direc-
tion is chosen as the z direction for consistency. The expansion
of the energy dispersion involves k2

⊥k2
‖ terms, i.e.,

εk = ±
√

M2
0 − 2M0M1k2

⊥ + M2
1 k4

⊥ + (A2 − 2M0M2)k2
‖ + M2

2 k4
‖ + 2M1M2k2

⊥k2
‖ , (B3)

and hence, does not have an analytical TED solution as
seen in Eq. (23). To overcome this, further simplifications
can be done to the energy dispersion. First, the zero-energy
solution at (0, 0,±√

M0/M1) indicates the existence of two
gapless bulk states along kz at k‖ = 0. Next, along k‖, the
dispersion is parabolic except when k⊥ = ±√

M0/M1. Lastly,
using Table II, the dominating term for Cd3As2 and Na3Bi
is M2

1 k4
⊥ − 2M0M1k2

⊥ along kz, and (A − 2M0M2)k2
‖ along k‖.

Hence, a minimal effective energy dispersion that can extract
the characteristic from Eq. (B3) is

εk = ±
√

(M0 − M1k2
⊥)2 + (A2 − 2M0M2)k2

‖

=
√

ε2
⊥ + ε2

‖, (B4)

where ε⊥ = |M0 − M1k2
⊥| and ε‖ =

√
A2 − 2M0M2k‖. The

corresponding energy dispersion factors are

(�⊥,�‖) =
(

ε⊥
εk

, 2(A2 − 2M0M2)

)
. (B5)

Using Eq. (5), the emission current density is

J⊥ = geDF

(2π )2h̄(A2 − 2M0M2)

×
∫

f (εk )ε⊥ exp

(
ε⊥ − εF

dF

)
dε⊥dεk, (B6)
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where ∂εk/∂ε‖ = 1/(2εk ) with the transverse density of states
being

D(εk ) = gεk

(2π )2(A2 − 2M0M2)
.

The replacement ε⊥ → |ε⊥| can be made due to the absolute
sign in the emission energy. The analytical J⊥ and TED are

J⊥ = geDF d2
F

(2π )2h̄(A2 − 2M0M2)

∫
f (εk )λ(εk/dF )dεk, (B7)

P(εk ) = geDF d2
F

(2π )2h̄(A2 − 2M0M2)
f (εk )λ(εk/dF ). (B8)

Since the TED and J⊥ are proportional to Eqs. (15) and (23),
the dual-peak feature and F 3 scaling law can also be observed
beyond the Dirac cone approximation for Dirac semimetals.

Similarly, this can be applied to Weyl semimetals like TaAs
and TaP, with a two node minimal model with a two-band
energy dispersion [65] εk,± = ±

√
(M(k2

c − k2)2 + A2k2
‖ with

kc = (0, 0,
√

M0/M1), which is a similar form with Eq. (B3).
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