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Entanglement and work extraction in the central-spin quantum battery
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We consider a central-spin battery where Nb central spins serve as battery cells and Nc bath spins serve as
charging units. It is shown that the energy stored in the battery that can be extractable is quantified by the
ergotropy, and that battery-charger entanglement is quantified via the Von Neumann entropy. By using an exact
approach to a one-cell and two-cell battery, our analytical results suggest that, during the charging process, the
extractable work slowly increases before the battery-charger entanglement reaches its maximum and then it
will rapidly increase when the entanglement begins to decrease. In particular, we rigorously show that there is
an inverse relationship between the extractable work and the entanglement at the end of the charging process.
Moreover, we investigate different approaches to realize optimal work extraction without wasted energy. Among
them a central-spin battery with an unpolarized Dicke state as the charger possesses a universal charging time
∝ 1/Nc, large extractable work and

√
Nc-improvement of charging power compared with the battery in the Tavis-

Cummings limit. The above-mentioned results have also been numerically verified in multicell batteries. Our
results pave the way to improve extractable work storage in the central-spin battery and highlight a competitive
relation between the extractable work and the battery-charger entanglement.

DOI: 10.1103/PhysRevB.104.245418

I. INTRODUCTION

The state-of-the-art technology of qubit manipulation en-
ables us to exploit quantum resource, such as entanglement
or coherence, for technological purposes [1–7]. A recent de-
velopment of this direction is studying “quantum batteries,”
which harness the unique property of quantum thermodynam-
ics to speed up the charging process and extract more work
compared to their classical counterparts. The ideal of quantum
batteries was first put forward by Alicki and Fannes in 2013
[8]. They demonstrated that entangling unitary controls (i.e.,
collective controls) perform better than individual controls
(i.e., parallel controls) in work extraction. Further research un-
covered that entanglement generation benefits the speedup of
work extraction [9]. Subsequently, the authors of Refs. [10,11]
argued that, in the charging process, the collective charging
scheme results in k time faster than the parallel charging
scheme, where k denotes a k-body interaction among battery
cells. Therefore we now say quantum batteries have quantum
advantage.

*These authors contributed equally to this work.
†xhwang@nwu.edu.cn

The above-mentioned works mainly focused on abstract
time-evolution operators. To realize such operators in practice,
especially the collective controls, various theoretical models
have been considered [12–31]. For instances, the spin-chain
battery uses an intrinsic spin-spin interaction to realize the
collective controls [21] while the Dicke battery relies on the
cavity photons to generate an effective interaction among
its battery cells [12,29]. Based on superconducting qubits, a
quantum battery has just recently been realized in experiment
[32].

The central spin model, as an exactly solvable model,
has played a vital role in quantitatively understanding deco-
herence problem and entanglement dynamics [33–42]. This
model can be experimentally realized by superconductors
[43], quantum dots [44–46], and nitrogen-vacancy centers
in diamond [47]. Quantum battery problem can be natu-
rally described in this model and we call it the “central-spin
(quantum) battery,” where Nb central spins serve as “battery
cells” and Nc bath spins serve as “charging units,” see Fig. 1.
However, research on the central-spin battery remains limited
[19]. Assuming that only few photons in the view of the
Holstein-Primakoff transformation, the central-spin battery
will reduce to the Tavis-Cummings (TC) battery, which is a
simplification of the Dicke battery. The charging performance
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Non-TC LimitTC Limit

FIG. 1. Schematic illustration of the central-spin battery. Cen-
tral spins serve as Nb battery cells whereas bath spins serve as Nc

charging units. In the limit of Nc → ∞, if the number of spin-up
charging units is far less than Nc then the central-spin battery reduces
to the TC battery and we call this case the TC limit, see the left
panel. On the other hand, if the number of spin-up charging units
is proportional to Nc but not zero or one then the correspondence
between the central-spin battery and the TC battery breaks and we
call this case the non-TC limit, see the right panel.

of the central-spin battery in this limit has been confirmed
to have quantum advantage [19]. A recent Ref. [17] pointed
out that battery-charger entanglement is a major obstacle in
work extraction by comparing the performance of a classical
charger (coherent state) with that of nonclassical chargers
(Fock and squeezed states) in the TC battery. However, the
correspondence between the central-spin battery and the TC
battery breaks when the number of photons is far greater than
the number of charging units.

To bridge this gap, we fix our attention on the central-spin
battery, especially the non-TC case, and discuss the follow-
ing questions. Is there a quantitative relationship between
battery-charger entanglement and extractable work? Under
what conditions “optimal” work extraction can be achieved?
The “optimal” refers to that all energy stored in the battery
can be extracted.

The paper is organized as follows. In Sec. II, we intro-
duce the central-spin battery and discuss its correspondence
with the TC battery. Time evolutions for one-cell battery
and two-cell battery are analytically solved in the same
section. Multicell battery cases are treated by a numerical
method. With the above preparation, we obtain analytical
and numerical results about the evolutions of battery-charger
entanglement and battery’s extractable work in Sec. III. We
rigorously show that the battery-charger entanglement first
increases and then decreases during the charging process. At
the end of the charging process, the final extractable work
is significantly enslaved to the battery-charger entanglement.
To be more exact, the extractable work increases with the
decrease of the battery-charger entanglement when the initial
chargers are restrained to the Dicke states. In Sec. IV, we
show that optimal work extraction can be realized when the
central-spin battery lies in the non-TC limit region (e.g., the
initial charger is an unpolarized Dicke state). Moreover, in
this region, the charging time is proportional to 1/Nc, which
is independent of the number of battery cells. On the other
hand, if the central-spin battery is in the TC limit, the optimal
work extraction is not always possible unless the number of
photons is large but does not break the TC limit. At this

case, the charging time is proportional to 1/
√

Nc. Finally,
a conclusion is given in Sec. V. Our analytical results shed
light on entanglement and extractable work in the central-spin
battery and provide different proposals able to optimally store
extractable work.

II. CENTRAL-SPIN BATTERY

The central-spin battery, just as its name implies, is gov-
erned by the Hamiltonian of the central spin model,

H = Hb + Hc + HI ,

Hb = BSz, Hc = hJz,

HI = A(S+J− + S−J+) + 2�SzJz, (1)

where Sα = ∑Nb
j=1 σα

j /2 (α = x, y, z) are the total spin opera-

tors for Nb battery cells and Jα = ∑Nc
k=1 σα

k /2 for Nc charging
units. J± = Jx ± iJy and S± = Sx ± iSy are spin ladder op-
erators. The Hamiltonians of the battery and the charger are
denoted by Hb and Hc, respectively. The parameter A and �

characterize the flip-flop interaction and the Ising interaction,
respectively.

At time t < 0, the battery is prepared in the ground state
of Hb, i.e., all spins are down |0〉b ≡ |↓1,↓2, . . . ,↓Nb〉. The
charger is prepared in a Dicke state with m spins up

|m〉c ≡ 1√(Nc

m

) ∑
k

Pk (| ↑1, · · · ,↑m,↓m+1, . . . ,↓Nc〉) (2)

where
(Nc

m

) = Nc!/[m!(Nc − m)!] and Pk denotes the complete
set of all possible distinct permutations of the qubits.

At time t = 0, by suddenly turning on the interaction
Hamiltonian HI for a finite time T , we aim to inject as much
as possible energy into the battery. Such a time T is called
the charging time. To evaluate the performance of a quantum
battery, we need obtain the reduced density matrix for bat-
tery cells, which is given by ρb(t ) = Trc(e−iHtρ0eiHt ), where
ρ0 = |ψ0〉〈ψ0| is the initial state and |ψ0〉 = |0〉b ⊗ |m〉c. To
ensure that |0〉b is the ground state of Hb = BSz, we assume
B > 0 in the following discussion.

A. Two limits

Before calculating ρb(t ) we first discuss the relationship
between our battery and the TC battery. The Holstein-
Primakoff (HP) transformation establishes an exact map from
the total spin operators Jα to a bosonic mode a,

J+ → √
Nca†

√
1 − a†a

Nc
, (3)

J− → √
Nc

√
1 − a†a

Nc
a, (4)

Jz → −Nc

2
+ a†a. (5)

Note that the Dicke state |m〉c is an eigenstates of Jz with the
eigenvalue (−Nc/2 + m). Thus the number of up bath spins is
exactly the number of photons in the view of the HP trans-
formation. For convenience we will identify up spins with
photons. If the number of photons is far less than Nb then the
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HP transformation simplifies to J+ → √
Nca†, J− → √

Nca
and the central-spin battery (1) reduces to the TC battery, i.e.,

H = BSz + h
(
−Nc

2
+ a†a

)

+ A
√

Nc(S+a + S−a†) + 2�Sz
(
−Nc

2
+ a†a

)
. (6)

We call this limit

lim
Nc→∞

〈a†a〉
Nc

= lim
Nc→∞

m

Nc
= 0 (7)

the TC limit, where m is the number of up bath spins or the
number of photons.

Another case is that the number of photons is proportional
to Nc but not zero or one, i.e.,

lim
Nc→∞

〈a†a〉
Nc

= lim
Nc→∞

m

Nc
≡ k �= 0, 1. (8)

We call it the non-TC limit. In this limit, the correspondence
between the central-spin battery and the TC battery breaks due
to the non-negligible term

√
1 − a†a/Nc in the HP transforma-

tion (3). Theses two limits (7) and (8) are illustrated in Fig. 1.

B. Exact solutions

Now we evaluate the reduced density matrix of the battery.
Without loss of generality, we assume that the number of
up-spin charging units is not less than the number of bat-
tery cells, i.e., m � Nb. Due to the u(1) symmetry, namely,
[H, Jz + Sz] = 0, the invariance subspace of H containing the
initial state |ψ0〉 = |0〉b ⊗ |m〉c is given by

Hm = {|0〉b|m〉c, |1〉b|m − 1〉c, · · · , |Nb〉b|m − Nb〉c}, (9)

where both of the states of battery and charger are expressed
in term of the Dicke state, see (2). For example, |2〉b|3〉c refers
to the quantum state whose battery part is a Dicke state with
2 particles and whose charger part is a Dicke state with three
particles.

In terms of the basis (9), the Hamiltonian (1) can be repre-
sented as a (Nb + 1) × (Nb + 1) matrix:

H =

⎛
⎜⎜⎜⎜⎝

b0 u1

u1 b1 u2
. . .

. . .
. . .

uNb−1 bNb−1 uNb

uNb bNb

⎞
⎟⎟⎟⎟⎠, (10)

where u j = A
√

j(Nb − j + 1)(Nc − m + j)(m − j + 1) and
b j = B( j − Nb/2) + h(m − j − Nc/2) + 2�( j − Nb/2)(m −
j − Nc/2).

Suppose that H is diagonalized by a unitary matrix U , that
is H = UDU† where D is a diagonal matrix. Then, the matrix
representation of the wave function for the whole system at
time t is given by

ψ(t ) = Ue−iDtU†(1 0 . . . 0)T (11)

and

|ψ (t )〉 = ψ1(t )|0〉b|m〉c + · · · + ψNb+1(t )|Nb〉b|m − Nb〉c.

(12)

It thus follows that the reduced density matrix of the battery
is given by

ρb(t ) = Trc(|ψ (t )〉〈ψ (t )|)
= |ψ1(t )|2|0〉〈0| + · · · + |ψNb+1|2|Nb〉〈Nb|. (13)

Equations (10), (11), and (13) give a numerical approach to
evaluate ρb(t ) in multicell battery cases.

For the one-cell battery case Nb = 1, we find that U =
exp(−iθσ y/2) and D = diag(d1, d2), where θ is determined
by

sin θ = u1√
u2

1 + 1
4 (b0 − b1)2

,

cos θ = b0 − b1

2
√

u2
1 + 1

4 (b0 − b1)2
, (14)

and the energy levels are given by

d1 = b0 + b1

2
+

√
u2

1 + 1

4
(b0 − b1)2, (15)

d2 = b0 + b1

2
−

√
u2

1 + 1

4
(b0 − b1)2. (16)

The reduced density matrix of the battery is thus given by

ρb(t ) = 1 + r(t )

2
|0〉〈0| + 1 − r(t )

2
|1〉〈1|, (17)

where

r(t ) = cos2 θ + cos((d1 − d2)t ) sin2 θ. (18)

For the two-cell battery case Nb = 2, we let h = B and
� = 0 to simplify the calculation. Under this assumption, the
matrices U and D are given by

U = 1√
2
(
u2

1 + u2
2

)
⎛
⎜⎝

√
2u2 u1 u1

0
√

u2
1 + u2

2 −
√

u2
1 + u2

2

−√
2u1 u2 u2

⎞
⎟⎠,

(19)

and D = diag(e1, e2, e3), where u1 and u2 are the same as the
ones in Eq. (10) and

e1 = B(m − 1 − Nc/2), (20)

e2 = B(m − 1 − Nc/2) +
√

u2
1 + u2

2, (21)

e3 = B(m − 1 − Nc/2) −
√

u2
1 + u2

2. (22)

The reduced density matrix of the battery is given by

ρb(t ) = ρ11(t )|0〉〈0| + ρ22(t )|1〉〈1| + ρ33(t )|2〉〈2|, (23)

where

ρ11(t ) = 1(
u2

1 + u2
2

)2

(
u2

2 + u2
1 cos(ωt )

)2
,

ρ22(t ) = u2
1

u2
1 + u2

2

(1 − cos2(ωt )),
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FIG. 2. Evolution of the occupation numbers for the battery part are plotted in (a) for Nb = 1 and (c) for Nb = 2. Evolutions of battery-
charger entanglement S(t ) and extractable work E (t ) are plotted for (b) Nb = 1, (d) 2, and (e) 10. t∗ denotes the time when the battery-
charger entanglement reaches its maximum. T denotes the time when the extractable work reaches its maximum. The process of 0 ∼ T is
called the charging process. The cartoon (f) illustrates the changes of battery-charger entanglement during the charging process. The other
parameters are set to be B = 1, h = 4, A = 1, � = 0, Nb = 1, Nc = 20, and m = 20 in (a) and (b); B = h = 1, A = 1, � = 0, Nb =
2, Nc = 200, and m = 100 in (c) and (d); and B = h = 1, A = 1, � = 0, Nb = 10, Nc = 20, and m = 20 in (e).

ρ33(t ) = u2
1u2

2(
u2

1 + u2
2

)2 (1 − cos(ωt ))2, (24)

and ω = e2 − e1 =
√

u2
1 + u2

2.

III. ENTANGLEMENT AND EXTRACTABLE WORK

Since the quantum state of battery-charger system remains
a pure state during the time evolution, the battery-charger
entanglement can be well characterized by the Von Neumann
entropy of the battery part, which is given by [1]

S(t ) = −Tr(ρb(t ) log2 ρb(t )). (25)

Another important quantity is the extractable work. During the
charging process, the energy injected from the charger to the
battery is described by

�E (t ) = E (t ) − E (0), (26)

where E (t ) = Tr(ρ(t )Hb) denotes the mean energy of the
battery state ρb(t ). However, not all energy can be extracted
from the battery, which is known as the second law of ther-
modynamics. A proper measure of the extractable work for
the state ρb(t ) is provided by the ergotropy [48]

E (t ) = E (t ) − Ep(t ), (27)

where Ep(t ) = Tr(ρb(t )Hb) is the energy of the passive coun-
terpart ρb(t ) of ρb(t ). Passive states are incapable of giving out
energy via any cyclic Hamiltonian process. In our settings, the
passive state ρb(t ) is given by

ρb(t ) =
Nb+1∑
j=1

|ψη j
|2| j − 1〉〈 j − 1|, (28)

where ψ is given in Eq. (13) and η is a permutation of
1, 2, . . . , Nb + 1 so that |ψη j

|2 � |ψη j+1
|2 for j = 1, . . . , Nb.

Now we consider the single-cell battery case, i.e., Nb = 1.
The entanglement for this case reduces to the binary entropy

S(t )=−1 + r(t )

2
log2

1 + r(t )

2
− 1 − r(t )

2
log2

1 − r(t )

2
,

(29)

which shows an inverse relationship between S(t ) and |r(t )|.
However, the ergotropy is

E (t ) =
{

0, r(t ) � 0
−Br(t ), r(t ) < 0 , (30)

which is positively related to the |r(t )| when E (t ) �= 0. Thus
we have the following.

Theorem 1. For Nb = 1, if the ergotropy E (t ) is not equal
zero then E (t ) is in inversely related to the battery-charger
entanglement S(t ). In particular, at the end of the charging
process, E (T ) is also in inversely related to S(T ).

As shown in Figs. 2(a) and 2(b), r(t ) keeps falling in the
time interval 0 ∼ T . At time t∗, the occupation numbers of
the ground state |0〉 and the excited state |1〉 are balanced and
thus the battery state is maximally entangled with the charger.
When time is far away from t∗, the occupation numbers be-
gin to reverse resulting in the decrease of entanglement and
the appearance of nonzero extractable work. At time T , the
charging process is finished with the most energy stored in
the battery and the battery-charger entanglement decreases to
a minimum. According to theorem 1, the extracted work E (T )
essentially depend on the battery-charger entanglement S(T ).
The smaller S(T ) the larger E (T ).

For Nb = 2 case, the complex expression of Eq. (24)
impedes the further discussion. We notice that u1 =
A
√

2m(Nc − m + 1) can be considered as the same as u2 =
A
√

2(Nc − m + 2)(m − 1) under some special limits, e.g., the
non-TC limit (8). Then Eq. (24) immediately reduces to a
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simple form:

ρ11 = 1
4 (1 + cos(ωt ))2,

ρ22 = 1
2 (1 − cos2(ωt )),

ρ33 = 1
4 (1 − cos(ωt ))2. (31)

The corresponding extractable work and entanglement are
thus given by

E (t )

B
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 � t < t1

− 3
4

(
cos(ωt ) + 1

3

)2 + 1
3 , t1 � t < t∗

− 3
4 (cos(ωt ) + 1)2 + 1, t∗ � t < t2

−2 cos(ωt ), t2 � t � T

(32)

and

S(t ) = 3
2 + 1

2 cos2(ωt ) − 1
2 (cos(ωt ) + 1)2 log2(cos(ωt ) + 1)

− 1
2 (cos(ωt ) − 1)2 log2(1 − cos(ωt ))

− 1
2 (1 − cos2(ωt )) log2(1 − cos2(ωt )), (33)

where t1 = arccos(1/3)/ω, t2 = arccos(−1/3)/ω, t∗ = π/

(2ω), and T = π/ω. The analytical results are consistent
with the numerical results obtained in the settings of
Nc = 200, m = 100, see Figs. 2(c) and 2(d). Unlike the
Nb = 1 case, the extractable work E (t ) is not always zero but
still small before the entanglement E (t ) reaches its maximum
E (t∗) because at time t1 the occupation numbers of the ground
state and the first excited state are starting to inverse. Another
difference lies in that S(T ) �= 0 for Nb = 1 while S(T ) = 0
for Nb = 2. Note that the choice of parameters Nb, Nc, m
largely determines whether S(T ) is zero. In the next section,
we will discuss this question in detail and further highlight
a strong link between the entanglement and the extractable
work. Now we claim that

Theorem 2. For Nb = 2, the ergotropy E (T ) is in inversely
related to the battery-charger entanglement S(T ). Here, we
need not make the simplification by requiring the condition
u1 = u2.

Proof. The charging time T is determined by maximizing
the energy injected to the battery, i.e., �E (t ). According to
the general expressions of the occupation numbers (24) and
the definition (26), we have

�E (t ) = B + B(
u2

1 + u2
2

)2

[
u2

1

(
u2

2 − u2
1

)
x2 − 4u2

1u2
2x

+ u2
2

(
u2

1 − u2
2

)]
, (34)

where x = cos(ωt ). If u2
2 − u2

1 � 0 then �E (t ) takes the max-
imum value when x = −1. Otherwise, the maximum value of
the quadratic function �E (t ) is taken at x∗ = −2u2

2/(u2
1 − u2

2)
by ignoring the constraint −1 � x � 1. It is not difficult
to show that x∗ < −1 by using the condition m � Nb = 2.
Thus we deduce that the charging time T is determined by
cos(ωT ) = −1. It immediately follows that the occupation
number of the first excited state ρ22(T ) = 0. Therefore this
theorem can be proven by using the same argument in proving
theorem 1.

Except for the cases of Nb = 1 and Nb = 2, it is difficult
to carry out analytical calculations in multicell battery cases.
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FIG. 3. (a) plots the battery-charger entanglement S(t ) and the
extractable work E (t ) for Nb = 2, Nc = 10. From (a), we can de-
termine T at which E (t ) reaches its maximum E (T ). (b)–(d) plots
E (T ) and S(T ) vs m, where m is the number of spin-up charging
units. Here we set h = B = A = 1, � = 0, and Nc = 10 for (a)–(d),
Nb = 2 for (a) and (b), Nb = 4 for (c), and Nb = 6 for (d).

Thus we perform a numerical verification of the results ob-
tained above for the case of Nb = 10, see Fig. 2(e). We see that
the minimal value of entanglement E (T ) marks the maximal
extractable work E (T ). The inverse relationship between S(T )
and E (T ) is checked in Fig. 3.

The cartoon, Fig. 2(f), shows a variation of the battery-
charger entanglement during the charging process. Initially,
the spin-down battery cells are interacted with a well prepared
charger that is a Dicke state with m up spins. Thus there is no
entanglement between the battery and the charger. When the
charging process begins, the spin down battery cells will be
excited due to the flip-flop interaction, resulting in increasing
battery-charger entanglement. At time t∗, the entanglement
reaches its maximum and the occupation numbers for the
battery display a nearly balanced distribution. As the charging
process continues, the battery cells will continue to be excited
while the battery-charger entanglement begins to decrease. At
the end of the charging process, namely time T , the energy
of battery reaches its maximum while the battery-charger
entanglement reaches its minimum. However, the extractable
work E (T ) is less than the energy stored in the battery and is
inversely related to the battery-charger entanglement S(T ).

IV. OPTIMAL WORK EXTRACTION

In Sec. III, we establish an inverse relationship between the
battery-charger entanglement S(T ) and the extractable work
E (T ), where T is the charging time. In this section, we will
discuss how to realize the optimal work extraction. Review
the definitions given in Eqs. (26) and (27). Generally, the
extractable work E (T ) is less than the energy �E (T ) stored in
the battery since we can not extract any work from the passive
state. Thus “optimal” in here refers to that E (T ) = �E (T ), or
equivalently, Ep(T ) = E (0). For convenience, we can let the
initial energy E (0) = 0 by subtracting a constant E (0) from
the Hamiltonian (1). Then, the condition of optimal work ex-
traction can be stated as that at the end of the charging process,
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the energy of passive state is zero, i.e., Ep(T ) = 0. Another
important observation is that vanishing battery-charger entan-
glement S(T ) = 0 implies that the battery ρb(T ) is a pure
state. Then, the corresponding passive state is exactly the
initial state |0〉b and thus Ep(T ) = E (0) = 0. Therefore the
battery-charger entanglement S(T ) also indicates the quality
of extractable work. The zero entanglement means that the
battery possesses optimal extractable work.

For the Nb = 1 case, we deduce from Eqs. (18) and (30)
that T is determined by cos((d1 − d2)T ) = −1. Thus we have

E (T ) = B

[
1 − 2(h − B)2

4A2m(Nc − m + 1) + (B − h)2

]
, (35)

where m is the number of spin-up charging units and we
assume here � = 0. Eq. (35) indicates that extractable work
E (T ) decreases when m is far away (Nc + 1)/2. According
to Eqs. (14), (18), and (29) the entanglement S(T ) = 0 for
m = (Nc + 1)/2 when h = B and � = 0.

For the Nb = 2 case, the charging time T is determined by
cos(ωT ) = −1. Substituting this condition into Eq. (24) and
the definition of ergotropy (27), we obtain

E (T ) = 2B

⎡
⎣−1 + 8

u2
1

u2
2
+ u2

2

u2
1
+ 2

⎤
⎦. (36)

It is clear that as u1/u2 =√
m(Nc − m + 1)/[(m − 1)(Nc − m + 2)] deviates from 1,

or equivalently, m deviates from (Nc + 2)/2, the extractable
work E (T ) will decrease, see Fig. 3(b). The expression (33)
of entanglement for the case of m = (Nc + 2)/2 shows that
S(T ) = 0 and thus optimal work extraction can be realized.

The above analytical analysis implies a conjecture that for
a fixed Nb, the extractable work E (T ) decreases as m deviates
from (Nc + Nb)/2. Numerical calculations [Figs. 3(b)–3(d)]
support this conjecture . However, such maximal extractable
work may not be optimal. As shown in Fig. 3(d), S(T ) is not
zero for m = (Nb + Nc)/2 = 8.

Whether optimal work extraction can be achieved under
Nc → ∞? Taking Nb = 2 as an instructive example, the con-
dition u1 = u2 ensures that the battery-charger entanglement
S(T ) (33) becomes zero at the end of the charging process.
In Sec. III, we have discussed that the condition u1 = u2 can
be realized under the non-TC limit. In the TC-limit (7), an
additional condition m → ∞ is required to ensure u1 = u2.
Although these two limits ensure the realization of optimal
work extraction, the corresponding charging times are indeed
different. In the non-TC limit, the charging time is given by

TNTC = π

2A
√

k(1 − k)Nc
, (37)

where k = limNc→∞ m/Nc is given in the non-TC limit (8).
Since m = (Nb + Nc)/2 benefits the work extraction, we take
k = 1/2 in Eq. (8) and thus

TNTC = π

ANc
. (38)

In the TC limit, the charging time is given by

TTC = π

2A
√

mNc
, (39)
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FIG. 4. The energy Ep(T ) [(a) and (c)] of passive state at time
T vs the number m of charging units with initially spin up. T is the
charging time. TNTC and TTC are obtained from Eqs. (38) and (39).
Here, we set Nb = 2, Nc = 500, h = B = A = 1, and � = 0 for
(a) and (b) and Nb = 10, Nc = 500, h = 10, B = A = 1, and � =
0 for (c) and (d).

which indicates the charging power is ∝ √
Nc. Such

√
Nc-

speedup of charging has also been founded in Ref. [19].
Compared with the performance of the battery in the TC limit,
however, the

√
Nc-improvement of charing power in the non-

TC limit manifests the uniqueness of the central-spin battery
distinguished from the TC battery.

Figures 4(a) and 4(b) plot the energy of passive state and
the charging time T for Nb = 2, Nc = 500. With the increase
of m, the central-spin battery firstly behaves like the TC
battery since the charging time T corresponds to TTC, see
Fig. 4(b). Only when m is large enough [>10 in Fig. 4(a)]
can the energy of passive state becomes zero, so optimal work
extraction can be achieved. With the further increase of m,
the central-spin battery enters to the non-TC limit and the
charging time T conforms to TNTC, see Fig. 4(b). It is worth
noting that the central-spin battery behaves like under the
non-TC limit for a wide range of parameter m [from 100 to
400 in Fig. 4(b)]. The case of Nb = 10, B �= h is plotted in
Figs. 4(c) and 4(d). In Fig. 4(d), the inconsistency between
TTC and T arises since TTC (Eq. (39)) is derived for Nb = 2
case. However, TNTC is still consistent with the T when m
is around (Nc + Nb)/2 even if h �= B. In this sense, TNTC is
universal and independent of the number of quantum cells Nb

and the strength of magnetic fields B and h.

V. CONCLUSION

In this work, we have studied extractable work and en-
tanglement in the central-spin battery. It is shown that the
extractable work is quantified by the ergotropy and the
battery-charger entanglement is quantified by the Von Neu-
mann entropy. Exact dynamics for them have been obtained
in the cases of single-battery cell and two-battery cells. Us-
ing these exact expressions, we rigorously show that during
the charging process the battery-charger entanglement first
increases to the maximum which marks a nearly balanced
distribution of occupation numbers, and then entanglement
decreases with the rapid increase of extractable work. At
the end of charging process, the final extractable work from
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battery is in inversely related to the battery-charger entan-
glement. The optimal extractable work, namely, no wasted
energy, can be achieved if there is no battery-charger en-
tanglement at the end of charging process. We show that
there are two conditions to obtain optimal extractable work:
one is the TC limit with m → ∞ and another is the non-
TC limit. For the former, the central-spin battery reduces
to the TC battery with the charging time TTC ∝ √

Nc, while
the latter, the non-TC limit, is unique for the central-spin
battery and does not correspond to the TC battery. We
can realize the non-TC limit by preparing the charger in
an unpolarized Dicke state. The advantage of this setting
is short charging time TNTC = π/(ANc), large extractable
work, and realization of optimal work extraction. More-
over, TNTC is independent of the number of battery cells
and thus universal. The above-mentioned analytical results
have also been verified by numerical calculations for a ten-
cell battery. It is worth noting that our present results are
applicable to quantum batteries where no coherence is in-
volved during the charging process. Our work deepens the
understanding of entanglement and extractable work in such
incoherent quantum batteries and sheds light on how to re-

alize optimal work extraction in the central-spin battery. For
a more general situation, other quantum correlations will
be involved and affect the performance of work extraction.
The relations between extractable work and other quantum
correlations will becomes subtle and complicated. Uncov-
ering their relations in more general settings will become
important.

ACKNOWLEDGMENTS

Qing-Kun Wan and Shu Ding are acknowledged for useful
discussion. This work was supported by NSFC (Grants No.
12047502, No. 11975183, and No. 11875220), the Key In-
novative Research Team of Quantum Many-body theory and
Quantum Control in Shaanxi Province (Grant No. 2017KCT-
12), the Major Basic Research Program of Natural Science of
Shaanxi Province (Grant No. 2017ZDJC-32), and the Double
First-Class University Construction Project of Northwest Uni-
versity.

H.-L. Shi and J.-X. Liu contributed equally to the numeri-
cal and analytical studies for this research.

[1] M. A. Nielsen and I. Chuang, Quantum Computation and Quan-
tum Information (Cambridge University Press, 2000).

[2] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher,
J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722
(1996).

[3] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330
(2004).

[4] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.
Phys. 74, 145 (2002).

[5] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[6] S. Lloyd, Science 273, 1073 (1996).
[7] D. P. DiVincenzo, Science 270, 255 (1995).
[8] R. Alicki and M. Fannes, Phys. Rev. E 87, 042123

(2013).
[9] K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, and A.

Acín, Phys. Rev. Lett. 111, 240401 (2013).
[10] F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, New J.

Phys. 17, 075015 (2015).
[11] F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold,

S. Vinjanampathy, and K. Modi, Phys. Rev. Lett. 118, 150601
(2017).

[12] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and M.
Polini, Phys. Rev. Lett. 120, 117702 (2018).

[13] D. Rossini, G. M. Andolina, D. Rosa, M. Carrega, and M.
Polini, Phys. Rev. Lett. 125, 236402 (2020).

[14] D. Rosa, D. Rossini, G. M. Andolina, M. Polini, and M.
Carrega, J. High Energy Phys. 11 (2020) 067.

[15] F. H. Kamin, F. T. Tabesh, S. Salimi, and A. C. Santos, Phys.
Rev. E 102, 052109 (2020).

[16] G. M. Andolina, D. Farina, A. Mari, V. Pellegrini, V.
Giovannetti, and M. Polini, Phys. Rev. B 98, 205423
(2018).

[17] G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Giovannetti,
and M. Polini, Phys. Rev. Lett. 122, 047702 (2019).

[18] G. M. Andolina, M. Keck, A. Mari, V. Giovannetti, and M.
Polini, Phys. Rev. B 99, 205437 (2019).

[19] L. Peng, W.-B. He, S. Chesi, H.-Q. Lin, and X.-W. Guan, Phys.
Rev. A 103, 052220 (2021).

[20] F. Barra, Phys. Rev. Lett. 122, 210601 (2019).
[21] T. P. Le, J. Levinsen, K. Modi, M. M. Parish, and F. A. Pollock,

Phys. Rev. A 97, 022106 (2018).
[22] S. Ghosh, T. Chanda, and A. Sen(De), Phys. Rev. A 101,

032115 (2020).
[23] M. Carrega, A. Crescente, D. Ferraro, and M. Sassetti, New J.

Phys. 22, 083085 (2020).
[24] A. Crescente, M. Carrega, M. Sassetti, and D. Ferraro, New J.

Phys. 22, 063057 (2020).
[25] F. Pirmoradian and K. Mø lmer, Phys. Rev. A 100, 043833

(2019).
[26] Y.-Y. Zhang, T.-R. Yang, L. Fu, and X. Wang, Phys. Rev. E 99,

052106 (2019).
[27] D. Farina, G. M. Andolina, A. Mari, M. Polini, and V.

Giovannetti, Phys. Rev. B 99, 035421 (2019).
[28] Y. Xie, M. Chen, Z. Wu, Y. Hu, Y. Wang, J. Wang, and H. Guo,

Phys. Rev. Appl. 10, 034005 (2018).
[29] X. Zhang and M. Blaauboer, arXiv:1812.10139.
[30] J. Q. Quach and W. J. Munro, Phys. Rev. Appl. 14, 024092

(2020).
[31] A. Crescente, M. Carrega, M. Sassetti, and D. Ferraro, Phys.

Rev. B 102, 245407 (2020).
[32] C.-K. Hu et al., arXiv:2108.04298.
[33] J. Schliemann, A. Khaetskii, and D. Loss, J. Phys.: Condens.

Matter 15, R1809 (2003).
[34] H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys.

Rev. Lett. 96, 140604 (2006).
[35] R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and

D. D. Awschalom, Science 320, 352 (2008).
[36] M. Bortz, S. Eggert, C. Schneider, R. Stübner, and J. Stolze,

Phys. Rev. B 82, 161308(R) (2010).

245418-7

https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.270.5234.255
https://doi.org/10.1103/PhysRevE.87.042123
https://doi.org/10.1103/PhysRevLett.111.240401
https://doi.org/10.1088/1367-2630/17/7/075015
https://doi.org/10.1103/PhysRevLett.118.150601
https://doi.org/10.1103/PhysRevLett.120.117702
https://doi.org/10.1103/PhysRevLett.125.236402
https://doi.org/10.1007/JHEP11(2020)067
https://doi.org/10.1103/PhysRevE.102.052109
https://doi.org/10.1103/PhysRevB.98.205423
https://doi.org/10.1103/PhysRevLett.122.047702
https://doi.org/10.1103/PhysRevB.99.205437
https://doi.org/10.1103/PhysRevA.103.052220
https://doi.org/10.1103/PhysRevLett.122.210601
https://doi.org/10.1103/PhysRevA.97.022106
https://doi.org/10.1103/PhysRevA.101.032115
https://doi.org/10.1088/1367-2630/abaa01
https://doi.org/10.1088/1367-2630/ab91fc
https://doi.org/10.1103/PhysRevA.100.043833
https://doi.org/10.1103/PhysRevE.99.052106
https://doi.org/10.1103/PhysRevB.99.035421
https://doi.org/10.1103/PhysRevApplied.10.034005
http://arxiv.org/abs/arXiv:1812.10139
https://doi.org/10.1103/PhysRevApplied.14.024092
https://doi.org/10.1103/PhysRevB.102.245407
http://arxiv.org/abs/arXiv:2108.04298
https://doi.org/10.1088/0953-8984/15/50/R01
https://doi.org/10.1103/PhysRevLett.96.140604
https://doi.org/10.1126/science.1155400
https://doi.org/10.1103/PhysRevB.82.161308


LIU, SHI, SHI, WANG, AND YANG PHYSICAL REVIEW B 104, 245418 (2021)
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