
PHYSICAL REVIEW B 104, 245417 (2021)

Double-periodic Josephson junctions in a quantum dissipative environment
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Embedded in an ohmic environment, the Josephson current peak can transfer part of its weight to finite voltage
and the junction becomes resistive. The dissipative environment can even suppress the superconducting effect
of the junction via a quantum phase transition occurring when the ohmic resistance Rs exceeds the quantum
resistance Rq = h/(2e)2. For a topological junction hosting Majorana bound states with a 4π periodicity of the
superconducting phase, the superconductor-insulator phase transition is shifted to 4Rq. We consider a Josephson
junction mixing the 2π and 4π periodicities shunted by a resistor, with a resistance between Rq and 4Rq such
that the two periodicities promote competing phases. Starting with a quantum circuit model, we derive the
nonmonotonic temperature dependence of its differential resistance resulting from the competition between the
two periodicities, the 4π periodicity dominating at the lowest temperatures. The nonmonotonic behavior is first
revealed by straightforward perturbation theory and then substantiated by a fermionization to exactly solvable
models when Rs = 2Rq: the model is mapped onto a helical wire coupled to a topological superconductor when
the Josephson energy is small and to the Emery-Kivelson line of the two-channel Kondo model in the opposite
case. We also settle the compact vs extended phase controversy: introducing a compact phase variable across
the junction, associated with a discrete charge, we rigorously prove that it is effectively replaced by an extended
phase variable in presence of the environment.
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I. INTRODUCTION

The tunneling of Cooper pairs in the Josephson effect can
be reduced and even suppressed by a shunting resistance
Rs. The resistor acts as an ohmic dissipative environment
which controls the quantum fluctuations of the superconduct-
ing phase in the Josephson junction [1]. A renormalization
group analysis predicts a quantum phase transition between a
superconducting and an insulating state in a single Josephson
junction [2–11]. The location of the quantum phase transition
is determined solely by the dimensionless dissipation strength
α = Rq/Rs where Rq = h/(2e)2 is a quantum of resistance.
When α > 1, quantum fluctuations of the phase are sup-
pressed by dissipation and the junction is superconducting.
Conversely, for α < 1, the dissipation is strong enough to de-
stroy the Josephson current even at zero temperature. Several
aspects of this transition have been observed experimentally
[12–14] in superconducting junctions shunted by metallic
resistors.

The model describing the quantum phase transition is well
established and understood. It can be mapped onto the prob-
lem of quantum Brownian motion in a periodic potential
which has been studied in detail [3,15,16]. It is also equiv-
alent to the one-dimensional boundary sine-Gordon model
[17] which describes in particular an impurity in a Luttinger
liquid [18–20], such as a defect in an interacting nanowire or
a point contact in a fractional quantum Hall state [21]. More
generally, the quantum phase transition and environment fluc-
tuations have a strong impact on the whole current-voltage
characteristics of the junction at energies well below the
gap [1,22–24].

The past years have witnessed a tremendous interest in
the fractional Josephson effect in junctions hosting Majorana
bound states [25,26]. Majorana excitations exhibit a topo-
logical protection against small perturbation and, as such,
are believed to be building blocks for fault-tolerant quantum
computation [27–29] via their braiding [30]. The fractional
Josephson effect involves a 4π periodicity of the current
as function of the superconducting phase in contrast with
the usual 2π periodicity. It has been tested experimentally
in semiconducting nanowires and topological junctions via
the absence of odd Shapiro steps under radio-frequency ir-
radiation [31–33]. Physically, the 4π periodicity is in fact
associated with coherent single-electron tunneling at zero
energy.

Topological junctions most probably combine Josephson
energy terms with 2π and 4π periodicity. These multiple peri-
odicities are nevertheless not uncommon since nonsinusoidal
Josephson junctions, for instance in atomic point contacts
[34,35], already involve different harmonics associated with
the presence of Andreev levels. At zero energy, an Andreev
state produces a 4π -periodic Josephson effect similar to the
topological case. The presence of a strong Kondo impurity
in the junction has been argued to pin the Andreev level
to zero energy [36], thereby achieving a robust fractional
Josephson effect. Moreover, there exist other means to realize
different periodicities, including hybrid junctions involving
superconducting and ferromagnetic layers which have been
theoretically predicted to exhibit a controllable Josephson
periodicity [37]. Another proposal is a specific arrangement
of four Josephson junctions with a π periodicity called the
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FIG. 1. Renormalization group scaling flows of the dissipative
Josephson junction. V represents the strength of the potential term
(EJ or EM ). The full lines represent the EM term and the dashed lines
represent the EJ term. For α > 1/4, EM is relevant. We therefore
expect that the system is in an insulating state (R = Rs ) for α < 1/4
and in a superconducting state (R = 0) for α > 1/4.

Josephson rhombus and also appearing in certain Josephson
arrays [27,38–41].

In this paper, we study a Josephson junction having the
two periodicities 2π and 4π shunted by an ohmic environ-
ment. Whereas we use here a full quantum treatment, the
classical limit of this model has been investigated in the
framework of the resistively capacitively shunted junction
model with the purpose of describing Shapiro steps [42–45].
For a pristine topological Josephson junction with 4π pe-
riodicity, a renormalization group analysis [46] shows that
the superconductor-insulator quantum phase transition is just
shifted to the critical value α = Rq/Rs = 1/4, four times
smaller than for conventional Josephson junctions. This crit-
ical condition also reads Rq2/Rs = 1, with Rq2 = h/e2. It is
then easily understood by noting that single-electron tun-
neling occurs through Majorana bound states in topological
Josephson junctions in contrast to Cooper pair tunneling in
conventional Josephson junctions.

In the presence of both periodicities, a competition
emerges with the phase diagram shown in Fig. 1. We focus
in this paper on the values of α between 1/4 and 1 where
(i) the topological Josephson energy EM , corresponding to
single-electron tunneling, is relevant while (ii) the standard
Josephson energy EJ , describing Cooper pair tunneling, is
irrelevant but commensurate with the topological term. No in-
termediate fixed point can emerge from this competition since
there are only two admissible infrared fixed points for the
corresponding conformal field theory [47], representing the
superconducting and insulating states. Nevertheless, the two
terms can dominate different energy regimes, EM being al-
ways the dominant effect at sufficiently low energy. We study
the interplay of the two Josephson terms and the Coulomb
interaction at arbitrary temperatures by using a combination
of perturbative techniques and mappings to exactly solvable
models for α = 1/2. We compute the resistance of the whole
system—Josephson junction and ohmic environment—as a
function of temperature and exhibit nonmonotonic behaviors
for different regimes of Josephson and charging energies.

We also emphasize that our theoretical modeling of the
Josephson junction involves a phase variable that lives on
a circle, i.e., a compact space, corresponding to a dis-
crete charge transfer across the junction. Interestingly, in
the presence of the dissipative environment, we are able
to rigorously prove that this phase is effectively replaced

by another extended [49,50] variable. We thereby recover
the sine-Gordon model [2] used by many authors to dis-
cuss the superconductor-insulator transition. The issue of
whether the phase should be considered as compact or ex-
tended has a long history [48–50] and has recently been
disputed [51–53]. We solve this controversy by showing that
the phase is decompactified by its coupling to the envi-
ronment. Physically [54], the continuous delocalization of
electrons to the environment suppresses charge quantization
across the Josephson junction.

This paper is organized as follows: in Sec. II we use a
quantum circuit description of the system and show that the
dissipative term and charging energy can be absorbed in the
Josephson tunneling to recover the usual sine-Gordon action
[2,19]. The rest of the paper is devoted to the computation
of the zero-bias differential resistance of the circuit at arbi-
trary temperature. In Sec. III, we identify the different low
temperature regimes using renormalization group arguments.
We then derive the resistance within linear response theory
using perturbation theory and an infinite resummation based
on refermionization at α = 1/2, thereby showing the non-
monotonic temperature dependence. In Sec. IV, we treat with
a tight-binding approach the limit of a deep Josephson pe-
riodic potential landscape with the Josephson energy much
larger than the charging energy. A Bloch band description is
combined with a refermionization procedure valid at α = 1/2
to derive a mapping to the Emery-Kivelson model of the two-
channel Kondo problem. The topological Josephson energy
EM acts as an effective magnetic field driving the system to
a superconducting phase. We obtain an analytical form for
the resistance as a function of temperature which qualitatively
agrees with the shape derived in the opposite regime of small
Josephson energies. We conclude in Sec. V.

II. CIRCUIT THEORY

A. Model

Instead of starting from an abstract Caldeira-Leggett form,
we derive the relevant Hamiltonian from quantum circuit
theory [55,56]. We consider the quantum device depicted in
Fig. 2 composed of three parallel elements: a superconducting
junction with a Josephson energy EJ , a second topological
junction with a Josephson energy EM , a capacitance C, and a
resistor Rs. The whole apparatus is biased by a DC current I0.
The fractional Josephson junction allows for coherent single-
electron tunneling, i.e., a 4π periodicity of the phase. We
neglect in our analysis the quasiparticle excitations above the
superconducting gap and we use h̄ = kB = 1 for simplicity.

In the charge representation, the Hamiltonian of the system
is

H = 1

2C

(
2e N̂ + Q̂ +

∫ t

−∞
dt ′ I0(t ′)

)2

+ HRs

− EJ

2

∑
n

(
|n〉 〈n + 1| + H.c.

)

− EM

2

∑
n

(
|n〉 〈n + 1

2
| + H.c.

)
. (1)
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FIG. 2. (a) Schematic representation of a resistively and capac-
itively shunted Josephson junction combining 2π and 4π -periodic
contributions. (b) Sketch of the distributed LC line circuit represent-
ing the shunt resistor Rs. The dissipative environment is described as
a semi-infinite transmission line with lineic capacitance c and lineic
inductance �. The correspondence between the two representations
gives Rs = √

�/c.

The first term is the energy stored in the capacitance where
the charge 2e N̂ across the Josephson junctions is added to
the charge Q̂ brought by the resistor and the charge inte-
grated from the current source I0. The third term corresponds
to the Josephson tunneling between states with consecutive
Cooper pair charge numbers, N̂ |n〉 = n |n〉. The fourth term
describes the tunneling of electrons through the topologi-
cal Majorana fermions, implying that the charge operator N̂
takes half-integer values, such that the corresponding phase
operator

e iϕ̂/2 =
∑

n

|n〉〈n + 1/2|, (2)

with [ϕ̂, N̂] = i, is defined on a circle of size 4π . An electron
is thus seen as half of a Cooper pair. HRs models the resistor
in terms of a semi-infinite one-dimensional transmission line,
i.e., as a collection of harmonic oscillators with lineic induc-
tance � and capacitance c [57]. The Hamiltonian HRs is

HRs [{φ̂}, {q̂}] =
∫ +∞

0
dx

[
1

2�

(
∂φ̂(x)

∂x

)2

+ q̂(x)2

2c

]
(3)

where Rs = √
�/c. The local flux φ̂ and the local charge q̂ are

conjugate variables and obey the canonical quantization

[φ̂(x), q̂(x′)] = iδ(x − x′), (4)

with the additional constraint that Q̂ and φ̂(0) are conjugate
operators:

[φ̂(0), Q̂] = i. (5)

B. Unitary transformation

Before acting on the Hamiltonian (1), we note that the
Hamiltonian Q̂2/2C + HR can be diagonalized by the mode
expansion

φ̂(x) =
√

Rs

4π

∫ +∞

0

dω√
ω

[ain,ωe−ikx + aout,ωe ikx + H.c.],

(6a)

q̂(x) = c

i

√
Rs

4π

∫ +∞

0

√
ω dω[ain,ωe−ikx + aout,ωe ikx − H.c.]

(6b)

with the dispersion ω = vk and the velocity v = 1/
√

�c, and
the boundary conditions

aout,ω = 1 + iτ sω

1 − iτ sω
ain,ω, Q̂ = C

c
q̂(0), (7)

corresponding to the reflection of microwaves by the capaci-
tor. The commutation relations Eqs. (4) and (5) are recovered
from the canonical quantization

[ain,ω, a†
in,ω′ ] = δ(ω − ω′). (8)

This is a field theoretical description of a simple RC circuit
with the time scale for discharge τs = RsC. Inserting this
mode expansion, we find the diagonal form

Q̂2

2C
+ HRs =

∫ +∞

0
dω ω a†

in,ωain,ω. (9)

In order to disentangle the different variables, it is convenient
to apply the time-dependent unitary transformation

Û = exp

[
iφ̂(0)

(
2eN̂ +

∫ t

−∞
dt ′ I0(t ′)

)]
(10)

which essentially shifts the charge operator

Û Q̂Û † = Q̂ − 2eN̂ −
∫ t

−∞
dt ′ I0(t ′), (11)

and acts as a displacement operator for the propagating modes

Ûain,ωÛ † = ain,ω − i

√
Rs

πω

2e N̂ + ∫ t
−∞ dt ′ I0(t ′)

1 + iτ sω
. (12)

We note however that Û leaves HRs = ÛHRsÛ
† invariant. The

transformed Hamiltonian H̃ = Û H Û † + i∂tÛÛ † assumes
the simplified form

H̃ = − EJ

2

∑
n

(|n〉〈n + 1|e−2ieφ̂(0) + H.c.)

− EM

2

∑
n

(
|n〉 〈n + 1

2
| e−ieφ̂(0) + H.c.

)

+
∫ +∞

0
dω ω a†

in,ωain,ω − I0(t ) φ̂(0), (13)

where the Cooper and single-electron tunneling terms are
dressed by the dissipative phase functions e±pieφ̂(0), with p =
1, 2, describing the RC environment. Using Eq. (2), Eq. (13)
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becomes

H̃ = − EJ cos(ϕ̂ − 2eφ̂(0)) − EM cos
( ϕ̂

2
− eφ̂(0)

)

+
∫ +∞

0
dω ω a†

in,ω ain,ω − I0(t ) φ̂(0). (14)

At this point, N̂ disappears and the phase operator ϕ̂ com-
mutes with the Hamiltonian H̃ . ϕ̂ is a constant of motion and
it can be absorbed into φ̂(0), i.e., removed from Eq. (14).
Although we made no approximation, the charge discreteness
and the related phase compactness no longer play a role in
Eq. (14). We recover the standard sine-Gordon model [2] with
an (noncompact) extended field despite our original choice of
a compact Josephson phase. The phase ϕ̂ has been effectively
replaced by φ̂(0) which includes the modes of the environ-
ment responsible for the suppression of charge quantization.

It is possible to formulate the Euclidean action correspond-
ing to the Hamiltonian (14), where all modes except φ0 ≡
2eφ̂(0) are integrated,

S = 1

2β

∑
iωn

( 1

8EC
ωn

2 + α

2π
|ωn|

)
|φ0(iωn)|2

− EJ

∫ β

0
dτ cos φ0(τ ) − EM

∫ β

0
dτ cos

(
φ0(τ )

2

)
,

(15)

for I0 = 0. ωn = 2πnT denotes a Matsubara frequency and
β = 1/T the inverse temperature. This expression recovers
the standard action already used by many authors [2] for
EM = 0. We have introduced the charging energy EC = e2/2C
and the dimensionless dissipative constant α = Rq/Rs where
Rq = h/(4e2) is the quantum resistance for Cooper pairs.

Hereinafter, we will use equivalently Eqs. (14) and (15)
as a starting point to derive the differential resistance of our
model.

III. DIFFERENTIAL RESISTANCE IN THE COULOMB
BLOCKADE REGIME

A. Linear response theory

The effective resistance of the circuit is defined by the re-
lation V = R(T ) I0 where I0 is the bias current and the voltage
drop across the junction is

V = 〈∂t φ̂(x = 0)〉,
where 〈...〉 denotes the equilibrium expectation value. We
use linear response theory to compute R(T ) by treating
−I0(t ) φ̂(0) in Eq. (14) as a perturbation. The details in the
imaginary time formalism are provided in Appendix A where
the expression

R

Rs
= 1 + 2π

α
lim
ω→0

Re
( i

ω
lim

iωn→ω+i0+

∫ β

0
e iωnτ 〈 f̂ (τ ) f̂ (0)〉

)
(16)

is derived. Re is the real part. We have also introduced the
currentlike operator

f̂ (τ ) = EJ sin[2e φ̂(τ )] + EM

2
sin[e φ̂(τ )] (17)

where we use the notation φ̂(τ ) = φ̂(x = 0, τ ). For EM =
EJ = 0, we recover R = Rs as expected.

The computation of the resistance (16) is based on
the evaluation of the phase autocorrelation functions
〈e ipe φ̂(τ ) e−ipeφ̂(0) 〉, with p = 1, 2. This can be done in per-
turbation theory in EJ , EM , with the expression of the phase at
x = 0,

φ̂(0) =
√

Rs

4π

∫ +∞

0

dω√
ω

[
2

1 − iτ sω
ain,ω + H.c.

]
, (18)

the thermal occupation

〈a†
in,ωain,ω′ 〉 = fB(ω)δ(ω − ω′), (19)

and the Bose factor fB(ω) = (eβω − 1)−1. The leading order
(EJ , EM = 0) is given at zero temperature and in real time by
the expression familiar to the P(E ) theory [1,35,58–60]

〈e ipe φ̂(t ) e−ipe φ̂(0) 〉 = eJ (t,p), J (t, p)

= p2

2

∫ +∞

−∞

dω

ω

ReZ (ω)

Rq
(e−iωt − 1), (20)

with the impedance of the RC environment Z (ω) = (iωC +
1/Rs )−1.

Physically, the long-time asymptotics

eJ (t,p) ∼
(τs

t

)p2/2α

(21)

measures how fast phase correlations decay in real time. A
large α corresponds to a slow diffusion indicating a well-
defined superconducting phase. The result is that the second
term with the time integral in Eq. (16) diverges as ω → 0
at zero temperature indicating a breakdown of perturbation
theory and a flow towards zero resistance, i.e., a supercon-
ducting state with a Josephson current. In contrast, a small
α gives a fast phase diffusion resulting in a vanishing sec-
ond term in Eq. (16) for ω, T = 0, i.e., an insulating state
with R = Rs. Just by power counting, the threshold between
these two states is found at α = p2/4, as recapitulated in
Fig. 1.

B. Perturbation theory for the resistance

After setting the basis of the calculation in linear re-
sponse theory, we compute the resistance at finite temperature
from Eq. (16) and perturbatively in EJ , EM 
 EC . The lead-
ing corrections to the fully shunted junction are derived in
Appendix B and expressed as [3]

R(T )

Rs
= 1 − EJ

2

2αT 2

∫ +∞

0
dy e j2(y,2αEC/π2T )

− EM
2

8αT 2

∫ +∞

0
dy e j1(y,2αEC/π2T ) (22)

with the functions

jp(y, a) = − p2

2α

{
γ + (a) + ln 2 + ln ch

( y

2

)

+ 1

2

[
1

a
+ π e−ay

sin(πa)

]
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− e−y

2

[
1

1 − a
2F1(1, 1 − a, 2 − a,−e−y )

+ 1

1 + a
2F1(1, 1 + a, 2 + a,−e−y )

]}
. (23)

γ is Euler’s constant,  the logarithmic derivative of the
gamma function, and 2F1 a hypergeometric function. The
result (22) is only valid perturbatively, i.e., when the second
and third terms are much smaller than 1. It can be further
simplified at low temperatures T 
 2αEC/π2, leading to

R(T )

Rs
= 1 − KJ

( EJ

EC

)2 ( T

EC

)−2+2/α

− KM

(EM

EC

)2 ( T

EC

)−2+1/(2α)

(24)

with

KJ = π
1
2 + 4

α �( 1
α

)

(2α)1+ 2
α (2e γ )

2
α �( 1

2 + 1
α

)
, (25a)

KM = π
1
2 + 1

α �( 1
4α

)

4 (2α)1+ 1
2α (2e γ )

1
2α �( 1

2 + 1
4α

)
(25b)

with �(x) the gamma function. We recover the results of the
renormalization group analysis that EJ (resp. EM) scales down
to zero as the temperature is lowered for α < 1 (resp. α <

1/4) whereas it becomes increasingly large at low energy in
the opposite case α > 1 (resp. α > 1/4).

We focus henceforth on the most interesting scenario
where α is chosen between 1/4 and 1, such that EM is rele-
vant and EJ is irrelevant at low energy. There, a competition
emerges between the two temperature corrections of Eq. (24)
with opposite limits. Since EM eventually dominates at suf-
ficiently low energy, the competition is best discussed in the
regime EM 
 EJ . Differentiating R(T ) with respect to T , we
find that the resistance reaches a (local) maximum for

Tm

EC
= 4e γ α

π2

[
(4α − 1) �̃(α)

16(1 − α)

(
EM

EJ

)2 ]2α/3

(26)

with �̃(α) = �( 1
4α

) �( 1
2 + 1

α
)/[�( 1

α
) �( 1

2 + 1
4α

)] and within
the temperature range of validity of Eq. (24). For T < Tm the
resistance is an increasing function of temperature whereas it
decreases for T > Tm. We note that the temperature correction
due to EM is diverging at zero temperature such that there is a
temperature, much lower than Tm, below which the perturba-
tive expansion (24) is insufficient.

For T ∼ EC , Eq. (24) is no longer valid; however we can
set EM = 0 in Eq. (22) since we assume EM 
 EJ . The result-
ing expression for the resistance exhibits a (local) minimum.
Although there is no closed analytical expression for the local
minimum T ∗, it can be expressed as

T ∗ = C(α)
2EC

π2
� Tm (27)

where the dimensionless coefficient C(α) is evaluated numer-
ically and shown in Fig. 3.

The distance between the local maximum Tm and the local
minimum T ∗ decreases with the ratio EM/EJ . Quite gener-
ally for arbitrary EM/EJ , the resistance can be obtained by

FIG. 3. C(α) vs the dimensionless dissipation term α. The func-
tion evolves between π 2/3 as α → 0 and zero as α → 1. This is in
agreement with the result of Fisher and Zwerger [3].

a numerical evaluation of the integrals in Eq. (22). We thus
observe a critical value of EM/EJ , shown in Fig. 4 as function
of α, at which the two extrema meet and disappear. Above this
critical value, the resistance becomes a monotonic increasing
function of the temperature. In practice, recent experiments
on Shapiro steps [32,61] explored a wide range of values for
EJ and EC , and the ratio EM/EJ between 10−3 and 10−1. A
higher value close to EM/EJ = 1/2 has been reached in hy-
brid junctions combining superconducting and ferromagnetic
layers [37].

C. Nonperturbative resummation

We mentioned in the preceding section that perturbation
theory fails at low temperature since EM multiplies a relevant
operator. The description of the crossover to very low temper-
atures thus requires a resummation of the whole perturbation
series, and such an exact resummation is not available for

FIG. 4. Critical ratio r = (EM/EJ )C , as a function of α, at
which the local maximum Tm and minimum T ∗ merge. Above,
the resistance is a monotonous function of temperature (see also
Fig. 5). The curve is close to linear and well fitted by (EM/EJ )C =
0.605–0.590 α.
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general α when both EJ and EM are nonzero. For α = 1/2,
however, a refermionization technique [19,62,63] has been
successfully applied to compute the crossover for the resis-
tance when EJ = 0. We extend it below to nonzero EJ where
an exact crossover can also be formulated.

The main idea is to interpret e ieφ̂ as a bosonized form
of a fermion operator ψ̂ . At zero temperature, with a chiral
Hamiltonian

H0 = −i
∫ +∞

−∞
ψ̂†(x) ∂x ψ̂ (x) (28)

the correlation function is

〈ψ̂†(x, t )ψ̂ (0, 0)〉 = 1

2π i(t − x)
. (29)

At zero temperature and for t � τs = RsC, the integral (20)
gives

〈e ieφ̂(t,0) e−ieφ̂(0,0) 〉  e−iπ/(4α) ×
( τs

e γ t

)1/(2α)
. (30)

For α = 1/2, the correlator of e ieφ̂ has the same time depen-
dence as (29). The bosonization formula compatible with (30)
and (29) is

ψ̂ (0) =
√

e γ

πτ s
â e ieφ̂(0) . (31)

â is a local Majorana fermion with â = â† and â2 = 1/2. â en-
sures the anticommutation rules for the fermionic field ψ̂ (x).
With the representation (31), the quadratic part of Eq. (14) can
be replaced by the Hamiltonian (28), and

−EM cos(eφ̂(0)) = − rM â [ψ̂ (0) − ψ̂†(0)]

with rM = EM

√
πτ s

e γ
. (32)

A straightforward point-splitting calculation connects e 2ieφ̂(0)

to ψ̂ (0) ∂xψ̂ (0), since ψ̂ (0)ψ̂ (0) = 0 due to Fermi statistics.
The two operators have scaling dimension 2 when α = 1/2.
The precise connection is obtained by identifying the two-
point correlators using Eq. (29), with the result

−EJ cos(2eφ̂(0)) = irJ [ψ̂ (0) ∂xψ̂ (0) + ψ̂†(0) ∂xψ̂
†(0)]

with rJ = πτ s
2EJ

e 2γ
. (33)

The refermionized Hamiltonian takes the form

H = − i
∫ +∞

−∞
ψ̂†(x) ∂x ψ̂ (x) − rM â[ψ̂ (0) − ψ̂†(0)]

+ irJ [ψ̂ (0) ∂xψ̂ (0) + ψ̂†(0) ∂xψ̂
†(0)], (34)

which is quadratic and exactly solvable. This effective Hamil-
tonian allows for a complete resummation for energies smaller
than EC . Interestingly, Eq. (34) already appeared in a different
context [64–68] as it can represent a semi-infinite helical
wire—unfolded as a chiral mode on an infinite line—coupled
at x = 0 to a topological superconductor hosting a single
Majorana bound state at its edge. rM plays the role of the tun-
nel coupling to the Majorana bound state while rJ generates
Andreev reflections at the superconductor. In this model, an

incoming electron can be reflected as an electron or a hole
(and vice versa).

Equation (34) is easily diagonalized using a mode
expansion [65,68] for ψ̂ (x) and ψ̂†(x) summarized in
Appendix C. Moreover, we can describe the relation between
the left-moving electrons/holes (x < 0) and the right-moving
electrons/holes (x > 0) with the S matrix. At the formal
level, the second term in the expression (16) of the resistance,
involving the correlator 〈 f̂ (τ ) f̂ (0)〉, coincides with the differ-
ential conductance of the boundary helical model [65]. Hence,
the resistance (16) can be expressed using one of the S-matrix
components:

R

Rs
= 1 −

∫ +∞

−∞
dω

(
−∂n f

∂ω

)
|Sph(ω)|2 (35)

where n f (ω) = (1 + eβω )−1 is the Fermi distribution and Sph

is the probability for an incoming electron with energy ω to
be reflected as a hole. The derivation of Sph is reproduced in
Appendix C:

Sph(ω) = i(2rJ ω2 + rM
2)

irM
2 + ω (1 + rJrM

2 + rJ
2ω2)

(36)

in agreement with Ref. [65]. Inserting Eq. (36) into Eq. (35),
the effective resistance reads

R

Rs
= 1 − F

(
4e γ

π2

T EC

EM
2 ,

π5

8e 3γ

EM
2EJ

EC
3

)
(37)

where the dimensionless function F (T̃ , r̃) is given by

F (T̃ , r̃) =
∫ +∞

−∞

dx

2ch 2x

(2T̃ 2 r̃ x2 + 1)2

1 + T̃ 2x2 (1 + r̃ + T̃ 2 r̃2x2)2
.

(38)

For EJ = 0, the integration can be performed and we recover
the known result [2,69]

R

Rs

∣∣∣∣
EJ=0

= 1 − πEM
2

4e γ EC T
 ′

(
1

2
+ πEM

2

4e γ EC T

)
. (39)

At zero temperature, one obtains F = 1 consistent with a
fully coherent Josephson junction. Let us emphasize that the
result (37) was obtained assuming T 
 2EC/π and EJ , EM 

EC . As a consequence, we have EM

2EJ/EC
3 
 1 such that the

second parameter r̃ in Eq. (38) is always much smaller than 1.
At low temperature T 
 EM

2/EC , we can therefore ignore EJ

to obtain the asymptotic expression

R(T )

Rs
 4e 2γ

3π2

(
T

EM
2/EC

)2

. (40)

In the opposite limit T � EM
2/EC , we keep r̃ ∼ EJ and re-

cover the result Eq. (24) of the preceding section for α = 1/2.
We plot in Fig. 5 the interpolation between Eqs. (37) and

(22) for different values of (EM/EC, EJ/EC ). We thus observe
the crossover where the two extrema disappear.

IV. LARGE JOSEPHSON ENERGY

The analysis of Sec. III was restricted to the Coulomb
blockade regime where the bare charging energy EC is the
largest energy scale. The Coulomb blockade tends to pin the
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FIG. 5. Dimensionless resistance R/Rs as function of the re-
duced temperature T/(EC/π 2) for α = 1/2 and different values
of (EJ/EC, EM/EC ) obtained by interpolation between Eqs. (37)
and (22). We represent (EJ/EC, EM/EC ) = (0.8, 0.1) (red line),
(0.03,0.5) (blue line), (0.8, 0.006) (green line), and (0.8,0.03) (black
line). The two extrema Tm and T ∗ merge at EJ/EM = 0.31 (see
Fig. 4).

superconductor charge which has the effect of delocalizing the
conjugated phase variable. The shunted Josephson junction is
then closer to an insulator, with a differential resistance below
but in the vicinity of Rs, except at very low temperature where
the relevant Josephson energy EM takes over and reestablishes
a dissipationless Josephson tunneling.

The resulting resistance, shown in Fig. 5, exhibits a local
minimum at T = T ∗ ∼ EC with a distance to the fully shunted
junction R = Rs increasing with EJ , reflecting a partial relo-
calization of the phase. This scaling suggests that the local
minimum keeps decreasing with EJ/EC until it reaches an
almost vanishing resistance in a certain temperature range for
EJ larger than EC . In what follows, we consider directly the
regime of deep potential wells EJ � EC while EM is chosen
below the plasma frequency ωp = √

8EJEC .
We first diagonalize the model in the absence of the ohmic

environment in Sec. IV A and then take in Sec. IV B α =
1/2 where a mapping to the Emery-Kivelson model can be
demonstrated. This gives the exact resistance for α = 1/2 and
a qualitative picture for α between 1/4 and 1, extending the
analysis of Sec. III.

A. Dissipationless case

In the absence of dissipation, the Hamiltonian (1)
simplifies as H = H0 − EM cos(ϕ̂/2) with the transmon
Hamiltonian [70]

H0(ng) = 4EC (N̂ − ng)2 − EJ cos ϕ̂ (41)

where ng is the offset charge of the capacitor. In the phase
representation, N̂ = i∂ϕ is acting on 2π -periodic functions,
and H0 can be diagonalized exactly using Mathieu functions
[71]. For EJ � EC , the energy of the ground state takes the

suggestive form

E0(ng) = ωp

2
− t0 cos (2πng), (42)

where [70]

t0 = 16

√
EJEC

π

(
EJ

2EC

)1/4

exp

(
−

√
8EJ

EC

)
. (43)

The ground state energy has a periodicity of 1 in ng as ex-
pected from the discreteness of N̂ .

Although the above derivation is self-contained, it is in-
structive to formulate it using a Bloch band description [2,72].
The Hamiltonian H0 (41) with the compact phase ϕ̂ in [0, 2π ]
is mathematically equivalent to solving H0(0) with an ex-
tended phase, i.e., ϕ̂ between −∞ and ∞, with ng playing the
role of the quasimomentum. In this language, Eq. (42) as func-
tion of ng is a band dispersion. Focusing again on the regime
EJ � EC , the wave functions of low-energy eigenstates are
strongly localized near the minima of the cosine potential and
the Wannier function of the lowest band is the ground state of
a harmonic oscillator,

W0(ϕ) =
( EJ

8π2EC

)1/8

exp

(
−ϕ2

2

√
EJ

8EC

)
, (44)

with energy ωp. The small overlap between consecutive Wan-
nier functions induces a nearest-neighbor hopping term t0/2.
We thus obtain a tight-binding model the diagonalization of
which reproduces Eq. (42) and t0 is identified as the bandwidth
of the lowest band in the cosine potential.

Next, we include EM and numerically evaluate the spec-
trum of H . The presence of EM doubles the size of the unit
cell folding the spectrum at ng = ±1/2, corresponding to
single-electron tunneling, and opening gaps at the edge of
the new Brillouin zone as illustrated in Fig. 6. In order to
make further analytical progress, we consider EM < ωp such
that the different bands of H0 are not mixed, and project the
Hamiltonian onto the lowest band. Due to nonzero EM , the
wave functions must have a periodicity of 4π in ϕ. For a given
charge offset ng, we find two such functions in the lowest
band [73,74]:

±,ng (ϕ) =
∑
p∈Z

(±1)p W0(ϕ − 2pπ )eing(2pπ−ϕ) (45)

with energies E0(ng) and E0(ng + 1/2). These are 4π -periodic
functions, even and odd with respect to the parity operator
(−1)N̂±,ng = ±±,ng . After projecting the Hamiltonian H
onto the basis (45), we get

HLE (ng) = t0 cos (2πng)σz + c0EMσx + d0EMσy sin (2πng),

(46)

where σi (i = x, y, z) are Pauli matrices operating in parity
space and the constant term ωp/2 has been removed. This
derivation of the different overlaps in Eq. (46) uses that W0(ϕ)
takes appreciable values only close to ϕ  0. One conse-
quence is that EM does not enter the diagonal elements, or
only with a very small contribution neglected here, whereas
there is a perfect overlap c0 = 1 along σx. The overlap along
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FIG. 6. Lowest bands obtained by a numerical solution of H as
a function of the charge offset ng in the absence of dissipation. The
numerical solution is found [75,76] by performing a truncation in
the charge basis |n〉 (eigenstates of N̂) and diagonalizing a finite-
size version of H . In both pictures, EC = 1 and EJ = 3. Energies are
given in units of the charging energy EC . (a) Spectrum for EM = 0.
(b) Spectrum for EM = 3. Gaps open at the edges of the reduced
Brillouin zone.

σy is given by

d0 = 21/3t0
3−1/3ωp

√
EC

EJ
�

(
2

3

)

 1, (47)

and can be also neglected. The σx and σy components in
Eq. (46) can be seen respectively as a staggered potential and
a staggered hopping amplitude in the tight-binding model. We
note that applying a nonzero flux between the two Joseph-
son junctions can change the relative values of c0 and d0.
The limiting case c0 = 0 and d0 = 1 corresponds to the Su-
Schrieffer-Heeger model [77].

B. Effective Hamiltonian with dissipation

The projection to the lowest band of the extended potential
can still be applied to the original Hamiltonian (1) provided
the ohmic dissipation is not too strong. It amounts to an

adiabatic approximation where one replaces the charge offset
by 2eng = −Q̂ − ∫ t dt ′ I0(t ′) in the transmon Hamiltonian H0

(41). It is justified as long as the input current I0 is weak and
varies slowly in time, and if α2 
 2π2EJ/EC [16].

The projected Hamiltonian is

HP = HLE

(
Q̂

2e
+ Q0(t )

2e

)
+ HRs , (48)

where Q0(t ) = ∫ t dt ′ I0(t ′), which we expand to first order in
Q0 as

HP  HLE

(
Q̂

2e

)
+ HRs − t0

πQ0(t )

e
sin

(
πQ̂

e

)
, (49)

and, for Q0 = 0,

HP = t0 cos
(π

e
Q̂

)
σz + EM σx + HRs . (50)

Due to the absence of the capacitive term, the mode expan-
sion of the fields in the transmission line differs slightly from
Sec. II B and we have

φ̂(0) =
√

Rs

4π

∫ ωp

0

dω√
ω

[
2

1 − iτ0ω
ain,ω + H.c.

]
, (51a)

Q̂ = 1√
4πRs

∫ ωp

0

dω√
ω

[ −2iτ0ω

1 − iτ0ω
ain,ω − H.c.

]
, (51b)

where τ0 is a regularizing time that is eventually sent to
infinity. Frequencies are cut off at the plasma frequency ωp

at which higher bands start to play a role. The correlator
KQ̂(t ) = 〈e iπQ̂(t )/e e−iπQ̂(0)/e 〉 describes now charge fluctua-
tions. At zero temperature, one gets

KQ̂(t ) = exp

[
2α

∫ ωp

0

dω

ω

(τ0ω)2

1 + (τ0ω)2
(e−iωt − 1)

]
, (52)

or, for 1/ωp 
 t 
 τ0 and α, KQ̂(t ) ∼ 1/(ωpt ). The same
fermionization as Eq. (31) can be performed such that

t0 cos
(π

e
Q̂

)
= r0 â[ψ̂ (0) − ψ̂†(0)] (53)

with r0 ∼ t0/
√

ωp. The Hamiltonian (50) can be further trans-
formed using the representation of Pauli matrices in terms
of Majorana fermions [78], i.e., σx = iη2η3, σy = iη3η1, and
σz = iη1η2. The commutation relations of the Pauli matrices
are ensured by the Clifford algebra {ηi, η j} = 2δi j . Using
these representations, the Hamiltonian (50) becomes

HP = − i
∫ +∞

−∞
ψ†(x)∂xψ + iEM η2η3

− ir0 [ψ̂ (0) − ψ̂†(0)] â η1η2. (54)

â η1 commutes with HP such that we can choose âη1 = i/
√

2
and

HP = − i
∫ +∞

−∞
ψ†(x)∂xψ + iEM η2η3

+ r0√
2

[ψ̂ (0) − ψ̂†(0)] η2. (55)

This Hamiltonian coincides exactly with the effective model
found by Emery and Kivelson [79,80] to solve the two-
channel Kondo model in the presence of a magnetic field. r0
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is a relevant operator driving the system to a strong-coupling
fixed point where r0 is large—or EJ is large—and the Majo-
rana fermion η2 is screened. The effect of the magnetic field
≈ EM is to stop the renormalization group flow. Equation (55)
is quadratic and therefore analytically solvable.

C. Resistance

The voltage drop across the junction is

V = 〈 ˙̂φ(t )〉 = i〈[HP, φ̂]〉
= − t0

π

e
〈sin

(π

e
Q̂

)
σz〉 + i〈[HRs , φ̂]〉 (56)

where we use again the notation φ̂(t ) = φ̂(x = 0, t ). The sec-
ond term [HRs , φ̂] gives zero. Using the Kubo formula and
Eq. (49) for the linear coupling to the bias current, we obtain
the expression for the resistance:

R(T )

Rs
= 2π α lim

ω→0
Re

( i

ω
lim

iωn→ω+i0+

∫ β

0
e iωnτ 〈ĝ(τ )ĝ(0)〉

)
(57)

where

ĝ(τ ) = it0 sin
(π

e
Q̂(τ )

)
η1(τ ) η2(τ )

= − i
r0√

2
[ψ̂ (τ ) + ψ̂†(τ )] η2(τ ) (58)

where ψ̂ (τ ) = ψ̂ (τ, x = 0). Using the S-matrix formalism
introduced in the previous section with Eq. (54), we finally
obtain

R(T )

Rs
=

∫ +∞

−∞
dω

(
−∂n f

∂ω

)
r0

4 ω2

(ω2 − 4EM
2)2 + r0

4 ω2
. (59)

For EM = 0, one obtains [69]

R

Rs
= r0

2

2πT
 ′

(1

2
+ r0

2

2πT

)
(60)

with the infrared insulating fixed point, R = Rs, at zero
temperature.

A nonzero EM drastically changes to the infrared super-
conducting fixed point. Equation (59) gives the resistance
R = 0 at zero temperature. The temperature dependence of
the resistance is shown in Fig. 7 by evaluating the integral in
Eq. (59). For T � EM , the integral simplifies as

R

Rs
 π

4

r0
2

T
. (61)

We obtain the same expression as Eq. (60) in the
high-temperature limit: for T � EM , the resistance is only
controlled by r0

2.
The approach discussed in this section is limited to temper-

atures below the plasma frequency ωp. Above ωp, the phase
delocalizes via thermal activation across the minima of the
deep Josephson potential [81], and the resistance increases
again until it reaches the insulating regime R = Rs for tem-
perature much larger than EJ .

10−2 10−1 100 101 102 103

T/EM

0.0

0.2

0.4

0.6

0.8

1.0

R
/
R

s

EM = 0

ωP

EM

FIG. 7. Resistance vs temperature for r0
2/2EM = 0.1 (blue), 1

(black), and 2 (red), where r0
2/EM ∼ t0

2/ωpEM . The limiting case of
vanishing EM is shown in dotted line for comparison. The analysis in
this paper is limited to temperatures lower than the plasma frequency
ωp. Above, a thermally activated behavior ≈ e−EJ /T towards a full
resistance R = Rs occurs [81] (dotted yellow line) corresponding to
a complete delocalization of the phase. The subscript ωp/EM corre-
sponds to the value where the transition between these two behaviors
occurs.

V. CONCLUSION

In this paper, we have considered a superconducting
junction with a Josephson energy being the sum of two con-
tributions: the usual 2π -periodic energy and an additional
4π -periodic energy which can be the sign of a topological
junction hosting Majorana bound states. The model accounts
for a single junction with the two periodicities or, alterna-
tively, two separated Josephson junctions in parallel. The
existence of the two commensurate phase periodicities is not
necessarily a sign of topology but could also occur with, for
instance, a Kondo impurity, a Josephson rhombus device, or
in hybrid ferromagnetic-superconducting junctions.

A sufficiently strong shunt resistor in parallel with the
junction drives the device via a quantum phase transition to
an insulating regime where the zero-temperature Josephson
current is suppressed. We have focused on values of the re-
sistance such that the 2π -periodic term alone would give an
insulating state while the 4π -periodic energy is still super-
conducting, resulting in a competition between the two terms.
We have derived the corresponding nonmonotonic behavior of
the total differential resistance of the device as a function of
temperature.

Although our starting point was a compact variable for
the phase across the Josephson junction, we proved, using
a quantum circuit model for the environment and a suitable
gauge transformation, that an extended variable emerges in
lieu of the compact phase. This gives a transparent justi-
fication to the previous use of an extended phase in the
literature [51–53].

For a charging energy much larger than the Joseph-
son energy, the junction is essentially resistive at high
temperature. The resistance increases with temperature for
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T > EC but decreases for T < EC , reaching a minimum at
T = T ∗ ∼ EC . For even lower temperatures, a crossover to-
wards a fully superconducting junction with zero resistance
was established below a local temperature maximum Tm.
These features were first derived using perturbation theory and
then an exact analytically expression was obtained when α =
1/2, or Rs = 2Rq. The exact refermionization maps the model
onto a helical one-dimensional wire coupled to a topological
superconductor.

When the charging energy is the smallest energy scale, we
confirmed the nonmonotonic behavior with a tight-binding
approach connecting the Josephson wells. Delocalizing the
superconducting phase, the hopping between the wells is
suppressed by dissipation—by duality, the coupling of the
phase to dissipation decreases with the shunt resistance—and
a superconducting behavior is restored at low energy. For
α = 1/2, or Rs = 2Rq, we find a mapping to the Emery-
Kivelson line of the two-channel Kondo model under finite
magnetic field. It provides again an exact expression for the
temperature-dependent differential resistance.

A straightforward extension of our paper is the study of
the nonlinear current-voltage characteristic where the weight
of the Josephson peak is transferred by the environment to
higher voltages [24]. Also our analysis is restricted to an equi-
librium electromagnetic environment [82] and the prospect of
exciting photons around the Josephson junction [83] offers an
appealing direction of research.
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APPENDIX A: LINEAR RESPONSE THEORY

We set EM = 0 to simplify the discussion but without loss
of generality. The contribution −I0(t ) φ̂(0) in the Hamiltonian
(14) can be regarded as a perturbation. We use the framework
of linear response theory to compute the voltage drop across
the junction. The Kubo formula gives

V (t ) = 〈 ˙̂φ〉 = i
∫ t

−∞
dt ′ 〈[ ˙̂φ(t ), φ̂(t ′)]〉 I0(t ′)

= −
∫ +∞

−∞
dt ′ Gret

φ̇,φ
(t − t ′) I0(t ′) (A1)

where φ̂(t ) = φ̂(x = 0, t ) and the retarded Green’s function

Gret(t − t ′) = −iθ (t )〈[ ˙̂φ(t ), φ̂(t ′)]〉 (A2)

where θ (t ) is the Heaviside function. In Fourier space,
Eq. (A1) becomes V (ω) = −Gret

φ̇,φ
(ω) I0(ω). Gret(ω) is analyt-

ical in the upper complex semiplane only. As a consequence,
for a real argument ω, the limit ω + i0+ has to be consid-
ered. Now, we use the notation φ0 = 2e φ̂(0). With Gret

φ̇,φ
(ω) =

−iω Gret
φ,φ (ω), the linear resistance is

R(ω) = Rs
α

2π
× iω Gret

φ0,φ0
(ω + i0+). (A3)

In the last expression, we have used 1/4e2 = Rs α/2π .
To compute Gret(ω + i0+), we compute another correlation

function in the imaginary time formalism and do an analytic
continuation. We can compute the Matsubara Green’s func-
tion G(τ ) = −〈Tτ φ0(τ )φ0(0)〉 where Tτ is the time ordering.
In this paper, we want to compute the DC resistance (ω → 0)
so we need to take the real part of Eq. (A3). The linear
resistance becomes

R(T )

Rs
= − α

2π
lim
ω→0

Re

[
iω lim

iωn→ω+i0+

×
∫ β

0
dτ e iωnτ 〈φ0(τ )φ0(0)〉

]
. (A4)

In the last expression the time-ordering factor does not
appear because the τ is between zero and β > 0. We can use
another expression of (A4) where the correlator is written with
Matsubara frequencies:

R(T )

Rs
= − α

2π
lim
ω→0

Re

[
iω lim

iωn→ω+i0+

× 1

β

∑
iωk

〈φ0(iωn)φ0(iωk )〉
]
. (A5)

The analytical expression of the linear resistance is only
determined by the correlator 〈φ0(τ )φ0(0)〉. It can be computed
with the Euclidian action [2,6,16,19,84]

S = 1

2β

∑
iωn

( 1

8EC
ωn

2 + α

2π
|ωn|

)
|φ0(iωn)|2

− EJ

∫ β

0
dτ cos φ0(τ ) (A6)

obtained from Eqs. (14) and (15) in the main text.
In order to have a convenient expression of the correlator,

we add to the action (A6) a source term of the form [19]

δS = 1

2β

∑
k

( α

2π
|ωk| + 1

8EC
ωk

2
)

a(−iωk ) φ0(iωk ). (A7)

Our new action becomes Stot = S + δS. We introduce the
notation kα = α/(2π ) and kC = 1/(8EC ). With the action Stot,
the correlator is

〈φ0(iωn)φ0(iωk )〉 = 4β2

(kα|ωn| + kCωn
2)(kα|ωm| + kCωm

2)

× 1

Z
× δ2Z

δa(−iωn) δa(−iωm)

∣∣∣∣
a=0

.

(A8)

Before taking the derivatives, it is convenient to perform a
shift, φ0(τ ) → φ0(τ ) − a(τ )/2. The source term is eliminated
and the action Stot is

S = 1

2β

∑
k

(kα |ωn| + kC ωn
2)

[
|φ0(iωn)|2 − 1

4
|a(iωn)|2

]

− EJ

∫ β

0
dτ cos

(
φ0(τ ) − a(τ )

2

)
. (A9)
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After taking the derivatives of Eq. (A8), the Matsubara
Green’s function G(τ ) becomes

G(iωn) = − 1

kα |ωn| + kC ωn
2

− EJ
2

(kα |ωn| + kC ωn
2)2

×
∫ β

0
dτ e iωnτ 〈Tτ sin φ0(τ ) sin φ0(0)〉. (A10)

We want to compute the DC resistance (ω → 0). We can
drop the kC term in the last expression. We find

R(T )

Rs
= 1 + 2π

α
lim
ω→0

Re

[
lim

iωn→ω+i0+

1

|ωn|

×
∫

0
βdτ e iωnτ EJ

2〈Tτ sin φ0(τ ) sin φ0(0)〉
]
.

(A11)

With φ0 = 2e φ̂(0), we find

R(T )

Rs
= 1 + 2π

α
lim
ω→0

Re

[
lim

iωn→ω+i0+

1

|ωn|

×
∫ β

0
dτ e iωnτ EJ

2〈Tτ sin[2eφ̂(τ )] sin[2eφ̂(0)]〉
]
.

(A12)

When EM �= 0, the calculation is straightforward because
the EJ term and the EM term in Eq. (1) are separated and we
find Eqs. (16) and (17).

APPENDIX B: PERTURBATION THEORY
FOR THE RESISTANCE

For EJ 
 EC , the Hamiltonian (14) is quadratic. We can
use Wick’s theorem and obtain Eq. (20):

〈sin[pe φ̂(τ )] sin[pe φ̂(0)]〉0 = 1
2 e J (τ,p) . (B1)

The subscript zero means that the average is with respect to
the quadratic part of the Hamiltonian (14). For real time and
for arbitrary temperature,

J (t, p) = p2

2

∫ +∞

−∞

dω

ω

ReZ (ω)

Rq

e−iωt − 1

1 − e−βω
. (B2)

In the last expression, we omit the correlator
〈e iepφ̂(τ ) e iepφ̂(0) 〉 because the exponential goes to zero.
For the sake of simplicity, we set EM = 0. It does not change
the calculation because only the combinations of EJ and itself
and EM and itself give a nonzero result. The resistance (16)
becomes

R

Rs
= 1 + π EJ

2

α
Re

(
i

ω
lim

iωn→ω+i0+

∫ β

0
e iωnτ e J (τ,2)

)
. (B3)

We can now deform the contour of integration:∫ β

0
dτ e iωnτ e J (τ,2) = i

∫ +∞

0
dt e−ωnt e J (t,2)

− i
∫ +∞

0
dte−ωn (t−iβ )eJ (t−iβ,2). (B4)

With ωnβ = 2πn and e J (t−iβ,2) = e J (−t,2) , we can make the
analytic continuation and find

R(T )

Rs
= 1 − π EJ

2

α
lim
ω→0

Re

[
1

ω

×
∫ +∞

0
dt e iωt (e J (t,2) − e J (−t,2))

]
. (B5)

In the DC limit (ω → 0),

R(T )

Rs
= 1 − π EJ

2

α
Re

[
i
∫ +∞

0
dt t (e J (t,2) − e J (−t,2))

]

= 1 − π EJ
2

α
Re

[
i
∫ +∞

−∞
dt t e J (t,2)

]
. (B6)

Instead of integrating along the real axis, we can integrate
along the contour swept out by t − iβ/2 for real t . The last
expression becomes

R(T )

Rs
= 1 − π EJ

2 β

2α

∫ +∞

−∞
dt e J (t−iβ/2,2)

= 1 − π EJ
2 β

α

∫ +∞

0
dt e J (t−iβ/2,2)

(B7)

where

J
(

t − iβ

2
, 2

)
= j2(t ) = 2

α

∫ +∞

0

dω

ω
× 1

1 + Rs
2C2ω2

× cos(ωt ) − cosh(βω/2)

sinh(βω/2)
. (B8)

The integration can be performed exactly:

j(t, 2) = − 2

α

[
π

β

(
t − iβ

2

)
+ iπ

1 − e−ωRC (t−iβ/2)

1 − e iβωRC

+
+∞∑
n=1

ωRC
2

n (ωRC
2 − ωn

2)
(1 − e−ωn (t−iβ/2))

]

(B9)

where ωn = 2πn/β are the Matsubara frequencies and ωRC =
1/τ s. The sum can be expressed using special functions:

+∞∑
n=1

ωRC
2

n(ωRC
2 − ωn

2)
(1 − e−ωn (t−iβ/2))

= γ + ln(1 + e−2πt/β ) + 1

2
[(1 − a) + (1 + a)]

− 1

2
e−2πt/β

{
1

1 − a
2F1(1, 1 − a, 2 − a,−e−2πt/β )

+ 1

1 + a
2F1(1, 1 + a, 2 + a,−e−2πt/β )

}
(B10)

where a = βωRC/(2π ), γ is Euler’s constant,  is the
digamma function, and 2F1 is the hypergeometric func-
tion. Using (1 + a) = (a) + 1/a and (1 − a) = (a) +
π cotan (πa) and making the change y = 2πt/β in the inte-
gral (B7), we find

R(T )

Rs
= 1 − EJ

2 β2

2α

∫ +∞

0
dy e j2(y,2αEC/π2T ) (B11)
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with

j2(y, a) = − 2

α

{
γ + (a) + ln 2 + ln ch

( y

2

)

+ 1

2

[
1

a
+ π e−ay

sin(πa)

]

− e−y

2

[
1

1 − a
2F1(1, 1 − a, 2 − a,−e−y )

+ 1

1 + a
2F1(1, 1 + a, 2 + a,−e−y )

]}
. (B12)

This result can be extended to the case where EM �= 0 by
changing 2/α in 1/(2α). Finally, we obtain the relation (22).

APPENDIX C: EXPRESSION OF THE S MATRIX

We consider a mode expansion

ψ̂ (x) =
∑

k

(ak (x) �̂k + H.c.), (C1a)

ψ̂†(x) =
∑

k

(bk (x) �̂k + H.c.), (C1b)

â =
∑

k

(uk �̂k + H.c.). (C1c)

In the new basis, {�̂k, �̂
†
k′ } = δ(k − k′) and {�̂k, �̂k′ } = 0.

In the basis of �̂k , the Hamiltonian (34) is equal to H =∑
kk �̂

†
k �̂k . One can obtain a Schrödinger equation for the

wave functions ak (x), bk (x), and uk by calculating [H, ψ̂ (x)],
[H, ψ̂†(x)], and [H, â]. We have

[H, ψ̂ (x)] = i∂xψ̂ (x) − 2i rJ δ(x) ∂xψ̂
†(0) + rM δ(x) â,

(C2a)

[H, ψ̂†(x)] = i∂xψ̂
†(x) − 2i rJ δ(x) ∂xψ̂

†(0) − rM δ(x) â,

(C2b)

[H, â] = rM [ψ̂ (0) − ψ̂†(0)]. (C2c)

In the new basis, the system (C2) becomes

−k ak (x) = i ∂xak − 2irJ δ(x) ∂xbk (0) + rM δ(x) uk,

(C3a)

−k bk (x) = i∂xbk − 2irJ δ(x) ∂xak (0) − rM δ(x) uk,

(C3b)

−k uk = rM[ak (0) − bk (0)]. (C3c)

For x �= 0, the solutions are

ak (x) = e iεkx [θ (x) a+
k + θ (−x) a−

k ], (C4a)

bk (x) = e iεkx [θ (x) b+
k + θ (−x) b−

k ] (C4b)

where θ (x) is the Heaviside function and εk = k. In x = 0, we
use the following regularizations:

ak (0) = ak (0+) + ak (0−)

2
= a+

k + a−
k

2
, (C5a)

∂xak (0) = ∂xak (0+) + ∂xak (0−)

2

= iεk

2
(a+

k + a−
k ). (C5b)

We have the same expression for the coefficient bk (x).
We can integrate the system (C3) around x = 0. Using the
boundaries equations (C5), we can express the coefficient a+

k
with respect to b−

k and a−
k :

a+
k = b−

k

i(2rJ εk
2 + rM

2)

rJ
2εk

3 + rJrM
2 εk + εk + irM

2

− a−
k

−εk
2 + rJrM

2 εk + rJ
2εk

3

rJ
2εk

3 + rJrM
2 εk + εk + irM

2
. (C6)

The particle-hole component of the S matrix Sph is the
coefficient in front of b−

k . As a consequence,

Sph(εk ) = i(2rJ εk
2 + rM

2)

rJ
2εk

3 + rJrM
2 εk + εk + irM

2
. (C7)
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