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Calculations of in-gap states of ferromagnetic spin chains on s-wave wide-band superconductors
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Magnetic impurities create in-gap states on superconductors. Recent experiments explore the topological
properties of one-dimensional arrays of magnetic impurities on superconductors, because in certain regimes
p-wave pairing can be locally induced leading to new topological phases. A byproduct of the new accessible
phases is the appearance of zero-energy edge states that have non-Abelian exchange properties and can be
used for topological quantum computation. Despite the large amount of theory devoted to these systems, most
treatments use approximations that render their applicability limited when comparing with usual experiments
of 1D impurity arrays on wide-band superconductors. These approximations either involve tight-binding-like
approximations where the impurity energy scales match the minute energy scale of the superconducting gap
and are many times unrealistic, or they assume strongly-bound in-gap states. Here, we use a theory for s-wave
superconductors based on a wide-band normal metal, with any possible energy scale for the magnetic impurities
and develop an efficient way of computing the well-known topological invariants of infinite chains. We perform
concrete calculations on ferromagnetic spin chains using BCS Green’s function for the superconductor and
including Rashba coupling to compare with recent experimental results. The infinite-chain properties can be
analytically obtained, giving us a way to compare with finite-chain calculations. We show that it is possible to
converge to the infinite limit by doing finite-size numerical calculation, paving the way for numerical calculations
not based on analytical Green’s functions. As an application, we show that energy oscillations around zero with
increasing number of atoms in the spin chain does not reflect the topological origin of the low-energy state.

DOI: 10.1103/PhysRevB.104.245415

I. INTRODUCTION

Ferromagnetic spin chains on s-wave superconductors have
been proposed to host Majorana bound states (MBS) at the
edges of the chains [1–7]. Experimentally, there are several
reports pointing at the possible presence of MBS [8–13],
although it has been shown that the unambiguous identifi-
cation of MBS is far from simple [14,15]. Atomic magnetic
impurities produce in-gap states [16–18] because the local
magnetic interaction weakens the binding of Cooper pairs
permitting the presence of one-particle states in the super-
conductor gap [19–21]. When several impurities lie on the
surface such that their induced in-gap states can overlap,
in-gap bands can be formed. For two impurities aligning
ferromagnetically, the in-gap states form delocalized-state
that are analogues of molecular orbitals [22–24] in a one-
electron picture of molecular binding. The characterization
of molecular-like in-gap states has been made possible by
the scanning tunneling microscope (STM) [25–29]. As more
impurities are added, delocalized states form in ferromagnetic
structures such that their lowest eigenergies can cross the
chemical potential level of the superconductor as has been
found experimentally [30,31]. Thus, the spin chain can lead to
closing of the superconducting gap and to a phase transition.

*nicolas.lorente@ehu.eus

In the presence of spin-orbit coupling, the pairing can change
and a topological phase transition (TPT) is induced [32,33].
A helical spin structure [2,5–7,34,35] has been shown to be
equivalent to the effect of a Rashba interaction caused by the
superconductors spin-orbit coupling [35–37]. The possibility
of emergence of MBS in antiferromagnetically ordered chains
has been also discussed [38,39].

Recent experiments show that ferromagnetic spin chains
can be assembled on s-wave superconductors that have a sub-
stantial Rashba spin-orbit coupling [8–12,30,31,40,41]. These
structures can create topological phases that should show
MBS at the edges of the structures even in the presence of
substantial disorder [42]. MBS can be difficult to identify in
real experiments. Conductance measurements should detect a
local enhancement of conductance up to the unitary limit but
it has been shown that these signals can have causes other than
MBS [14,15]. It is important to develop probes that can com-
plete the characterization of possible MBS. Among different
strategies, various noise measurements look like promising
ways of identifying MBS [43–46].

Usual s-wave superconductors are normal metals above the
superconducting transition, with large bands. Typical parame-
ters show that the superconducting gap is several thousands of
time smaller than the superconductor’s band. This situation is
very different from semiconductor nanowire systems proximi-
tized by an s-wave superconductor [47–49] where the induced
superconductor gap and the wire’s gap can be expected to
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FIG. 1. Geometrical scheme showing a spin chain made of ferro-
magnetically ordered magnetic atoms on an s-wave superconducting
substrate like the systems we have explored in this paper. The hy-
bridization between impurities is neglected and the interaction of
the impurities with the substrate contain a potential-scattering and
a classical-spin exchange term. The superconducting surface is taken
as a BCS s-wave superconductor with Rashba interactions.

be of the same order of magnitude. The effect of magnetic
impurities is usually accounted for by an exchange interaction
acting on the superconductor’s electrons. Realistic exchange
interactions on solids range from hundreds of meV to eV,
while exchange fields in semiconducting nanowires only close
the gap when they are of the same magnitude as the super-
conductor gap. The large difference in energy scales between
impurities on wide-band superconductors and proximitized
semiconducting nanowires lead to very different techniques
to treat each case.

The usual approach to treat wide-band superconductors
is to approximate the metallic phase by a free-electron
metal [5,20,21,26,30,35,41,50,51]. The resulting supercon-
ductor comes after a series of approximations to have the
expected real-space properties such as Friedel-like oscilla-
tions and coherence lengths in the range of hundreds of
nanometers. The following step is either to maintain a Green’s
function approach to characterize the electronic properties
of the superconductor, and include magnetic impurities via
Dyson’s equation [20,21,26,52] (or equivalently the T matrix
[35,53]), or to solve for the wave functions using a Lippmann-
Schwinger approach [5,30,41,50]. In the presence of magnetic
impurities and helical spin ordering, the wave-function ap-
proach is further simplified by assuming that the induced
in-gap states are strongly bound and hence close to the Fermi
energy. Despite this last approximation, both approaches are
very similar because they include the same approximations to
treat the free-electron-based superconductor.

Spins are usually treated within the classical-spin approach
that assumes no spin flips of the spin chain. This is an ex-
cellent approximation when the spin-chain excitations are at
energies larger than the other energy scales of the problem,
e.g., the superconducting gap. Ferromagnetic spin chains are
then approximated by a rigid spin that does not flip, which is
a good approximation for long enough chains. Recent studies
focused on the specificities of quantum effects of realistic
spins on superconductors [29,54–56]. In the dilute limit, spin-
spin interactions considerably reduce and quantum effects
are necessary [29,55,56]. Here, we use the classical-spin ap-
proach to treat the ferromagnetic spin chain interaction on the
substrate’s electrons, see scheme in Fig. 1.

Even if classical spins can be a good approximation for
ferromagnetic spin chains, thermal effects would induce vari-
ations on the spins and hence on our results. The Curie

temperature is roughly J/kB for a ferromagnetic Ising spin
chain, where J is the exchange interaction between atomic
spins and kB is the Boltzmann constant. For the experimental
situation of Cr spin chains on β-Bi2Pd [31], the J values
obtained from density functional theory [26] are J = 1.5 meV,
yielding a Curie temperature of 17 K, well above the 5.4 K the
critical temperature of β-Bi2Pd [57]. Thermal fluctuations are
small in usual experimental conditions and we can expect to
have a reliable description using static classical spins.

We use a Green’s function approach in the present paper.
In Sec. II, we will briefly show the main approximations and
features of the method. In particular, it has the advantage of
a simple and efficient numerical implementation where the
main operations are matrix inversions. Previous works have
shown that this technique permits us to rationalize the ex-
perimental findings in wide-band superconductors with large
impurity exchange coupling [26,31,52]. The imaginary part
of the real-space Green’s function is the local density of
states (LDOS), then using Tersoff-Hamman’s theory [58], we
can evaluate the quantities obtained in STM experiments by
real-space Green’s functions. The study of topological phases
can be evaluated by determining the presence of MBS in the
LDOS. However, as in experiments, it can be difficult to prove
that a zero-energy edge mode is a MBS. There are two usual
ways of identifying MBS. One is to study the properties of the
MBS. Previous works have shown that the spin-polarization
of MBS are a crucial quantity to determine [11,59–61]. As
shown in Ref. [60], the study of the evolution of the in-gap-
band structure with changing parameters together with the
electronic spin polarization is an excellent way to unravel
topological phases. Comparison of the LDOS obtained with
Green’s function with experiments indeed show that Cr spin
chains on β-Bi2Pd wide-band superconductor can undergo a
topological phase transition when the number of atoms in-
crease [31]. There, it is also shown that the staggered magnetic
moment gives valuable information as predicted in Ref. [59].
A second way is to use the bulk-boundary correspondence
principle [62,63], where the study of topological invariants
determined by the bulk Hamiltonian implies the appearance
of MBS in the finite system. In this article, we have chosen
this second approach.

The article is organized in four sections in addition to this
introduction and the conclusions section. Section II briefly
presents the well-known BCS Green’s function and analyzes
its features and shortcomings. Section III describes the impu-
rity and Rashba Hamiltonians used here, and the derivation
of the in-gap-bands. In Sec. IV, we implement using Green’s
functions the theory developed by Tewari and Sau [64]. We
develop a new way of computing an effective Hamiltonian
from a Green’s function that is not a Hamiltonian resolvent.
This allows us to develop a practical scheme to compute
the winding-number and the lower-symmetry Z2 invariant of
the Tewari and Sau theory [64] for an infinite system. In
agreement with the bulk-boundary correspondence principle
[62,63], we obtain the emergence of MBS at the edge of
finite chains when the infinite-system phase is topological.
This allows us to map the topological phase diagram for
ferromagnetic systems with deep d-levels adsorbed on a BCS
superconductor. In Sec. V, we compare these results with
numerical calculations on finite systems. The central result
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of our work is that we can use finite-size calculations to ac-
tually compute infinite-system topological invariants. Indeed,
our results show that winding numbers can still be numer-
ically calculated using finite systems. As an example, we
are able to identify the nontopological or topological origin
of edge modes that oscillate around the Fermi energy as atoms
are added to the chain. Similar behavior has been recently
reported on experimental results [30].

II. WIDE-BAND ELECTRONIC GREEN’S FUNCTION
FOR SUPERCONDUCTORS

Local-basis-set approaches to treat a wide-band supercon-
ductor incurs into numerical problems due to the large energy
mismatch between the electron-band width and the pairing
energy �. Here, we will use extended states to describe the
superconductor. The normal metal is then treated in the free-
electron approximation. We adopt the theory developed by
Flatté and Byers [20,21]. The main features of their theory
is to use a real-space Green’s function for the superconductor
based on free-electrons and then solve for the effect of mag-
netic impurities using Dyson’s equation. In this section, we
are going to briefly analyze the specificities of the Green’s
functions obtained in this way.

The Bogoliubov-de Gennes approach can be succinctly
expressed using Nambu’s formalism [5,17,35,65–67]. Here,
we choose a plane-wave electronic basis and 4-component
Nambu operators to express the Bogoliubov-de Gennes
equations in matrix form. The basis set of our study is given by
the Nambu operator [66,67] �̂k = (ĉk,↑, ĉk,↓, ĉ†

−k,↑, ĉ†
−k,↓)T ,

where, k is the wave vector of the plane-wave basis function
φk (r) = ei�k·�r/

√
V , V is the normalization volume and �r are the

spatial-coordinate vectors.
Using free electrons with a pairing interaction of strength

�, the Hamiltonian matrix is expressed as [17,67]

HBCS = ξkτzσ0 + �τyσy, (1)

where ξk is the energy from the Fermi level (ξk = εk − EF ),
and � is the superconducting pairing potential. Here, the
tensor product of Pauli matrices for the spin (σ ) and parti-
cle (τ ) sectors spans the 4 × 4-matrix space if the identity
matrices (σ0 and τ0) are included. Thanks to the one-particle
character of this Hamiltonian, we can use the resolvent to find
the superconductor’s Green’s function [67]:

G0(k, ω) = 〈k|[ωτ0σ0 − HBCS]−1|k〉
= 1

ω2 − ξ 2 − �2
(ωτ0σ0 + ξkτzσ0 + �τyσy). (2)

The retarded version of Eq. (2) can be obtained replacing ω by
ω + i�, where the Dynes parameter � is taken as a small and
positive real number that is phenomenologically associated
with the lifetime of quasiparticles [68]. The imaginary part of
−G0(k, ω) becomes the one-particle density of states of the
superconductor. We do not even attempt to plot this density
of states for a realistic wide-band superconductor because it
basically reduces to two tiny gaps with value 2� near the
Fermi wave vector kF that disappear in the fast dispersing
bands with k values.

Instead, the real-space Fourier transform can be obtained
with the correct BCS properties. However, the Fourier trans-
form of the above Green’s function does not converge. We
should only include states within a shell of width the Debye
energy, h̄ωD, around the Fermi energy [69], and take the limits
EF , h̄ωD → ∞ with h̄ωD/EF 
 1, see Ref. [5]. This yields
the BCS Green’s function [20,21]:

GBCS(r, ω) = −πN0

kF r
e

−
√

�2−ω2

πξ�
r

×( cos(kF r)τzσ0 + ω√
δ2 − ω2

sin(kF r)τ0σ0

+ �√
δ2 − ω2

sin(kF r)τyσy), (3)

where r is the distance between two points in the supercon-
ductor. The prefactor includes N0 that is the normal-metal
density of states at the Fermi energy, and the exponential
behavior with distance, controlled by the correlation length ξ

of the superconductor. This expression recovers known prop-
erties of the electronic structure of an s-wave superconductor.
Since the spatial oscillations appearing in Eq. (3) are of the
order of the Fermi wavelength, λF = 2π/kF , we will be able
to use Eq. (3) in a discrete lattice [70] such that �r > 1/kF .
The local Green’s function (with r = 0) is the usual local BCS
Green’s function [35,67]:

GBCS(r = 0, ω) = −πN0 Sgn[Re(ω)Im(ω)]√
�2 − ω2

×

⎛
⎜⎝

ω 0 0 −�

0 ω � 0
0 � ω 0

−� 0 0 ω

⎞
⎟⎠. (4)

In summary, the above real-space Green’s function has two
important restrictions. The first one is that beyond an energy
scale given by the Debye frequency, the Green’s function is
not physical. The second one is that it can be used seam-
lessly from r = 0 to finite r if the discrete steps are large
enough, where the typical length scale is given by the Fermi
wavelength.

In the present paper, we are interested in studying the
topological phases associated with spin chains on wide-band
superconductors. We will evaluate the topological properties
of the bulk superconductor. To do this, we need to transform
back our real-space Green’s function to k space. As in previ-
ous papers [5,35], we are going to assume a discrete spatial
step �r = a, the lattice parameter of our superconductor. In
this case, we have to evaluate the discrete Fourier transform
that due to the translational invariance of the underlying crys-
tal structure can be written as [62]

GBCS(�k, ω) =
∑

�R
GBCS(R, ω)ei�k· �R. (5)

Here �R are all the positions of the atoms in the crystal. We
will work on 1D spin chains. Then it is interesting to find
GBCS(k, ω) in 1D where the other two spatial coordinates have
been set to zero. This is easily done because the sum over �R
can be analytically performed as done in Refs. [35] and [52].
The dimensionality of the problem is an important issue that
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has been recently studied using 2D superconductors [71,72]
where the Green’s function can be obtained in k space and the
corresponding topological analysis is performed [72].

Expression (5) lends itself to numerical implementation.
This can be interesting when trying to solve problems with
spin chains that require an all-numerical approach. We have
computed Eq. (5) by considering a finite 1D array of sites
on the superconductor and compared with the results of the
analytical calculation. The agreement is very good even for
rather small sets of the 1D array of sites. Figure 2 shows the
comparison of the density of states −Im GBCS(�k, ω + i0+)/π
computed using both schemes. The shown case is for kF =
0.15 a−1

0 and a = 3.36 Å that we have used to describe the
β-Bi2Pd superconductor [26,31]

The calculation of the density of states −Im GBCS(�k, ω +
i0+)/π also reveals a cutoff for k > kF when kF is smaller
than the Brillouin zone value π/a. This reflects the fact that
small values of r are not well-taken care of by the real-space
Green’s function. As a consequence, values k > kF will be-
have pathologically. However, the density of states becomes
well behaved as soon as kF > π/a, which corresponds to
cases of substantial band folding, or wide-band superconduc-
tors. In the case of spin chains, large folding can be also
obtained for very diluted spin chains, where the distance
between impurities is much larger than the superconductor
lattice. The above procedure then works well in the limit
of diluted spin chains [5,35]. The cutoff in density of states
−Im GBCS(�k, ω + i0+)/π also disappears in the case of small
correlation lengths. Showing that there are two important
length scales, 2π/kF and the correlation length ξ . In the
following calculations, we have always used the BCS value
ξ = h̄vF /π� where vF is the free-electron Fermi velocity.

We have thus a reliable Green’s function for an infinite sys-
tem that has the correct BCS behavior and that permits us to
compare results with finite calculation that are completely per-
formed using numerical means. In this way, we can assess the
feasibility of doing purely numerical calculations to unravel
the characteristics of spin chains on s-wave superconductors.

III. IN-GAP-BANDS WITH GREEN’S FUNCTIONS

In-gap or in-gap state bands are easily accounted for within
the approximation of classical spins [16–18]. We adopt a
classical-spin sd model, that we term classical-spin Kondo
Hamiltonian, that separates the impurity action into charge
and spin contributions given by the potential scattering term
Kj and the exchange term Jj . The Kondo Hamiltonian in the
previous Nambu basis is given by

Ĥimpurity =
N∑
j

(Kjτzσ0 + Jj �S j · �α) (6)

where the sum over j is over the impurities of the chain.
The atom spin is assumed to be classical and equal to �S j =
(S j,x, S j,y, S j,z ) = S(sin θ j cos φ j, sin θ j sin φ j, cos θ j ). The
electron spin is expressed via Pauli matrices in the Nambu
basis set as: �α = 1+τz

2 �σ + 1−τz

2 σy �σσy, where �σ is the spin
operator [17].

In the philosophy of the previous section, the effect of
the impurity chain can be included using Dyson’s equation.

FIG. 2. Density of states for a free-electron-like superconductor
computed using Eq. (5), for kF = 0.15 a−1

0 and π/a = 0.5 a−1
0 . (a) is

the calculation using a finite set of 101 sites and (b) is the analytical
calculation. The step for |k| > kF disappears as soon as kF becomes
larger than the first-Brillouin-zone vector π/a or the correlation
length, ξ becomes small. The normal-metal DOS at the Fermi energy
is N0 = 0.037/eV, the Dynes broadening is � = 0.01 meV, and the
gap is � = 0.75 meV.

For infinite periodic chains, this is done in reciprocal space,
because the equation becomes algebraic:

G(�k, ω) = GBCS(�k, ω) + GBCS(�k, ω)�(�k, ω)G(�k, ω). (7)

As above, the Green’s functions, GBCS and G, and the self-
energy � are 4 × 4 matrices. The arithmetic involved to solve
Dyson’s equation is just 4 × 4-matrix algebra.
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Due to the locality of the Hamiltonian, Eq. (6), and the
mean-field character of the Bogoliubov-de Gennes theory,
the self-energy is easily computed. In 1D and assuming all
impurities to be identical, the self-energy is given by [73]

�(�k, ω) =
∑

�R
〈 �R|Ĥimpurity|0〉ei�k· �R = Kτzσ0 + J �S · �α, (8)

with �α defined above. In the above expression, we have made
used of the Bloch representation, such that the matrix element
〈 �R|Ĥimpurity|0〉 is only evaluated between unit cell 0 and unit
cell �R of the periodic system.

A. Evaluation of the effective Hamiltonian

To compute the in-gap-bands is, however, not a simple
task. As we saw in the preceding section, the superconducting
Green’s function GBCS is not really a Nambu resolvent. As
a consequence, the usual method of diagonalizing a Hamil-
tonian extracted from the Green’s function [74], Ĥ (�k) =
−G−1(�k, ω = 0), does not work. This cannot work because
for G0, this scheme gives something approximate to a flat band
for −kF < k < kF at several hundreds of meV depending on
the electron density of the superconductor, and adding an
exchange coupling in the range of eV, just splits the band
orders of magnitude away from the gap energy.

In order to solve this problem, we notice that we have
to generalize the resolvent equation. To do this, we expand
G(�k, ω) to first order in ω, and we identify this to the resolvent
equation, Eq. (2). The resulting Hamiltonian comes from a
renormalized Green’s function and shows the correct in-gap
dependence:

Ĥ (�k) = −
(

∂G−1(�k, ω)

∂ω

)−1

ω=0

G−1(�k, ω = 0), (9)

The results are excellent, the bands perfectly match the PDOS
obtained from the imaginary party of the retarded Nambu
Green’s function, and all in-gap states properties are retrieved.
This is to be expected because the condition for finding the
bands or eigenvalues of Eq. (9) is the condition of singularity
for the Green’s function for small ω.

B. Calculations in real space

Here, we are going to compare with real-space calculations
in order to describe the possible topological phases as well as
in-gap states of other nature. We assume we can express the
electronic states in a local basis set, compact to the atomic
sites, that do not overlap and can be taken to be a tight-binding
orthonormal basis set with a total of N orbitals or sites.

In this case, Dyson’s equation is just a resolvent equation
for a 4N × 4N matrix:

Ĝ = [
Ĝ−1

BCS − ĤI
]−1

, (10)

where ĜBCS is the retarded Green’s operator for the BCS
Hamiltonian from Eq. (1) and ĤI = Ĥimpurity + ĤRashba. The
ĤRashba includes the Rashba interaction as described in the
next section.

In this case, we evaluate the real-space density of states by
projecting the density of states on the tight-binding orbitals.

This projected density of states (PDOS) on orbital i or spectral
function is given by

ρ(i, ω) = − 1

π
Im

[
G1,1

i,i (ω) + G4,4
i,i (−ω)

]
, (11)

where Gν,μ
ii is the resulting Green’s function evaluated on

orbital i for the Nambu components ν and μ by solving
Dyson’s equation. Thus, the calculations for finite chains are
performed on a 2D finite mesh of the 3D superconductor,
where a few sites without impurity interactions are left around
the impurity chain. Our calculations are quite robust against
the number of free superconducting sites left around the impu-
rity chain, including subsurface layers, due to extreme locality
of the magnetic interactions and the 3D character of the su-
perconducting Green’s function of the model. This model can
address materials based on deep d-level magnetic atoms and
s-wave superconductors that are correctly reproduced by the
BCS theory. In Ref. [31], we showed the good agreement
obtained between the model and the experimental results of
Cr chains on β-Bi2Pd.

C. Rashba self-energy

In the same spirit as above, we can introduce the
spin-orbit coupling for a surface, using the self-energy for
the Rashba Hamiltonian. In the tight-binding electron basis,
the non-locality of the Rashba Hamiltonian makes it formally
similar to a nearest-neighbor hopping term,

ĤRashba = i
αR

2a

∑
i, j,α,β

[ĉ†
i+1, j,α (σy)α,β ĉi, j,β

− ĉ†
i, j+1,α (σx )α,β ĉi, j,β + H.c.] (12)

where α, β are spin indexes. The lattice parameter of the sub-
strate is a, and the factor of 2a comes from a finite-difference
scheme to obtain the above discretized version of the Rashba
interaction.

Transforming to a 1D reciprocal space and using the
Nambu basis set, the self energy becomes

�(k, ω) = 2αR sin(ka)τzσy. (13)

For higher dimensions, we use the real-space representa-
tion given by the above Hamiltonian and we do the Fourier
transform to reciprocal space using a truncated unit-cell
summation.

IV. WINDING NUMBER AND TOPOLOGICAL PHASE
SPACE FOR SPIN CHAINS ON A WIDE-BAND

SUPERCONDUCTOR

The presented methodology based on Green’s function
permits us to compute both infinite and finite spin chains on
superconductors. We can easily put the bulk-boundary corre-
spondence principle [62,63] to test as well as to characterize
the topological superconducting phases resulting from the in-
gap states.

A. Topological invariants

Tewari and Sau [64] studied the topological properties of
1D spin chains in one and two dimensions. They showed that
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the in-gap electronic structure induced by a spin chain on a
1D superconductor leads to phases compatible with the BDI
class [75]. This classification results from the chiral symmetry
characterizing the system.

Due to the presence of magnetic interactions, time-reversal
symmetry is broken in the model of a FM spin chain. How-
ever, the following antiunitary operator may be defined, T =
τ0σ0K, where K is the complex conjugate operator. The
Hamiltonian satisfies T Ĥ (k)T −1 = Ĥ (−k), this symmetry is
the so-called generalized time reversal [33] or spin-rotation
time-reversal [76] symmetry. Additionally, particle-hole sym-
metry is defined by the operator P = τxσ0K and it is present
on every BdG hamiltonian by construction. The combination
of the two is the chiral symmetry and the corresponding oper-
ator is the product of the two previous ones, C = PT = τxσ0.
As a consequence, the Hamiltonian of the system can be
written, in a rotated basis, under the form:

H (k) =
(

0 A(k)
AT (−k) 0

)
. (14)

Here A is a 2 × 2 matrix in the spin sector, and AT is its
transpose. The representation of Eq. (14) is easily obtained
by changing the basis set from the Nambu basis expressed in
fermionic operators ĉ and ĉ† to a basis set expressed in terms
of Majorana operators (ĉ ± ĉ†)/

√
2.

For a 2 × 2 Hamiltonian, Eq. (14) can be written as

H (k) = dx(k)τx + dy(k)τy, (15)

where the change of basis has permitted us to have a zero com-
ponent of τz because τz anticommutes with the Hamiltonian
and defines the chiral symmetry of the system [62]. In the
fermionic basis set of the original Hamiltonian [33,39], the
symmetry representation is the above C = τxσ0.

The BDI class has a Z topological invariant. This is the
winding number w related to the vector �d = (dx, dy). As
k changes, �d describes a closed trajectory. The winding num-
ber w is an integer that corresponds to the number of turns
described by �d about the origin. In order to change topological
phase, and change w, the superconductor gap has to close.
This happens when the determinant of the Hamiltonian is
zero. From Eq. (15), the determinant of H (k) will be zero
when �d is zero.

However, as Tewari and Sau [64] emphasize, the
Hamiltonian is a 4 × 4 matrix, and in order to keep the above
description in the particle-hole sector (the τ matrices) we
identify the determinant of the A matrices with the winding
vector Det(A(k)) = dx(k) − idy(k) in order to take into ac-
count when the determinant of the full Hamiltonian becomes
zero. From the 4 × 4-Bogoliubov-de Gennes Hamiltonian,
Eq. (1) with the addition of the impurity Hamiltonian, Eq. (6),
and the Rashba term, Eq. (12), we obtain

Det(A(k)) = (H1,1(k) + H1,3(k)) × (H2,2(k) + H2,4(k))

− (H1,2(k) + H1,4(k)) × (H2,1(k) + H2,3(k)).

(16)

Tewari and Sau [64] also show that a lower-symmetry class
invariant can be defined. This is the usual D-class Z2 invariant
that is given by the parity of the winding number [64]. In

2D superconductors, the Rashba interaction leads to nonreal
matrix elements and the symmetry of the 1D system is re-
duced. However, we find that even for 2D substrates, the
winding number still gives results in agreement with the ap-
pearance of MBS in finite chains. It is then interesting to clas-
sify the topology of the spin-chain systems by their winding
number w.

The winding number is given by evaluating the number of
turns of �d about zero, given by the expression:

w = 1

2π

∫ π/a

−π/a
dk

(
dx

d

dk
dy − dy

d

dk
dx

)
, (17)

where �d has been previously normalized. Mathematically
equivalent expressions can be obtained by using the trajec-
tories in the complex plane of z = Det(A)/|Det(A)| as shown
in Refs. [64] and [62]. But they involve the evaluation of the
log(z) that plagues the computation with numerical problems
due to artificial discontinuities caused by its branch cut. Ex-
pression (17) however, is numerically simple and accurate to
evaluate.

The Z2 topological invariant is calculated from the Pfaffian
of the system. For a chiral Hamiltonian written as in Eq. (14)
the Pfaffian can be easily evaluated using P f [H (k)] =
Det[A(k)]. And the Z2 topological invariant Q becomes

Q = Sgn [ P f [H (k = 0)] × P f [H (k = π/a)]]

= Sgn [dx(k = 0) × dx(k = π/a)]. (18)

This equation shows that the Rashba Hamiltonian at k = 0
and k = π/a does not enter in the determination of the above
topological invariant since it is zero [see, e.g., Eq. (13)]. For
the same reason the trajectories of �d (k) wrap around zero only
once, leading to winding numbers that only take −1, 0 or +1
values [33,77].

As an example, we calculate the in-gap bands and topo-
logical invariants for an infinite 1D ferromagnetic chain on a
superconductor. Panels (a) to (d) from Fig. 3 correspond to a
trivial state of the system. Fig. 3(a) shows the renormalization
of the bands obtained from Eq. (9) for −π/a � k � π/a. As
observed, the bands reach high energies for k values, |k| >

kF , as the renormalization is not correct for k in this range.
The inset shows the two lower bands in for −kF � k � kF .
Figure 3(b) depicts the normalized trajectory described by
the vector �d in the complex plane. The k points are labeled
by a gradient of color going from −π/a (in cyan) to π/a
(in magenta), in this case, �d makes small oscillations around
(dx, dy) = (1, 0), meaning that the winding number in this
case is w = 0. On Fig. 3(c) we can follow this evolution: dx

(orange curve) stays close to 1 and dy (green curve) describes
a sinusoidal trajectory around 0 as we sweep k. The evolution
takes place for k values in the range (−kF , kF ), however,
for |k| > kF dx is one and dy remains zero. Indicating that
points for |k| > kF contribute trivially to the topology of the
system. The blue curve depicts the evolution of the cumulative
value of w:

w(k) = 1

2π

∫ k

−π/a
dk′

(
dx

d

dk′ dy − dy
d

dk′ dx

)
, (19)
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FIG. 3. In-gap states for ferromagnetic spin chains in trivial [(a)–(d)] and topological [(e)–(h)] state. The Kondo coupling is J = 2.0 eV
(left) and J = 2.7 eV (right), potential scattering K = 5.5 eV and Rashba coupling αR = 3.0 eV-Å, the Fermi vector is kF = 0.3 a−1

0 and the
spin is 5/2 (like Cr or Mn), the metal density of states at the Fermi energy is N0 = 0.037/eV and the superconducting gap is � = 0.75 meV
(like in β-Bi2Pd [31]). [(a),(e)] The infinite spin chain has 4-bands with values close to the superconducting gap for values of k between
Fermi vectors, insets show the two lower bands where we can observe the trivial (a) and topological (e) gap. [(b),(f)] plot the trajectory of
the normalized �d (k) as k is varied. To facilitate the visualization of the trajectory, k values go from −π/a (in cyan) to π/a (in magenta). In
(b) all points remain in the vicinity of (dx, dy ) = (1, 0) so no turn is completed about zero, on the other hand, in (f) we can observe a complete
anticlockwise turn. (c) and (g) show the evolution of dx (orange), dy (green), and w(k) (blue) as a function of k. In (c) we observe that w

has a final value of w = 0 indicating that the system is a trivial state. In (g) w(k) goes from 0 to w = −1, showing that here the system is
a topological state. (d) and (h) show the result of a finite 30 atomic chain on a 2D superconducting array of dimension Nx = 36 and Ny=5,
resulting in 180 sites, with same parameters as the analytical one. We plot the PDOS in 2D map as a function of the atomic site in the chain
vs the energy. The spectra in (d) shows in-gap states at a lowest energy of ∼0.1 meV, no zero-energy edge states are obtained here. In (h),
we observe one zero energy state on each edge of the chain. The calculations for infinite chains are 1D calculations, however, the finite-chain
calculations correspond to finite chains on a 2D finite mesh of the 3D superconductor.

The Z2 invariant Q is calculated from Eq. (18). For the
present case of kF < π/a, the points k � kF contribute triv-
ially to the topological state of the system, such that we
evaluate the Pfaffian in Eq. (18) at k = kF instead of k = π/a.
This is justified by the fact that beyond k = kF the free-
electron-like states disperse rapidly away from the gap and
they cannot alter the topology of the in-gap bands. This is
reflected by the absence of states beyond kF in the supercon-
ductor as we show on Fig. 2. Numerically, we test that dy ≈ 0
in the k points where we evaluate Q. When kF > π/a, we
strictly apply Eq. (18). In the case of Fig. 3, we obtain Q = 1
in good agreement with w.

Figure 3(d) shows a 2D map of the PDOS calculated for a
finite 30-atom chain on a superconducting surface, as shown
on Fig. 1, with the same parameters as a function of the atomic
site versus the energy. We calculate the PDOS on every site of
the chain from Eq. (11). As we can observe, the in-gap states
are distributed along the chain and the lowest energy states are
found at ∼0.1 meV. The absence of zero-energy edge states is
in good agreement with the trivial state of the system.

Panels (e) to (h) from Fig. 3 correspond to a topological
case. Here, we have increased the magnetic coupling to J =
2.7 eV. The band structure has gone through a gap closing
and the bands in Fig. 3(e) are topological. The trajectory of
�d completes a turn about zero, we can better observe the

trajectory on Fig. 3(g), where w(k) evolves from zero to –1.
Again, the evolution takes place for −kF � k � kF and the
points in |k| > kF only contribute trivially. The calculation in
a finite chain shows zero-energy edge states at both ends of the
chain, as we expect from the bulk-boundary correspondence
principle, Fig. 3(h).

The winding number w can be particularly difficult to
evaluate because of the large number of k points needed. The
convergence depends on the evolution of �d with k. At k = kF ,
the band structure changes rapidly and so does �d . Large values
of the Rashba parameter α lead to smoother variations of
�d , permitting a more accurate evaluation of w with fewer
k points. In the same way, the evaluation of gradients depends
on the used discretization steps. It is particularly critical to use
small ω steps for the evaluation of Eq. (9) as well as a small
imaginary broadening for the Green’s functions. The behavior
of dy with k is a stringent test to check for the convergence of
the numerical calculations. Not only should dy equal zero at
k = 0 and ±π/a, but it should be odd with k, as our results of
Fig. 3 show.

B. Topological phase space

By systematically evaluating the topological invariant Q
and the winding number on a parameter space, we can create

245415-7



MIER, CHOI, AND LORENTE PHYSICAL REVIEW B 104, 245415 (2021)

FIG. 4. Phase diagrams obtained for a ferromagnetic spin chain
with normal-metal DOS at the Fermi energy N0 = 0.037/eV, � =
0.75 meV, spin s = 5/2 and 15 000 k points. [(a),(b)] Phase diagrams
as a function of the Kondo coupling J vs the Fermi wave vector
of the system kF , with potential scattering K = 5.5 eV and Rashba
coupling αR = 3.0 eV-Å. (a) Energy gap of the system multiplied by
the Z2 topological invariant, Q, allowing for differentiation of trivial
(Q = 1) and topological (Q = −1) phases. (b) Winding number, w as
a function of J and kF . The green areas correspond to w = −1 [cases
like the one shown in Fig. 3(f)] and the magenta areas to w = 1,
here the winding vector, �d completes a turn in the opposite direction.
[(c),(d)] Phase diagrams as a function of the potential scattering,
K vs kF with Kondo coupling J = 3.0 eV and Rashba coupling
αR = 3.0 eV-Å. [(e),(f)] Phase diagrams as a function of the Rashba
coupling, αR vs kF with Kondo coupling J = 3.0 eV and potential
scattering K = 5.5 eV.

phase diagrams that we will use to determine the topological
state for any given parameters. Figure 4 shows phase diagrams
of a ferromagnetic atomic chain as a function of magnetic
coupling J versus kF [Figs. 4(a) and 4(b)], as a function of
potential scattering K versus kF (Figs. 4(c) and 4(d)] and
as a function of Rashba coupling strength, αR versus kF in
Figs. 4(e) and 4(f). The panels on the left row of Fig. 4 depict
the energy gap of the system multiplied by Q, like this, the
topological phases are plotted as a negative gap (in blue) and
in the trivial ones the gap is positive (in red). As expected, the
topological phases corresponding to w = +1,−1 perfectly
match the Q = −1 areas.

At a TPT, the gap of the system goes to zero. On Fig. 4(a),
we can easily observe two wide white branches corresponding
to the gap closing at k = 0 going from kF ∼ 0.1 a−1

0 to kF ∼

0.75 a−1
0 , and at k = π/a at low values of J for kF > 0.5 a−1

0 .
In other cases, however, the gap closing at a TPT can be
difficult to observe. For example, in Fig. 4(a) for Fermi vector
values such that kF < 0.5 a−1

0 and J couplings going from
∼2.5 eV to ∼4.5 eV, the topological character changes, but we
do not see a clear zero gap in this area. Here, the gap closes at a
k∗ point close to kF , but this transition is very abrupt requiring
a high number of k points and a fine tuning of the parameters
to properly observe the gap closing. We have observed that
the band structure highly depends on the number of ω and
k points, this can result in numerical artifacts in the energy
gap maps. A large number of k points is needed to obtain
well-defined gap closing in Fig. 4. The present calculations
are performed with 15 000 k points.

The strong dependence of the topological character on the
exchange coupling J is natural given the necessary presence
of an exchange interaction to have in-gap states. However,
the potential scattering term, given by matrix-element K in
Eq. (6), has an important effect on the topology of the bulk
bands. In the localized-basis set, this term appears as an on-
site term, and it does the effect of a chemical potential. It will
shift the on-site energies of the superconducting sites, and
hence has an important influence on the topological phase,
Figs. 4(c) and 4(d).

For kF values beyond the Brillouin-zone border π/a, a
stark change of topological phase is found in Fig. 4. We
have checked that this frontier is indeed there and not some
numerical artifact by testing the appearance of MBS in finite
chains. The topological regions for kF < π/a are character-
ized by a negative winding number. For kF > π/a the winding
number changes to +1. Thus, an interface between two super-
conductors of very different electron density, such that one
has a kF < π/a, and the other one has kF > π/a, a spin
chain straddling the interface will have a change of winding
number of 2, and hence present two MBS at the interface.
Alternatively to change the sign of the winding number, we
change the sign of αR because it changes the sign of dy. The
behavior of a ferromagnetic spin chain with Rashba coupling
can be compared with the behavior of a helical non-collinear
spin chain [5]. Following this analogy, changing the sign of
the coupling αR, would change the chirality of the spin helix.
As a consequence, in a magnetic chain with a domain wall
separating two different chirality chains, we also find the
appearance of two MBS [7,78] at the domain wall.

Figures 4(e) and 4(f) show the phase diagrams as a func-
tion of the Rashba coupling versus kF for J = 3.0 eV and
K = 5.5 eV. As we can observe, the topological phase is
independent of the Rashba parameter. However, the winding
number phase diagram in Fig. 4(f) shows that the system
is in the topological state only if we have a finite, nonzero
αR, showing that Eq. (18) should not be blindly applied, as
topological phases on FM chains can only be achieved on
systems with Rashba interaction, even if αR is infinitesimally
small [32,33]. Moreover, in Fig. 4(e) we can see that the
topological gap becomes bigger with an increasing αR, giv-
ing better protection to the MBS that arise in finite systems.
Hence, the role of the Rashba interaction is to facilitate the
triplet pairing, even though the ferromagnetic ordering in the
chain can suffice to locally drive the superconductor into the
topological phase.
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FIG. 5. Numerical results of 30-atom impurity chain of a 2D superconductor with dimensions Nx = 36 and Ny = 5. (a) Spectrum
obtained on the first atom of the chain. (b) PDOS at zero energy along the chain’s axis. (c) Renormalized bands, analytical calculation
(black-dashed lines), and numerical result (in red) for a 1001-atom chain in a 1D superconductor. (d) PDOS spectra along the 30-atom chain.
(e) Corresponding trajectory of winding vector �d , the color bar shows the k points where �d (k) is evaluated. (f) dx , dy and cumulative winding
number w(k), Eq. (19) as a function of k. Parameters: � = 0.75 meV, N0 = 0.037/eV, kF = 0.7 a−1

0 , α = 3.0 eV-Å J = 3.5 eV, K = 5.5 eV,
180 sites.

V. NUMERICAL STUDIES OF TOPOLOGICAL PHASES

In the previous section we have shown that the topological
phase can be determined for a ferromagnetic infinite chain.
We now want to study the validity of the topological invariants
in finite systems, in particular, in tens of atom chains on 2D
superconductors, which can be compared with experimental
measurements [31]. We create a 2D superconducting array,
without loss of generality, the magnetic impurities are located
along the �x direction in an atomic chain, all spins are oriented
perpendicular to the substrate along the �z direction, as shown
on Fig. 1, creating a ferromagnetically-ordered chain. We
solve Dyson’s equation, Eq. (7), and the PDOS is calculated
on every site using Eq. (11).

We have verified that the in-gap states are not drastically
affected by the change in dimensionality. By performing cal-
culations on 2D superconductors, we were able to observe that
the extension of the in-gap states decays in about 5 sites in
the perpendicular direction to the chain. The overall PDOS
obtained along the chain and the in-gap states dispersion are
largely unaffected by the change from 1D to 2D. In the case of
a 3D system, 3 layers are enough for the states to decay. On the
present paper, the calculations on finite chains are performed
on 2D superconducting arrays. However, for calculations of
in-gap bands and topological invariants, a big number of
atoms is required in order to attain the infinite-chain behavior,
hence we limit ourselves to 1D systems in order to reduce the
computational time.

A. Comparison with analytical calculations

On Fig. 5 we show the results for a finite 30-atom
chain located at the center a 2D rectangular superconduct-

ing array with dimensions Nx = 36 and Ny = 5 sites. The
exchange coupling is J = 3.5 eV, the potential scattering am-
plitude is K = 5.5 eV, Rashba coupling is αR = 3.0 eV-Å
and the Fermi vector is kF = 0.7a−1

0 , by looking at Fig. 4
(a) these parameters yield a topological solution with winding
number w = 1. On Fig. 5(a) we depict the spectrum obtained
on the first atom of the chain, here a very pronounced peak
can be observed at zero energy. On panel (b), we show the
distribution of the PDOS at zero energy along the �x axis,
revealing that the zero-energy state is well localized at the
ends of the chain. On Fig. 5(d) we show a 2D map of the
spectra obtained on every atom along the chain’s axis, we can
again note the presence of zero-energy edge states, whereas
inside the chain we observe a finite energy gap. All of these
features are in good agreement with the presence of MBS.
As discussed in the previous section, the topological state
of a given system can be determined from the study of the
topological invariants.

We can calculate G(�k, ω) from the real-space Green’s func-
tion Gi, j (ω) by using a finite Fourier transform, and using
a sufficiently high number of atoms in a 1D finite system.
We then calculate the k-resolved Hamiltonian from the renor-
malized Green’s function, Eq. (9). Figure 5(c) depicts the
numerically calculated bands (in red) for a 1001-atom chain
with the same parameters as for the 30-atom chain. We plot
the infinite-chain bands from the previous section as black
dashed lines, showing good agreement with the numerical cal-
culations. We show the trajectory of the vector �d in Fig. 5(e),
making a complete turn about zero in the positive sense,
resulting in w = 1 and demonstrating the topological nature
of the edge states obtained in the 30-atom chain, Fig. 5(d).
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FIG. 6. Evolution of in-gap states at the edges and at the center of the chain as a function of the couplings for exchange J [(a) and
(b) respectively] and potential K [(d) and (e)] interactions. For comparison, the states at the center of an infinite chain from an analytical
calculation are also shown in (c) and (f). As expected, the agreement between the spectra at the mid-site of the finite chain (b) and the site
of the infinite chain (c) is excellent, as well as between (e) and (f). The main differences are due to long-range edge states that are absent
from the infinite chain. Red dashed lines indicate the TPT as obtained from phase diagrams in Fig. 4. Topologically non-trivial phases are
found between the two horizontal lines. Parameters: � = 0.75 meV, N0 = 0.037/eV, kF = 0.4 a−1

0 , α = 3.0 eV-Å, the finite chains [(a), (b),
(d) and (e)] are 30-atom long in a superconducting surface with dimensions Nx = 36 and Ny = 5, making a total of 180 sites. The PDOS is in
(1/eV) units.

In contrast to the infinite-chain results, the winding number
determined by dx and dy show some incorrect asymmetry with
k, Fig. 5(f), this asymmetry can be reduced by taking suffi-
ciently small ω steps that improves the numerical precision of
the derivative in Eq. (9). Also, small oscillations can appear in
these curves due to the Fourier transform from the finite-chain
in real space to k space, Fig. 5(f). In order to improve the
results, a sufficiently high number of k points and high number
of atoms are required. The Dynes parameter � needs to be
adjusted for better accuracy. Overall, these results show good
agreement between finite and infinite chain calculations that is
of special interest, because it shows that the topological state
of a given system can be determined from strictly numerical
calculations in finite systems.

B. Numerical phase space

In contrast to the infinite-chain analytical calculations of
previous sections, finite-chain calculation has the advantage
that the presence of MBS can be quickly discerned in a
calculation. Moreover, the phase space can be explored by
computing the in-gap electronic states projected on the first
site of the chain. In the presence of MBS, zero-energy states
will appear as parameters change.

To study the evolution of the edge states in the finite chains
as we go through the TPT, we calculate finite 30-atom chains
as a function of the parameters J and K . In order to reveal
the features proper to the edge of the chain, we compare the
electronic structure as a function of energy for edge sites
with the one at the center of the chain. Figure 6 depicts
the evolution of the edge states and the states at the center
of the chain as the exchange [(a) and (b) respectively] and

potential [(d) and (e)] couplings are varied. For comparison,
we perform a calculation from the analytical solution G(k, ω)
of an infinite chain, and we Fourier transform to real space,
such that a site in an infinite chain can be evaluated [(c) and
(f)]. As expected, the agreement between Figs. 6(b) and 6(c)
is excellent, as well as between Figs. 6(e) and 6(f). There are
however some differences, particularly from states that cross
the gap as the interactions change. These states are not present
in the infinite-chain calculation and can be traced back to the
projections on the edge sites, Figs. 6(a) and 6(d), showing that
they are edge states extending into the center of the chain.

The red-dashed lines indicate the TPT as found from the
phase diagrams in Fig. 4. In good agreement, we find that
MBS develop in (a) and (d) for the values of the couplings
corresponding to topological phases. Moreover, the states
that cross rapidly the Fermi energy when the couplings are
changed can be determined to have no topological origin by
comparison with Fig. 4.

A closer look to Fig. 6(a) reveals that for higher values of
J in the topological state, the zero-energy edge states begin to
split. This is due to the finite size of the chain, Fig. 6 corre-
sponds to calculations with a 30-atom chain. For an increasing
number of atoms, the splitting of the zero-energy peak occurs
closer to the TPT, marked by the red dashed line. The TPT
is marked by a gap closing of the bulk hamiltonian revealed
by the crossing at J ∼ 2.7 eV of the zero-energy in-gap states,
Figs. 6(b) and 6(c). For the second transition at J ∼ 4.0 eV, we
observe a narrowing of the gap, but the gap closing is difficult
to observe because a high number of k points and J values
is required to observe this gap closing. A similar situation
happens when tuning the potential scattering, K in Figs. 6(e)
and 6(f).
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FIG. 7. (a) to (c) [(e) to (g)] Evolution of the edge [center] states as a function of the number of atoms in the chain and for different Kondo
couplings. For J = 2.5 eV the lower energy in-gap states are at ∼0.1 meV and well distributed between edge (a) and center of the chain (e).
For a coupling of J = 3.0 eV we observe a robust zero-energy edge state for chains as short as 5 atoms (b) while the bulk spectra shows an
energy gap. For J = 4.5 eV the edge states oscillate around zero with a period of 5 atoms (c) the oscillations are also observable in the middle
of the chain (g). Parameters: � = 0.75 meV, N0 = 0.037/eV, kF = 0.4 a−1

0 , α = 3.0 eV-Å , K = 5.5 eV. (d) Evolution of the in-gap states in
a dimer while varying the distance between the two magnetic impurities. The four in-gap states oscillate with the same period observed in the
chain. Parameters: Same as the chain but J = 3.2 eV. (h) Scheme depicting the interaction between pairs of atoms in the chain (in red) and in
the dimer (blue) here the periodicity of the interaction is set to 2 atoms for simplicity. The PDOS is in (1/eV) units. The dimensions of the
superconducting array are Ny = 5 and Nx is varied with the length of the chain.

C. Finite-chain spectral dependence on the number of atoms

The study of the spin state [31,60] of the chain while
varying the magnetic coupling supports the occurrence of a
topological phase transition at J ∼ 2.7 eV (with parameters
U = 5.5 eV, kF = 0.4 a−1

0 and α = 3.0 eV-Å) and, hence, the
presence of MBS in this case. This is also in agreement with
the phase diagram from Fig. 4(a), for kF = 0.4 a−1

0 , the energy
gap goes to zero at about J = 2.7 eV, and the new gap changes
character from trivial to topological. To further study these
finite system states, we follow the evolution of the edge states
while changing the number of atoms in the chain.

MBS are expected to be easier to detect as the chain length
increases [31,52] because the spatial overlap of their wave
functions decreases. On Fig. 7 we show the evolution of the
spectra on the first (top row) and middle atom (bottom row) of
the chain as a function of number of atoms and for different
J coupling values. On panels (a) and (e) J = 2.5 eV, the
topological state has not been reached and the in-gap states are
still far from zero energy. In the middle plots [panels (b) and
(f)], we have increased the magnetic coupling to J = 3.0 eV,
this is after the system has undergone the TPT. On panel
(b) we observe a robust zero-energy state for chains as short
as 5-atom long. As the chain length increases, the edge state
stays at zero energy. If we look at the spectra on the middle of
the chain [Fig. 7(f)], we can observe an energy gap, showing
that the zero-energy state is well localized at the chain edges.
The phase diagram of Fig. 4(a) shows that for J = 3.0 eV and
kF = 0.4 a−1

0 , the system is, indeed, in a topological state.
On panels (c) and (g) from Fig. 7, the exchange coupling is

J = 4.5 eV and the spectra on the upper panel display an edge
state with an oscillatory behavior around zero energy with a
period of 5 atoms. On panel (g), we see that some of these
edge states are extended inside of the chain. Oscillations of in-

gap states has been reported by recent studies [30], suggesting
that even for topological solutions, the MBS can interact and
move away from zero energy. To better understand the nature
of the oscillations, we look at the phase diagram on Fig. 4(a).
For these parameters the system is in the trivial state. Despite
the edge states crossing at zero energy periodically, they are
no topological in-gap states.

Figure 7(d) depicts the in-gap states of a dimer of magnetic
atoms in a superconductor as a function of their interatomic
distance. On the y axis we vary the distance between the
two atoms. Four in-gap states result from the hybridization
of the FM dimer [26]. As the distance changes we observe
an oscillatory behavior of the states. This points to a coupling
between atomic pairs carried by RKKY interaction [79,80].
In the case of the dimer, the amplitude of the oscillations de-
cays with the distance because the coupling between the two
atoms becomes smaller as the two impurities move away. For
very large interatomic distances, the dimer spectra tend to the
spectra of a single impurity. However, in the case of the atomic
chain, because we keep adding atoms, the coupling between
pairs at a given distance is always present so the oscillation
amplitude does not decay, a scheme of these interactions is
depicted on Fig. 7(h).

For different parameters, we also find oscillatory behavior
about zero energy in the topological phase when the exchange
coupling is very large. In this case, the interactions between
the edge MBS are not negligible and we reproduce the same
behavior as the one reported in Ref. [41]. In order to obtain
topological or trivial oscillations, we find that the exchange
coupling J needs to be large enough to induce the oscillatory
behavior of the in-gap states as the number of atoms is in-
creased.

The atomic manipulation capabilities of the STM allows
us to study the evolution of the in-gap structure as atoms are
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added to the chain [30,31,41]. Hence, the above real-space
studies permit us a direct comparison with experiments.

VI. SUMMARY AND CONCLUSIONS

In this article, we have developed a numerical scheme
to determine the topological invariants of a spin-chain on a
superconductor using finite-size Green’s functions. To do this,
we have written a new expression to obtain a Hamiltonian
from a general Green’s function that reproduces all in-gap
states. Furthermore, we have shown that using a truncated
Fourier transform for long-enough spin chains is sufficient
to have a good description of the infinite-chain band struc-
ture. Figure 5 is the central result of this paper. We show
that we can characterize the topological properties of a spin
chain computed by fully numerical way, paving the way to
using real-material Green’s functions as the one developed in
Ref. [27].

We have shown in Fig. 3(a) pictorial and intuitive way of
interpreting the topological invariants as well as its connection
to the real-space electronic structure of finite spin chains on a
superconductor. Using the topological invariants we can fur-
ther characterize the topological phase space of ferromagnetic
spin chains on a BCS superconductor, Fig. 4, showing the
effect of the main parameters of the Hamiltonian. We further
analyze the convergence with k points, system size and step
in energies to be able to achieve reliable results such as the

ones of Fig. 5. Our conclusion is that the in-gap structure
strongly depends on fine sets of k points and energy mashes,
as well as long enough spin chains. When this is met, even
complicated electronic behavior as the one plotted in Fig. 6,
can be retrieved with finite chains. We also show the behavior
of the edge electronic structure that at large couplings can
lead to nontrivial energy oscillations as the couplings increase,
previously seen in Ref. [51]. Finally, we have considered the
experimental findings [30] when the edge electronic struc-
ture is measured as the number of atoms increases in the
spin chain. We have found that the energy oscillations with
atom number are due to substrate-mediated interactions of
the different in-gap states, and hence are similar to the ones
found for spin dimers as the distance between spins increases.
Our calculations show that oscillations can happen both in
topological and nontopological phases.

In summary, the present paper shows that it is possible
to do all-numerical calculations and hence use real-material
Green’s functions to reproduce and characterize the properties
of experimental spin chain on superconductors.
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