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Collective magnetic excitations in AA- and AB-stacked graphene bilayers
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We discuss novel transverse plasmon polaritons that are hosted by AA- and AB-stacked bilayer graphene
due to perfect nesting. They are composed of oscillating counterflow currents in between the layers, giving a
clear interpretation of these collective modes as magnetic excitations carrying magnetic moments parallel to the
planes. For AA-stacked bilayer graphene, these modes can reach zero frequency at the neutrality point and we
thus predict a symmetry-broken ground state leading to in-plane orbital ferromagnetism. Even though it could be
hard to detect them in real solid-state devices, these novel magnetic plasmons should be observable in artificial
setups such as optical lattices. Also, our results might be relevant for magic angle twisted bilayer graphene
samples, as their electronic properties are mostly determined by confined AA-stacked regions.
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I. INTRODUCTION

Plasmonics in graphene-based materials has attracted
much attention since the wavelength of light can be reduced
by several orders of magnitude governed by the inverse fine-
structure constant α−1 ∼ 137 [1–7]. This strong confinement
further gives rise to various applications such as perfect ab-
sorption [8], the sensoring of biochemical molecules [9],
plasmon-induced transparency [10], and plasmon-enhanced
chirality [11]. Also, other two-dimensional systems have
shown interesting plasmonic properties such as molybdenum
disulfide [12], black phosphorous [13], and general van der
Waals materials [14].

Plasmonics is usually based on longitudinal or transverse-
magnetic plasmons which consist of collective density oscilla-
tions collinear to the propagation direction. These excitations
are strongly confined due to the enhanced Coulomb cou-
pling between the electromagnetic field and the charge carrier
density. On the other hand, transverse or transverse-electric
plasmons can also exist in graphene and consist of collective
current oscillations that are perpendicular to the propagation
direction [15]. These excitations are closely pinned to the light
cone and thus weakly confined, which allows for their de-
tection in the Otto configuration [16,17]. Negative refractive
index environments can help to enhance their confinement
[18,19], and magnetically biased graphene-ferrite structures
give rise to nonreciprocal plasmons [20]. Also, in AB-stacked
bilayer graphene the transverse modes are considerably more
confined than in its monolayer counterpart [21]. The nonlinear
response of transverse plasmons is analyzed in Ref. [22].

Transverse plasmons in single-layer graphene arise from
interband transitions close to the absorption threshold and it
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is difficult to visualize their magnetic character [23–25]. This
might further be a reason for their fragile nature, i.e., their
ultrahigh refractive index sensitivity [26].

Here, we study the antisymmetric transverse mode of AA-
or AB-stacked graphene bilayers, which has not been men-
tioned in the literature so far [27]. They are considerably more
stable, as they arise from a resonant “magnetic” absorption,
absent in the uncoupled bilayers discussed in Ref. [28]. Fur-
ther, the antisymmetric counterflow leads to perfect screening

FIG. 1. Sketch of the transverse antisymmetric plasmons in bi-
layer graphene. The loop currents, j, create an in-plane magnetic
moment, m, between the layers. In particular, we are interested in the
long-wavelength limit q → 0, where a uniform, in-plane, oscillating
magnetic moment emerges out of transverse (chargeless) currents
which are opposite in each layer.
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outside the sample for qa → 0 such that the plasmon disper-
sion does not depend on the two external, possibly different
dielectric environments, contributing to additional stability.
Finally, these antisymmetric modes have a clear physical
interpretation and correspond to loop currents around the lay-
ers resulting in an in-plane magnetic moment density (see
Fig. 1). Remarkably, for AA-stacked graphene these modes
can also exist at zero frequency and we thus predict a mag-
netic instability and spontaneous symmetry breaking at zero
temperature, giving rise to orbital in-plane ferromagnetism.

The paper is organized as follows: in Sec. II, we discuss
the electromagnetic response in a bilayer and define the plas-
monic excitations within the random-phase approximation
(RPA). We also comment on the effect of an inhomogeneous
dielectric environment for the transverse (magnetic) modes.
In Sec. III, we discuss the magnetic response of two typi-
cal graphene bilayers that are AA and AB stacked and give
numerical estimates for the resonant frequency. We finally
discuss the stability in AA-stacked bilayer graphene in Sec. IV
and close with conclusions.

II. ELECTROMAGNETIC RESPONSE IN BILAYERS

Following Ref. [29], the most general (bare) in-plane cur-
rent response in isotropic (and nonchiral) bilayer systems can
be written as (

j1
ν

j2
ν

)
= −

(
χ11 χ12

χ21 χ22

)(
A1

ν

A2
ν

)
, (1)

where A�
ν denotes the gauge field acting on layer � = 1, 2

and ν = l, t defines the longitudinal and transverse channels,
which are decoupled. Further, χ�,�′ = 〈〈 j�ν , j�

′
ν 〉〉 is the current-

current response with respect to layers � and �′. Note that
the polarization subscript ν is suppressed in χn,m since both
polarizations coincide in the q → 0 limit.

In a homogeneous dielectric environment, the propagators
of the gauge fields with in-plane momentum q and frequency
ω are given by

Dν = dν

(
1 e−q′a

e−q′a 1

)
, (2)

with a the distance between layers, q′ =
√

q2 − εμω2/c2,
dl = q′

2ε0ω2 , and dt = − 1
2ε0c2q′ [30]. Time-reversal symmetry

sets χ12 = χ21, and in the following, we further assume that
the exchange of layers is also a symmetry leading to χ11 =
χ22. The collective excitations (plasmons) are then defined in
the RPA by [31]

det(1 − χDν ) = 0 , (3)

where χ = χ�,�′ denotes the 2 × 2 response matrix.
In terms of bonding and antibonding modes, we have χ± =

χ11 ± χ12 and dν± = dν (1 ± exp(−q′a)), and plasmons are
the zeros of the effective dielectric functions:

1 − dν±χ± = 0. (4)

The transverse field propagator is purely imaginary in the
qa → 0 limit, causing any current excitation leak out to the
propagating electromagnetic field for a single layer. This
is avoided in the double layer by the combination 1 −

exp(−2q′a) in dt−, making the effective propagator for the
antisymmetric mode real to lowest order in q. Leaking to the
electromagnetic field thus only occurs in higher orders. Of
course, this effective real magnetic coupling is still very small,
but the condition for the self-sustained collective modes is
guaranteed by the divergent nature of the current response χ−
near sharp features of the spectrum as we show below.

The response function χ− refers to the counterflow that
leads to an in-plane magnetic moment. The intrinsic ex-
citations are thus collective magnetic dipole oscillations
or magnetic plasmons—contrary to conventional plasmons,
which are collective electric dipole oscillations. Nevertheless,
the resonance condition, (4), is usually not fulfilled due to the
weak magnetic coupling and a true magnetic plasmon cannot
be formed.

In the next section we show that in typical graphene bilay-
ers with AA and AB stacking, the resonance condition can
always be reached due to “perfect nesting” close to a fre-
quency ω0, where the real part of χ− diverges as (ω − ω0)−1.
For extremely clean samples, collective modes are thus guar-
anteed by the divergent nature of the current response χ−
near sharp features of the spectrum and we predict genuine
magnetic excitations close to the resonance condition.

Interestingly, in an inhomogeneous environment, i.e., if the
bilayer is surrounded by two dielectrics with permittivities ε1

and ε2 and permeabilities μ1 and μ2, the final result for the
antisymmetric modes does not change in the long-wavelength
limit due to perfect screening. The antisymmetric eigenvalue
of 1 − χDt then reads (see Appendix B)

λ− = 1 + μ0a

2
(χ11 − χ12)(1 + O(q′a)) . (5)

The magnetic mode, alternatively defined by Reλ− = 0, is
therefore essentially independent of the surrounding dielectric
media. On the other hand, the symmetric plasmonic mode
does depend on the environment, and the existence of exci-
tations closely pinned to the light cone will strongly depend
on the refractive index difference, n1 − n2 [26].

III. GRAPHENE BILAYERS AND CURRENT RESPONSE

The calculation of χ11 and χ12 only requires the knowledge
of the underlying Hamiltonian. We consider the general low-
energy Hamiltonian of graphene bilayers [32–34],

H =
∑

k

Hk, with Hk =
(

H0
k U †

U H0
k

)
, (6)

where H0
k = h̄vF σ · k is the single-layer-graphene Dirac

Hamiltonian acting on states of Bloch momentum k. The
2 × 2 matrix U denotes the interlayer coupling, characterized
by the interlayer hopping matrix element t ∼ 0.33 eV.

We are interested in the generalized current-current re-
sponse given by the Kubo formula [31],

χ i,i′
�,�′ = e2gsgv

A

∑
n,m

fn − fm

h̄ω − (εm − εn) + iη
vi,�

n;mvi′,�′
m;n , (7)

where i, i′ = x, y denote the spatial direction, �, �′ = 1, 2 the
different layers, and n, m the set of quantum numbers; gs = 2
and gv = 2 are the spin and valley degeneracy, respectively.
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The charge of the electron is e, fn is the Fermi-Dirac distribu-
tion, and vn;m = 〈n|v̂|m〉 are the matrix elements of the general
velocity operator v̂, which in the local approximation (q = 0)
couples states with the same momentum, k.

The “magnetic” velocity can be defined by the counterflow
between the two layers and the magnetic moment is thus
proportional to this velocity and the area (distance) between
the two layers. For the external gauge field in the i direction,
the magnetic response is thus defined by χ− = χ ii

11 − χ ii
12, but

we suppress the superindex in the following.
The magnetic susceptibility to an in-plane magnetic field

can be obtained from the magnetic response. If m‖ and B‖
are the moment and field, then writing m‖ = χ‖B‖, one has
2χ‖ = −a2χ−. Note that the emergence of a magnetic mode
requires paramagnetism for which χ‖ becomes positive.

A. AA-stacked bilayer graphene

With U = t (1 0
0 1), we describe AA-stacked graphene,

whose optical conductivity has been discussed in Ref. [35] and
its plasmonic properties in Ref. [36]. The eigenstates are the
bonding and antibonding states of single-layer graphene.
The eigenenergies are given by Ek,n1,n2 = n1t + n2h̄vF k
and the eigenvectors by ψ

n1,n2
k = 1

2 (n1, n1n2eiϕk , 1, n2eiϕk )T ,
where n1, n2 = ± and ϕk denotes the angle that k forms with
the x axis. The velocity operator of layer � is given by v̂� =
σ ⊗ 1�, where 1� performs a projection onto states of sublayer
� and σ are the Pauli matrices of the pseudospin variables.

The “electric”/“magnetic” excitations couple to the
total/counterflow current ĵ± = −ev̂± = −e(v̂1 ± v̂2) and the
relevant matrix element is

v±
k,n1,n2;k,m1,m2

= (n1m1 ± 1)
vF

4

(
m2eiϕk + n2e−iϕk

)
. (8)

This means that only transitions with n1m1 = −1 yield a finite
contribution to the imaginary part of the magnetic response.
Interestingly, for h̄ω = 2t there is a perfect matching that
gives rise to a delta function and that is only present in the
“magnetic absorption” (see Fig. 5, Appendix A). The reso-
nant contribution of the magnetic response 2χ− = 〈〈 jx

− jx
−〉〉

at T = 0 reads

Imχnested
− (ω) = − e2gsgv

16h̄2 δ(h̄ω − 2t )

× [2(μ2 + t2)θ (t − |μ|) + 4t |μ|θ (|μ| − t )] .

(9)

The real part is given by the Kramers-Kronig relation

Reχ−(ω) = 1

π

∫ ∞

0
dω′Imχ−(ω′)

2ω′

(ω′)2 − ω2
, (10)

and the main contribution from the perfect nesting condition
is thus given by

Reχnested
− = − 1

π

e2gsgv

8h̄2

2t

(2t )2 − (h̄ω)2

× [
2(μ2 + t2)θ (t − |μ|) + 4t |μ|θ (|μ| − t )

]
.

(11)

In Fig. 2, we show the real and imaginary parts of the
full magnetic response as discussed in Appendix A for μ = 0

FIG. 2. Magnetic response function for AA-stacked bilayer
graphene as a function of the frequency, for μ = 0 and μ = t . Top:
Imaginary part of the magnetic response, Imχ−, in units of σ0t/h̄,
where σ0 = e2/4h̄ is the universal conductivity of graphene. Bottom:
Real part of the magnetic response function, Reχ−, in units of σ0t/h̄.
The small circles are the results of the numerical computations, and
the solid lines are the formulas derived in Appendix A. The width of
the delta function has been tuned to match the numerical results for
which η = 0.1t was used.

and μ = t . The delta function of the imaginary part of the
analytical solution (full line) is broadened by the same value
(η = 0.1t) as used in the numerical solution (small circles).
The singularity in the real part of the analytical solution,
however, is plotted for the clean system which is algebraic
for both chemical potentials at h̄ω = 2t . For μ = 0, there is a
logarithmic singularity at ω = 0 which is responsible for the
symmetry-broken ground state.
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FIG. 3. Same as Fig. 2, but for AB-stacked bilayer graphene.

B. AB-stacked bilayer graphene

With U = t (0 0
1 0), we describe AB-stacked graphene,

whose optical conductivity has been discussed in Ref. [37] and
its plasmonic properties in Ref. [38]. The eigenenergies are
now given by Ek,n1,n2 = 1

2 (n1t + n2ξk ) with n1, n2 = ± and

ξk =
√

(2h̄vF k)2 + t2. The eigenvectors are

ψ+,±
k = N

( t−ξk

2h̄vF k ,∓eiϕk , e−iϕk ,∓ t−ξk

2h̄vF k

)T
,

ψ−,±
k = N

(
1,∓ t−ξk

2h̄vF k eiϕk ,− t−ξk

2h̄vF k e−iϕk ,±1
)T

,

where ϕk denotes the angle that k forms with the
x axis and N = (2(1 + ( t−ξk

2h̄vF k )2))−
1
2 . The velocity

operator of layer � is again given by v̂� = σ ⊗ 1�

and the matrix elements of the current counterflow
read v−

k++,k+− = ivF sin(ϕk), v−
k++,k−+ = −vF cos(ϕk),

v−
k+−,k−− = vF cos(ϕk), v−

k+−,k−− = ivF sin(ϕk), and 0
otherwise. Again, there is a perfect nesting condition, this

FIG. 4. Frequency of the magnetic plasmons (h̄ωp) for AA and
AB bilayer graphene as a function of the Fermi level. We set t =
0.33 eV. In both cases, we plot the difference between the plasmon
frequencies and the nesting frequency.

time at h̄ω = t . This will also give rise to collective magnetic
excitations and the resonant contribution of the magnetic
response reads

χnested
− (ω) = − e2gsgv

32π h̄2

[
2t

t2 − (h̄ω)2
+ iπδ(h̄ω − t )

]

× [2|μ|(|μ| + t )θ (t − |μ|) + 4|μ|tθ (|μ| − t )] .

(12)

However, contrary to the AA-stacked bilayer, perfect nesting
also occurs in the optical absorption of AB-stacked graphene
and allows the existence of high-energy electronic or charged
plasmons with frequency ω ≈ t/h̄ [38].

In Fig. 3, we show the real and imaginary parts of the
full magnetic response as discussed in Appendix A for μ = 0
and μ = t . The delta function of the imaginary part of the
analytical solution (solid line) is broadened by the same value
(η = 0.1t) as used in the numerical solution (small circles).
The singularity in the real part of the analytical solution,
however, is plotted for the clean system, and for μ = 0 this
singularity is logarithmic, whereas for μ = t it is algebraic.

C. Numerical estimates

As discussed above, the transverse antisymmetric pho-
tonic propagator is given by dt− = −(1 − e−q′a)/2ε0c2q′ ≈
−a/2ε0c2, and plasmonic excitations obey 1 − dt−χ− =
0. Therefore, only a negative real response, Reχ−(ω) <

0, allows for solutions. True dissipationless plasmons fur-
ther demand Imχ−(ω) = 0, and a finite value of Imχ−(ω)
yields damped plasmons with plasmon frequency ωp

given by 1 − dt−Reχ−(ωp) = 0, and inverse lifetime γ =
Imχ−(ωp)/ ∂

∂ω
Reχ−(ωp) [39].
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FIG. 5. Band structure of AA-stacked (left) and AB-stacked (right) bilayer graphene, and allowed transitions of the current counterflow
operator. Bonding states (n1 = −1) are depicted in red, and antibonding states (n1 = +1) in blue. Note the perfect nesting of transitions 4 and
5 in AA-stacked and transitions 3 and 4 in AB-stacked graphene.

Setting the doping level to μ = t , the real part of the mag-
netic current response near the nesting frequency reads

ReχAA
− (ω) = 16σ0t

π h̄

1

(h̄ω/t )2 − 4
, (13)

ReχAB
− (ω) = 4σ0t

π h̄

1

(h̄ω/t )2 − 1
, (14)

where σ0 = e2/4h̄ is the universal conductivity of graphene
[40].

With the fine-structure constant α = e2/4πε0 h̄c ∼ 1/137,
h̄c = 1973 eV Å, a = 3.4 Å, and t = 0.33 eV, we thus have
the following plasmonic resonances:

h̄ωAA
p =

√
1 − α

2at

h̄c
2t =

√
1 − 8.3 × 10−62t , (15)

h̄ωAB
p =

√
1 − α

2at

h̄c
t =

√
1 − 8.3 × 10−6t . (16)

The plasmon frequencies are thus separated from the resonant
or nesting energy by 2.7 and 1.4 μeV for AA- and AB-stacked
bilayers, respectively, which obviously calls for ultraclean

samples. In Fig. 4, we show its dependence on the chemical
potential.

Since the broadening of the delta function is of the order
of the free-mean path, the pole is normally superposed by
the dissipative delta function in the imaginary part. So, even
though the predicted modes are not likely to be observed
in actual bilayer graphene samples, these excitations might
be observable in artificial systems such as cold atoms. For
example, if we set the separation between the layers to be
a = 100 nm, then we get 2t − h̄ωp = 0.8 meV (0.4 meV) for
AA (AB) bilayers, which should be observable.

IV. MAGNETIC INSTABILITY IN NEUTRAL AA-STACKED
BILAYER GRAPHENE

The antisymmetric response of AA-stacked bilayer
graphene at the neutrality point μ = 0 is logarithmically di-
verging at ω = 0 [see Eq. (A11), Appendix A]. This hints at a
mode condensation or Condon instability as discussed in Refs.
[41,42]. The relevant equilibrium response function requires
the order of limit to be ω → 0 and then q → 0, opposite
to the one calculated here. The difference between the two

FIG. 6. Nested transitions that contribute to the resonance of the magnetic response in AA- and AB-stacked bilayer graphene, for μ > t
and μ < t . Note that at charge neutrality the weight of the resonance becomes zero for AB graphene, whereas it is always nonzero in the AA
bilayer.
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limit orders is a contact term related to the density of states, a
finite magnitude that cannot compete with the divergence [43].
Therefore, we can use our previous results for the ground-state
stability analysis.

Now we estimate the critical temperature. We start from
the RPA instability dt,−χ− = 1, which can be thought of
as a Stoner criterion. A proper analysis would require the
calculation of a finite-temperature response. On physical
grounds, the latter can be inferred from the replacement
h̄ω → kBT . For μ = 0 and ω → 0, we have χ− = t e2

π h̄2 ln 2t
kBT

(see Appendix A). We thus obtain for the critical temperature

kBTc = 2t exp

(
− 3

4α

t0
t

a0

a

c

vF

)
, (17)

where t0 ∼ 2.7 eV is the in-plane hopping amplitude and a0 =
1.42 Å the carbon-carbon distance.

The critical temperature is virtually zero, however, it may
increase after renormalization of the single-particle parame-
ters in twisted bilayer graphene, where the electron density
is concentrated in the regions of local AA stacking. In this
context, we mention that orbital ferromagnetism has recently
been observed for filling fraction n = 3/4 of the first conduc-
tion band of twisted bilayer graphene [44].

Our observation also links with a recent publication stating
that the divergent paramagnetic response in twisted bilayer
graphene can lead to a permanent in-plane magnetic moment
[45]. Note that this is not possible in one layer with a perpen-
dicular magnetic moment [42]. Also, note that this instability
is different from the one due to the short-ranged Hubbard
interaction [46–48]. Finally, due to perfect screening, this
mode cannot be enhanced by a superconducting cavity [41]
(see Appendix C).

V. CONCLUSIONS

In this work, we have discussed the magnetic response
of AA- and AB-stacked bilayer graphene. For both stacking
forms, we find a resonance due to perfect nesting which gives
rise to an algebraic divergence in the real part of the magnetic
instability. Within the RPA, this gives rise to an oscillating in-
plane magnetic moment that might be observable in ultraclean
samples. In AA-stacked samples, the ground state is further
given by a symmetry-broken state leading to in-plane orbital
ferromagnetism. By identifying in the electronic structure of
simple models the key features for appearance, as we do here,
we thus offer physical guidance for its search in other systems.

The magnetic excitations/instabilities are composed of
counterflow currents in each layer, giving rise to a magnetic
moment parallel to the planes, thus providing a clear intuition
of the magnetic nature, in contrast to the transverse excitations
in a single layer. Also, they do not depend on the external
dielectric environment including optical cavities which should
help to stabilize them, thus paving the way to novel plasmon-
ics that is not limited by charged impurities. Finally, these
excitations might play a role in magic angle twisted bilayer
samples, as their electronic properties are mostly determined
by confined AA-stacked regions.
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APPENDIX A: MAGNETIC RESPONSE IN AA- AND AB-STACKED BILAYER GRAPHENE

1. AA-stacked bilayer graphene

In Fig. 5, we represent and label the allowed transitions of the magnetic current operator for AA and AB bilayers. In the T = 0
limit, the Fermi distribution becomes the step function θ (μ − ε), and taking η → 0 in Eq. (7) allows for an easy evaluation of
the imaginary part of the response function. The nonresonant transitions yield the nonresonant or not nested part of the response
function:

Imχnot nested
− (ω) = − π

e2gsgv

2A

A

(2π )2

(
πv2

F

) ∫
kdk

{
δ(h̄ω − (2t − 2h̄vF k))θ

(
t − |μ|

h̄vF
− k

)

+ δ(h̄ω − (2t + 2h̄vF k))θ

(
k − |μ| − t

h̄vF

)
+ δ(h̄ω − (−2t + 2h̄vF k))θ

(
k − |μ| + t

h̄vF

)}
. (A1)

The prefactor πv2
F comes from the angular integral of v2

F
4 (2 + 2 cos(2φk )). Above, the first, second, and third terms are the

contributions of transitions 1, 2, and 3, respectively. Performing the integrals gives

Imχnot nested
− (ω) = − e2v2

F

2

{
2t − h̄ω

(2h̄vF )2
θ (h̄ω − 2|μ|)θ (2t − h̄ω) + h̄ω − 2t

(2h̄vF )2
θ (h̄ω − 2|μ|)θ (h̄ω − 2t )

+ 2t + h̄ω

(2h̄vF )2
θ (h̄ω − 2|μ|)θ (2t + h̄ω)

}
. (A2)
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For the resonant transitions, the imaginary part becomes

Imχnested
− (ω) = −π

e2gsgv

2A

A

(2π )2

(
πv2

F

) ∫
kdk

{
δ(h̄ω − 2t )θ

(
k − −(t + μ)

h̄vF

)
θ
( t − μ

h̄vF
− k

)

+ δ(h̄ω − 2t )θ
(

k − μ − t

h̄vF

)
θ
(μ + t

h̄vF
− k

)}
. (A3)

The first and second terms are the contribution of transitions 4 and 5, respectively. Equivalently,

Imχnested
− (ω) = −e2gsgv

8

v2
F

(2h̄vF )2
δ(h̄ω − 2t ){4(μ2 + t2)θ (t − |μ|) + 8|μ|tθ (|μ| − t )}. (A4)

The total response is the sum of the nonresonant and the resonant parts:

Imχ−(ω) = −e2gsgv

16h̄2 {[h̄ωθ (h̄ω − 2t ) + 2tθ (2t − h̄ω)]θ (h̄ω − 2|μ|) + [2(μ2 + t2)θ (t − |μ|) + 4t |μ|θ (|μ| − t )]δ(h̄ω − 2t )}.
(A5)

In terms of the dimensionless energy, x = h̄ω
t , and the universal conductivity of graphene, σ0 = e2

4h̄ [40], yields with gs =
gv = 2

Imχ−(x) = −σ0t

h̄

{
x

[
θ (x − 2) + 2

x
θ (2 − x)

]
θ (x − 2|μ|/t ) +

[
2

(
μ2

t2
+ 1

)
θ (1 − |μ|/t ) + 4|μ|

t
θ (|μ|/t − 1)

]
δ(x − 2)

}
.

(A6)

For the real part we use the Kramers-Kronig relation

Reχ−(ω) = 2

π
P

∫ ∞

0
dω′Imχ−(ω′)

ω′

ω′2 − ω2
, (A7)

where P denotes the Cauchy principal value.
The delta function can be integrated directly, which gives the contribution of the resonant transitions to the real part presented

in the text (see Fig. 6),

Reχnested
− (ω) = −e2gsgv

8π h̄2

2t

(2t )2 − (h̄ω)2

[
2(μ2 + t2)θ (t − |μ|) + 4t |μ|θ (|μ| − t )

]
. (A8)

For the nonresonant transitions, we perform the integrals

Reχnot nested
− (ω) =−e2gsgv

8π h̄2 P
∫ ∞

2|μ|/h̄
dω′ ω′

ω′2 − ω2

[
h̄ω′θ (h̄ω′ − 2t ) + 2tθ (2t − h̄ω′)

]

=−e2gsgv

8π h̄2

{
h̄ωP

∫ ∞

max(2|μ|/h̄ω,2t/h̄ω)
dy

y2

y2 − 1
+ tP

∫ (2t/h̄ω)2

(2|μ|/h̄ω)2

dz

z − 1
θ (t − |μ|)

}
, (A9)

with y = ω′/ω and z = (ω′/ω)2. The first integral diverges in the Dirac cone approximation, so we proceed by separating the
divergent part y2/(y2 − 1) = 1 + 1/(y2 − 1) and integrate up to a frequency cutoff �. With this scheme, the first term of the real
part gives

h̄ωP
∫ ∞

max(2|μ|/h̄ω,2t/h̄ω)
dx

x2

x2 − 1
= h̄� − max(2t, 2|μ|) − h̄ω

2
log

(∣∣∣∣ h̄ω − max(2t, 2|μ|)
h̄ω + max(2t, 2|μ|)

∣∣∣∣
)

, (A10)

and the second term can easily be integrated. The total real part of χ− is thus

Reχ−(ω) = −e2gsgv

8π h̄2

{
− max(2t, 2|μ|) − h̄ω

2
log

(∣∣∣∣ h̄ω − max(2t, 2|μ|)
h̄ω + max(2t, 2|μ|)

∣∣∣∣
)

+ t log

(∣∣∣∣ (2t )2 − (h̄ω)2

(2|μ|)2 − (h̄ω)2

∣∣∣∣
)

θ (t − |μ|)

+ 2t

(2t )2 − (h̄ω)2

[
2(μ2 + t2)θ (t − |μ|) + 4t |μ|θ (|μ| − t )

]}
. (A11)

We have removed the part proportional to � above, because the constant contribution of the response due to the diamagnetic
currents cancels exactly the cutoff dependent term, as required by gauge invariance.
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Again, with gs, gv = 2 and in terms of x = h̄ω
t and σ0 = e2

4h̄ , the real part reads

Reχ−(x) = −σ0t

π h̄

{
− 4 max(1, |μ|/t ) − x log

(∣∣∣∣x − 2 max(1, |μ|/t )

x + 2 max(1, |μ|/t )

∣∣∣∣
)

+ 2 log

(∣∣∣∣ 1 − (x/2)2

(|μ|/t )2 − (x/2)2

∣∣∣∣
)

θ (1 − |μ|/t )

+ 8

4 − x2

[(
1 + μ2

t2

)
θ (1 − |μ|/t ) + 2|μ|

t
θ (|μ|/t − 1)

]}
. (A12)

2. AB-stacked bilayer graphene

Similarly to AA-stacked graphene, the imaginary part of the magnetic response can be decomposed into a sum of nonresonant
and resonant transitions. The nonresonant or not nested part (excitations 1 and 2 in Fig. 5) reads

Imχnot nested
− (ω) = −π

e2gsgv

2A

A

(2π )2

(
πe2v2

F

) ∫
kdk{δ(h̄ω − ξk )θ (ξk − 2|μ + t/2|) + δ(h̄ω − ξk )θ (ξk − 2|μ − t/2|)}. (A13)

The prefactor has the same origin as in the AA-stacked case. In this case, πv2
F is the angular integral of v2

F cos2(φk ) or
v2

F sin2(φk ), depending on the transition. Performing the integral yields

Imχnot nested
− (ω) = −e2gsgv

8
v2

F

{
h̄ω

(2h̄vF )2
[θ (h̄ω − 2|μ + t/2|) + θ (h̄ω − 2|μ − t/2|)]θ (h̄ω − t )

}
. (A14)

On the other hand, the nested transitions 3 and 4 in Fig. 5 contribute with

Imχnested
− (ω) = −e2gsgv

8
v2

F δ(h̄ω − t )
∫

kdk{θ (ξk − (2μ − t ))θ (2μ + t − ξk ) + θ (ξk − (−2μ − t ))θ (−2μ + t − ξk )}.
(A15)

Keeping in mind that ξk =
√

t2 + (2h̄vF k)2, the resonant part reads

Imχnested
− (ω) = −e2gsgv

32h̄2 {[2|μ|(|μ| + t )θ (t − |μ|) + 4|μ|tθ (|μ| − t )]δ(h̄ω − t )}. (A16)

Finally, the total imaginary part is the sum of both contributions, which yields

Imχ−(ω) = −e2gsgv

32h̄2 {h̄ω[θ (h̄ω − 2|μ + t/2|) + θ (h̄ω − 2|μ − t/2|)]θ (h̄ω − t )

+ [2|μ|(|μ| + t )θ (t − |μ|) + 4|μ|tθ (|μ| − t )]δ(h̄ω − t )}. (A17)

Using the dimensionless variable x = h̄ω
t and the constant σ0 = e2

4h̄ , we get with gs = gv = 2

Imχ−(x) = −σ0t

2h̄

{
x
[
θ (x − 2|μ/t + 1/2|) + θ (x − 2|μ/t − 1/2|)

]
θ (x − 1)

+
[

2|μ|
t

( |μ|
t

+ 1

)
θ (1 − |μ|/t ) + 4|μ|

t
θ (|μ|/t − 1)

]
δ(x − 1)

}
.

(A18)

Again, we calculate the real part via the Kramers-Kronig relations. The delta function gives

Reχnested
− (ω) = − e2gsgv

16π h̄2

[
2|μ|(|μ| + t )θ (t − |μ|) + 4|μ|tθ (|μ| − t )

]
t

t2 − (h̄ω)2
. (A19)

The nonresonant part can be calculated in a way similar to the AA-stacked case and gives

Reχnot nested
− (ω) = − e2gsgv

16π h̄2

{
2h̄� −

(
max(t, 2|μ − t/2|) + max(t, 2|μ + t/2|)

)
+ h̄ω

2
log

(∣∣∣∣max(t, 2|μ − t/2|) − h̄ω

max(t, 2|μ − t/2|) + h̄ω

∣∣∣∣
)

+ h̄ω

2
log

(∣∣∣∣max(t, 2|μ + t/2|) − h̄ω

max(t, 2|μ + t/2|) + h̄ω

∣∣∣∣
)}

. (A20)
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After canceling the cutoff term by the diamagnetic contribution, the total real part of the response function then reads

Reχ−(ω) = − e2gsgv

16π h̄2

{
− (max(t, 2|μ − t/2|) + max(t, 2|μ + t/2|)) + h̄ω

2
log

(∣∣∣∣max(t, 2|μ − t/2|) − h̄ω

max(t, 2|μ − t/2|) + h̄ω

∣∣∣∣
)

+ h̄ω

2
log

(∣∣∣∣max(t, 2|μ + t/2|) − h̄ω

max(t, 2|μ + t/2|) + h̄ω

∣∣∣∣
)

+
[

2|μ|(|μ| + t )θ (t − |μ|) + 4|μ|tθ (|μ| − t )

]
t

t2 − (h̄ω)2

}
.

(A21)

In dimensionless variables this yields

Reχ−(x) = −σ0t

π h̄

{
−

(
max(1, 2|μ/t − 1/2|) + max(1, 2|μ/t + 1/2|)

)
+ x

2
log

(∣∣∣∣max(1, 2|μ/t − 1/2|) − x

max(1, 2|μ/t − 1/2|) + x

∣∣∣∣
)

+ x

2
log

(∣∣∣∣max(1, 2|μ/t + 1/2|) − x

max(1, 2|μ/t + 1/2|) + x

∣∣∣∣
)

+
[

2|μ|
t

( |μ|
t

+ 1

)
θ (1 − |μ|/t ) + 4|μ|

t
θ (|μ|/t − 1)

]
1

1 − x2

}
.

(A22)

APPENDIX B: PLASMONS IN INHOMOGENEOUS ENVIRONMENTS

The transverse photonic Green’s function when the bilayer lies between two dielectrics is given by [30]

Dt = −μ1μ2μ0q′

Nt

(
cosh(q′a) + q′

2
μ2q′ sinh(q′a) 1

1 cosh(q′a) + q′
1

μ1q′ sinh(q′a)

)
, (B1)

with Nt = q′(μ2q′
1 + μ1q′

2) cosh(q′a) + (q′
1q′

2 + μ1μ2q′2) sinh(q′a), and q′
i =

√
q2 − εiμi(ω/c)2. In between the two graphene

layers, we assume a vacuum with wave number q′ =
√

q2 − (ω/c)2. Plasmons are the solutions of det(1 − χDt ) = 0. The zero
eigenvalues of 1 − χDt are the symmetric and antisymmetric plasmonic excitations. Let us calculate these. Expanding in powers
of the q′

ia’s, the Green’s function becomes

Dt = − μ1μ2μ0a

μ1q′
2a + μ2q′

1a

(
1 − (q′

1a)(q′
2a)

μ1q′
2a + μ2q′

1a
− μ1μ2(q′a)2

μ1q′
2a + μ2q′

1a

)(
1 + q′

2a
μ2

+ (q′a)2

2 1

1 1 + q′
2a

μ1
+ (q′a)2

2

)
. (B2)

Hence, the eigenvalues (λ′) of the matrix(
χ11 χ12

χ12 χ11

)(
1 + q′

2a/μ2 + (q′a)2/2 1
1 1 + q′

2a/μ1 + (q′a)2/2

)
(B3)

are related to the eigenvalues (λ) of 1 − χDt by

λ = 1 + μ1μ2μ0a

μ1q′
2a + μ2q′

1a

(
1 − (q′

1a)(q′
2a)

μ1q′
2a + μ2q′

1a
− μ1μ2(q′a)2

μ1q′
2a + μ2q′

1a

)
λ′. (B4)

Up to order (q′
ia)2, these solutions read

λ′ =(χ11 + χ12) + χ11

(
(q′a)2

2
+ 1

2

(
q′

1a

μ1
+ q′

2a

μ2

))

±
{

(χ11 + χ12) + χ12

(
(q′a)2

2
+ 1

2

(
q′

1a

μ1
+ q′

2a

μ2

))
+ χ11 − χ12

8

(
q′

1a

μ1
− q′

2a

μ2

)2
}

. (B5)

Therefore, the plasmonic resonances of the system are the zeros of the following eigenvalues:

λ− = 1 + μ0a(χ11 − χ12)

2

(
1 − 1

4

(
q′

2a

μ2
+ q′

1a

μ1

)
+ O((q′

ia)2)

)
, (B6)

λ+ = 1 + μ0a

q′
1a/μ1 + q′

2a/μ2

{
(χ11 + χ12)

(
2 +

(
(q′

1a/μ1 − q′
2a/μ2)2 − (2q′a)2

2(q′
1a/μ1 + q′

2a/μ2)

)
+ 2

(
(q′

1a/μ1)(q′
2a/μ2) + (q′a)2

q′1a/μ2 + q′
2a/μ2

)2

−
(

2(q′a)2 + (q′
1a/μ1)(q′

2a/μ2)

2

)
+ χ11 − χ12

8
(q′

1a/μ1 − q′
2a/μ2)2

}
+ O((q′

ia)2). (B7)
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One thing to note is that this approximation breaks down if the dielectric media 1 and 2 are the same for q′
1 = 0. In this case,

when approaching the slower light cone, q′
1a and q′

2a tend to 0 while q′a tends to a constant, and the terms with (q′a)2/(q′
1a/μ1 +

q′
2a/μ2) are no longer small and, in fact, become infinite. However, the divergence kicks off at very small values of q′

1a and we
can trust the formula for essentially the entire dynamic range of q, as we will see.

A simple calculation tells us that (q′a)2/(2q′
1a/μ1) ∼ 1 when qa ∼ ωa/c1 + μ2

1/8((c/c1)2 − 1)
2
(c1/c)(ωa/c)3 or, equiva-

lently, q′
1a ∼ μ1/2((c/c1)2 − 1)(ωa/c)2(where c1 is the speed of light in medium 1). Taking the frequency to be of the order of

the interlayer coupling, h̄ω = 0.5 eV, we have ωa/c ∼ 10−3, qa ∼ ωa/c1 + 10−9, and q′
1a ∼ 10−6. On the other hand, setting

the momentum scale to, say, q0 = G/100 ∼ 3 × 108 m−1, where G is the modulus of the reciprocal lattice vector of graphene
and the interlayer distance to a = 3.4 Å, we have that our approximation is valid up to q′

1/q0 ∼ 10−5, or q/q0 ∼ 10−8 to the
right of the light cone of the dielectric.

Setting q′
1a, q′

2a = 0 in Eq. (B1), the eigenvalues at the dielectric light cone are λ+ = 1 + 2μ0a(χ11 + χ12)/(q′a)2 and λ− =
1 − μ0a(χ11 − χ12)/2. In conclusion, the symmetric eigenvalue remains bounded and we can trust Eq. (B6) even at q′

1 = 0.
On the other hand, if the dielectric media are not the same, the quantity (q′a)2/(q′

1a/μ1) + (q′
2a/μ2)) will not blow up, and

for refractive indices |n1 − n2| � 10−6 the approximation is good all the way up to q′
1 = 0 (1 being the slower medium).

APPENDIX C: INFLUENCE OF AN OPTICAL CAVITY

Let us consider the bilayer placed inside an optical cavity, with boundaries at z = ±L/2. In this setting, the Green’s function
or photonic propagator for the transverse fields of a source located at z′ takes the form

Dl (z, z′) = μ0

q′
sinh(q′(z> − L/2)) sinh(q′(z< + L/2))

sinh(q′L)
(C1)

for −L/2 < z < L/2 and Dl (z, z′) = 0 otherwise [where z< = min(z, z′) and z> = max(z, z′)]. If the bilayer is located at z =
±a/2, the Green’s function of the double-layer structure is

Dt = μ0

q′ sinh(q′L)

(
sinh((a − L)/2) sinh((a + L)/2) − sinh2((L − a)/2)

− sinh2((L − a)/2) sinh((a − L)/2) sinh((a + L)/2)

)
. (C2)

Transverse plasmons are obtained after the in-phase and out-of-phase (counterflow) combinations:

1 + μ0aχ+
q′a

cosh(a/2) sinh((L − a)/2)

cosh(L/2)
= 0, (C3)

1 + μ0aχ−
q′a

sinh(a/2) sinh((L − a)/2)

sinh(L/2)
= 0. (C4)

The form factors are increasing functions of L, so the light-matter coupling is larger when there is no cavity. Hence, the presence
of the cavity does not favor the presence of these elusive excitations, as pointed out in Ref. [41]. This is due to the “perfect”
screening of the magnetic excitations.
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