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Topological superconductivity (TSC) has received great theoretical and experimental attention recently. Type-I
Rashba nodal point (RNP) with isotropic band dispersions and point Fermi surface (FS) induced by the Rashba
spin-orbit coupling (SOC) provides a promising route to the artificial TSC, because the inherent interspin
coupling (ISC) shares identical form as the p-wave pairing (kxσy−kyσx ) exactly. Here we discuss the potential
TSC of other types of RNPs with different ISC forms. By constructing a generic tight-binding model with
Rashba SOC, we demonstrate type-IV, -III, -II, and -I′ RNPs can be achieved on two-dimensional (2D) Bravais
lattices, whose FS consists of only a hole (electron) pocket, two contacted hole (electron) pockets, contacted hole
and electron pockets, and point of tangency, respectively. With the coorpration of s-wave pairing and Zeeman
gaps, these new types of RNP will evoke TSC phases with chiral Majorana edge modes (MEMs), where the
Chern number will be larger than 1 for multiple symmetry-equivalent RNPs. The Chern number can be further
composited when the energies of unequivalent RNPs are equal, leading to edge-dependent MEMs. Moreover,
by using first-principles calculations, we demonstrate the BiSb monolayer is an ideal platform for realizing
TSC with Chern number 6 from type-II, -I, or -IV RNP. This work enriches the types of nodal point induced by
Rashba SOC and offers a generic guidance on realizing multiple and edge-dependent MEMs from the abundantly
synthesized 2D surface metal layers.
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I. INTRODUCTION

Topological superconductivity (TSC) represents a nontriv-
ial phase of condensed-matter systems characterized by the
gapless/zero-energy Majorana boundary modes within the
bulk superconducting gap [1–3], which have received ex-
tensive research interest in recent years due to the pivotal
utilization of fault-tolerant topological quantum computa-
tion [4–7]. In addition to intrinsic TSC with p-wave pairing
gap [8,9], artificial chiral TSC has won great experimental
achievements [10–13], stimulated by the extensively theo-
retical proposals of realizing effective p-wave gap from the
combination of Rashba spin-orbital coupling (SOC), s-wave
superconductivity (SC), and time-reversal symmetry break-
ing [14–18]. The underlying mechanism can be understood
by that the employed nodal point induced by Rashba SOC
possesses the type-I features of isotropic linear band disper-
sions and point Fermi surface (FS) [19], named as type-I
Rashba nodal point (RNP), where the interspin coupling (ISC)
shares identical form as the p-wave pairing (kxσy − kyσx )
exactly. This physical picture is applicable to explain the
TSC of topological surface states with similar isotropic nodal
point [20–26]. Considering the type-I Weyl nodal point de-
scribed by ±(kxσx + kyσy + kzσz ) possesses type-II and -III
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counterparts [19,27,28], it is necessary to explore the possi-
bility of other type RNPs with different low-energy effective
ISC, as well as their feasibility of hosting TSC phases.

Topological invariant is widely used to characterize the
specific phases of TSC and their difference [29]. For two-
dimensional (2D) chiral TSC phase, the topological invariant
is Chern number C, which usually describes the number of
one-dimensional (1D) chiral Majorana edge modes (MEMs)
on each edge that propagate along the same direction. The
propagation could enable the half-quantized charge conduc-
tance [21,22,30], the half-integer thermal Hall conductance
[31,32], as well as the same unitary transformation as braiding
Majorana zero modes [33,34]. It is of practical importance to
find high Chern numbers TSC phases associated with multiple
MEMs, in order to enhance these exotic transport properties
and promote the critical applications in related fields. Mean-
while, exploring the possibility of realizing MEMs that cannot
be solely determined by the Chern number but also depend on
edge directions will be of fundamental significance for tuning
MEMs within one TSC phase.

By now, theoretical works propose that s-, p-, and d-wave
SC all can give rise to high Chern number TSC phases under
certain conditions [21,35–39]. Especially for the artificial chi-
ral TSC with s-wave pairing [40–44], the high Chern number
was confirmed in the van der Waals heterostructures combin-
ing 2D ferromagnet and superconductor [13]. However, these
achievements are limited on the lattice structures with high
symmetry, where the type-I RNPs at time-reversal invariant
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FIG. 1. The schematic diagrams of (a) type-IV, (b) type-III, (c)
type-II, and (d) type-I′ RNPs. The red lines represent the FS contours
plotted by assuming the Fermi level (orange plane) locating at the
energy of nodal point (black dot).

(TRI) points are responsible for the nontrivial phases. Con-
sequently, one natural question is the robustness of the TSC
when the lattice symmetry is lowered and/or the RNPs are
deviated from the TRI point. Together with the abundant 2D
metal layers with diversiform lattice structures fabricated on
substrate materials [45–56], it is urgently needed to investigate
the potential TSC phases of all the Bravais lattices within 2D
crystal system (2DCS). This extension will be beneficial to
search more TSC candidates from the ultrathin films grown
on substrates [57], where the desired Rashba SOC stems from
the inherent space-inversion asymmetry and the s-wave SC
can be intrinsic [48,50–52] or induced by proximity.

In this paper, we demonstrate a number of RNPs (type
IV, III, II, and I′) with the low-energy effective ISC differ-
ent from (kxσy−kyσx ) by constructing a generic tight-binding
(TB) model with Rashba SOC effect on 2D Bravais lattices.
Type-IV RNP represents a new type of nodal point since its
FS only consists of a hole (electron) pocket [Fig. 1(a)]. This
type of nodal point was not reported even in the field of the
extensively studied Weyl nodal points. Type-III RNP is similar
to the recently proposed type-III Weyl nodal point [27,28],
whose FS possesses two contacted hole (electron) pockets
[Fig. 1(b)]. The FS of type-II RNP is constructed by contacted
hole and electron pockets [Fig. 1(c)], similar to that of type-II
Weyl nodal points [19]. Type-I′ RNP is analogous to the type-I
one when regarding the point FS. We use the “prime” to
distinguish them because the type-I′ RNP is enabled by the
spin-splitted bands with high-order dependence on momen-
tum vector k [Fig. 1(d)]. Type-III and type-I′ RNPs at TRI
point are the degenerated point enforced by Kramers theorem,
while type-IV and -II ones are different and will emerge at
the k points deviated from the TRI point. These RNPs will
provide promising platforms to investigate physics of Rashba
SOC.

With the cooperation of s-wave pairing and Zeeman gaps,
all these RNPs are demonstrated to enable the artificial TSC
phases with nonzero Chern number. Multiple MEMs can be
realized for multiple symmetry-equivalent RNPs, where the
RNPs deviated from the TRI point present advantages over
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FIG. 2. (a), (b) The schematic diagrams of (a) generic TB model
on 2DCS and (b) the corresponding TRI points in its BZ. (c), (d)
The examples of band structure along the high-symmetry directions
marked by (c) the black dashed lines and (d) the red solid line in (b).
The values of t1 = 1.0, t12 = 0.8t1, λ1 = 0.5t1, and λ12 = 0.41t1 are
used for calculating the bands plotted by black color in (c) and (d),
while the red one in (d) is calculated by changing the λ12 to 0.32t1.

the ones at the TRI point in inducing the high Chern num-
ber phases. Meanwhile, the Chern number could be further
composited when the unequivalent RNPs are equal in en-
ergy, which provides the opportunity of tuning the number
of chiral MEMs by changing edge directions within one TSC
phase. Furthermore, by using first-principles calculations, we
demonstrate BiSb monolayer with honeycomb lattice is an
ideal material platform for realizing the type-I, type-II, and
even type-IV RNPs at the k point deviated from the TRI point,
which can induce TSC phase with Chern number C = 6.
Fabricating the BiSb on substrate will give rise to the type-
III RNP at the TRI point. We emphasize that our proposed
types of RNP widely exist in 2D materials with the inversion
symmetry being broken by buckling or substrates, whose TSC
phases will greatly expand the horizon of finding multiple and
edge-dependent MEMs.

II. GENERIC TB MODEL OF 2DCS

The real-space TB model of 2DCS with electron hopping
ht , the Rashba SOC hR, and the out-of-plane directed Zeeman
exchange field hZ can be generally written as

H = ht + hR + hZ, (1)

ht = −tNN

∑
〈m,n〉,α

c†
m,αcn,α, (2)

hR = iλNN

∑
〈m,n〉,α �=β

(σαβ × dmn)ezc
†
mαcnβ, (3)

hZ = VZ

∑
m,α

c†
mασzcmα. (4)
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Here 〈m, n〉 represents the nearest-neighboring (NN) sites,
and cm,α (c†

m,α) annihilates (creates) the electron with spin α at
m site. Each lattice site possesses a single orbital that includes
up- and down-spin components. tNN (λNN) denotes the magnit
ude of hopping energy (Rashba SOC strength) between NN
sites along the line being parallel with the lattice vector a1, a2,
and a1 − a2 (or a2 − a1), which are marked as t1 (λ1), t2 (λ2),
and t12 (λ12) [see Fig. 2(a)], respectively. dmn is the unit vector
pointing from site n to m and ez is the unit vector along the z
direction. σ = (σx, σy, σz ) is the Pauli vector for spin and Vz
represents the magnitude of Zeeman energy.

We introduce the parameter of angle θ between the a1 and
a2 [Fig. 2(a)], to enable the generic discussion for 2DCS.
Specifically, if |a1| = |a2|, θ = 90◦ and 60◦, respectively, rep-
resents the square and hexagonal Bravais lattices, while the
other degree corresponds to the centered rectangular lattice,
as shown by Fig. S1 in the Supplemental Material (SM) [58].
Similarly, |a1| �= |a2| gives rise to the rectangular lattice when
θ = 90◦ [Fig. S2(a)], while the oblique lattice will be formed
when θ �= 90◦ [Fig. S2(b)]. Without loss of generality, we take
θ = 80◦ as the example to perform numerical calculations in
this paper. Under the basis of φk = (ck↑, ck↓)T, the real-space
Hamiltonian of Eq. (1) can be written into momentum space:

H =
∑

k

φ
†
kh(kx, ky)φk, (5)

h(kx, ky) =
(

ht (kx, ky) + VZ hR(kx, ky)

h∗
R(kx, ky) ht (kx, ky) − VZ

)
. (6)

It is unambiguous that the electrons with different spin are
interacted by the Rashba SOC, which acts as the so-called
ISC.

Then, the Bogoliubov–de Gennes (BdG) Hamiltonian with
the s-wave pairing �s = i�σy condensing at the chemical
protentional μ was constructed under the basis of ϕk =
(ck↑, ck↓, c†

−k↑, c†
−k↓)T:

HBdG = 1

2

∑
k

ϕ
†
khBdG(kx, ky)ϕk, (7)

hBdG(kx, ky) =
(

h(kx, ky) − μ �s

�∗
s −h∗(−kx,−ky ) + μ

)
. (8)

This BdG Hamiltonian enables one to discuss the artificial
TSC phases of RNPs by calculating the Chern number C. The
chiral MEMs of TSC phases could be obtained by extending
the BdG Hamiltonian to that of 1D nanoribbon with two
opened edges.

III. PROPOSAL OF TYPE-IV, TYPE-III, TYPE-II,
AND TYPE-I′ RNPS

We first discuss RNPs on 2D square, hexagonal, and cen-
tered rectangular Bravais lattices by assuming a1 = (1, 0)
and a2 = (cos θ, sin θ ) [Fig. 2(a)], which results in t1 = t2
and λ1 = λ2 in the TB model. The matrix elements of the
momentum space Hamiltonian Eq. (6) can be written as

ht (kx, ky) = −2t1[cos kx + cos (kx cos θ + ky sin θ )] − 2t12 cos [kx(1 − cos θ ) − ky sin θ ], (9)

hR(kx, ky) = −2iλ1[sin kx + (cos θ − i sin θ ) sin (kx cos θ + ky sin θ )]

+
√

2

1 − cos θ
λ12[i(cos θ − 1) + sin θ ] sin (kx − kx cos θ − ky sin θ ). (10)

The eigenvalues at the TRI points of the Brillouin zone (BZ) [Fig. 2(b)] are then obtained by diagonalizing the constructed
Hamiltonian:

E (�) = −4t1 − 2t12 ± VZ, (11)

E (M) = 2t12 ± VZ, (12)

E (M11) = 4t1 − 2t12 ± VZ, (13)

E (K) = 2t1

[
cos

(
π cos θ

1 + cos θ

)
− cos

(
π

1 + cos θ

)]
+ 2t12 cos

(
π tan

(
θ

2

)2)
±

√
A + V 2

Z , (14)

where A = −2λ2
1A1 + 4λ2

12A12 − 4λ1λ12A112, with

A1 = −2 + cos (πsec2(θ/2)) + cos (π cos θsec2(θ/2)) + 2 cos θ [1 + cos (π tan2(θ/2))], (15)

A12 = sin2(π tan2(θ/2)), (16)

A112 = √
2 − 2 cos θ

[
sin

π

1 + cos θ
+ sin

π cos θ

1 + cos θ

]
sin

(
π tan2 θ

2

)
. (17)
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One can easily identify a Zeeman gap of 2VZ opened at
these TRI points except the K point. The Zeeman gap of
2
√

A + V 2
Z at the K point is not only dependent on the mag-

nitude of Zeeman energy, but also determined by the effective
“Zeeman field” of

√
A that is related to the Rashba SOC

strength and the angle θ . This means that even if VZ = 0,
a gap could still persist if A�0 at the K point, contrary to
the formation of type-I RNPs at other TRI points [Fig. 2(c)].
The A = 0 at the K point can be fulfilled for square lattice
[θ = 90◦ and assuming t12 = λ12 = 0; see Fig. S1(a)] and
hexagonal lattice [θ = 60◦ and assuming λ1 = λ12; see Fig.
S1(b)], where the M11 is evolved into the K [Fig. S1(d)] and
M [Fig. S1(e)] point, respectively. For the centered rectangular
Bravais lattices [Fig. S1(c)], the A = 0 will emerge at the
Kc point with the following coordinate and eigenvalue when
VZ = 0:

Kc =
(

± Arccos

(
−λ1

√
1 − cos θ√

2λ12

)
,

∓ Arccos

(
−λ1

√
1 − cos θ√

2λ12

)
1 + cos θ

sin θ
+ 2π

sin θ

)
, (18)

E (Kc)=2
√

2t1λ1λ12
√

1 − cos θ+2t12
[
λ2

12 − λ2
1(1 − cos θ )

]
λ2

12

.

(19)

We emphasize that the Kc is different from the TRI K
point if λ1

√
1− cos θ + √

2λ12 cos[π/(1 + cos θ )] �= 0. One
example of the band structure is plotted by the black line in
Fig. 2(d), where the type-IV RNP comes into being at the
Kc point. The type-IV RNP can transform into type-I and -II
RNPs under different parameters, and will be eliminated when
η = λ2

1(1− cos θ ) − 2λ2
12 � 0. For η = 0, type-III (or type I′,

see below) RNPs will be formed at the M11 point [red line
in Fig. 2(d)], where the related two bands present high-order
dependence on the momentum vector k.

To show the evolution between these different types of
RNP more clearly, we calculate the eigenvalues at the k points
within the 2D shaded region [Fig. 2(b)], as shown by Fig. S3
in the SM [58]. One can see the type-I RNP [Fig. S1(a)] will
evolve into type-III RNP [Fig. S3(b)] at the M11 point with the
increase of λ12. Then, the type-II [Fig. S3(c)], type-IV [Fig.
S3(d)], and type-I [Fig. S3(e)] RNPs emerge sequentially at
the Kc point when further increasing the λ12. Additionally,
t1 = 2t12 will transform the type-III RNP to type-I′ RNP at
the M11 point [Fig. S3(f)]. The FS of these RNPs are plotted
in Fig. S4 [58], which clearly shows only a hole pocket [Fig.
S4(a)], two contacted hole pockets [Fig. S4(b)], contacted
electron and hole pockets [Fig. S4(c)], and point of tangency
[Fig. S4(d)] for the type-IV, type-III, type-II, and type-I′
RNPs, respectively.

For rectangular and oblique Bravais lattice, the |a1| �= |a2|
will lead to t1 �= t2 and λ1 �= λ2 [Fig. 2(a) and Fig. S2] [58].
By assuming |a2| = |la1| (l �= 1, 0), the matrix elements of
h(kx, ky) [Eq. (6)] should be rewritten as

ht (kx, ky) = −2t1 cos kx − 2t2[cos (kxl cos θ + kyl sin θ )]

− 2t12 cos [kx(1 − l cos θ ) − kyl sin θ ], (20)

hR(kx, ky) = −2iλ1 sin kx − 2iλ2[(cos θ − i sin θ )

× sin (kxl cos θ + kyl sin θ )]

+ 2λ12[i(l cos θ − 1) + l sin θ ]

× sin (kx − kxl cos θ − kyl sin θ )

/
√

1 + l2 − 2l cos θ. (21)

There are one �, one M10, one M01, one M11, and two
K TRI points in the first BZ (Fig. S2(d) [58]). For the
former four TRI points, type-I RNPs emerge at the ener-
gies of E (�) = −2(t1 + t2 + t12), E (M10) = 2(t1 − t2 + t12),
E (M01) = 2(−t1 + t2 + t12), and E (M11) = 2(t1 + t2 − t12),
which definitely enable the formation of TSC phase. Mean-
while, type-IV [Fig. S5(a)], type-II [Fig. S5(b)], and type-I
[Fig. S5(c)] RNPs at the k points deviated from the TRI point
can be induced under specific parameters, which is similar
to the above case of |a1| = |a2|. Consequently, without los-
ing generality, we take |a1| = |a2| as the example to discuss
the potential TSC phase of the newly proposed RNPs in the
following section.

IV. TSC PHASES OF THE PROPOSED RNPS

As one of the most promising routes to the artificial TSC,
type-I RNP has been discussed extensively [14–18], which
will evoke the TSC phase when V 2

Z > �2 + (ERNPs − μ)2

(ERNPs is the energy where the RNP is locating). We will
mainly focus on potential TSC of the newly proposed type-IV,
-III, -II, and -I′ RNPs (Fig. 1) when both s-wave pairing
and Zeeman gaps are introduced. For simplify, we assume
μ = ERNPs for the considered RNP and employ the values of
VZ and � that always fulfill the condition of V 2

Z > �2.
The BdG Hamiltonian of SC is constructed based on

Eq. (8) for the considered RNPs, which enable us to calculate
the superconducting quasiparticle band dispersions by diag-
onalization (Fig. 3). It is obvious that the pairing gaps are
fully opened around the zero energy, where the electron and
hole branch bands mix with each other (green colored bands
in Fig. 3). However, the gaps show the feature of multiple
magnitudes, different from the same sized pairing gap of type-
I RNP. For type-IV RNP, a gap minimum emerges near the
K point [Fig. 3(a)], while the minimum locates at the M11-K
path for type-III RNP [Fig. 3(b)]. Type-II RNP possesses gap
minima on either side of the K point [Fig. 3(c)]. We argue the
decreased gap magnitudes stem from the suppression of Pauli
paramagnetic mechanism, when comparing the distributions
of spin polarizations for the electronic states on the FSs (Fig.
S6 [58]). One can easily identify the gap minima emerge at the
k point where the electron states possess large out-of-plane
spin polarization, which are parallel at k and -k points. This
feature is known to be detrimental to the s-wave SC and thus
suppresses the magnitudes of pairing gap. Differently, the
expectation values of σz are nearly zero on the FS of type-I′
RNP [Fig. S6(d)], which lead to the pairing gap being nearly
identical [Fig. 3(d)], similar to the type-I RNP.

Despite with different magnitudes, the fully opened gap
ensures a well-defined Chern number C. We calculated the
Berry curvature of all the quasiparticle states below the pairing
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FIG. 3. The superconducting quasiparticle band dispersions of
(a) type-IV, (b) type-III, (c) type-II, and (d) type-I′ RNP. In (a)–(c),
the values of t1 = 1.0, t12 = 0.8t1, and λ1 = 0.5t1 are identical in the
TB model, and the value of λ12 is (a) 0.41t1, (b) 0.32t1, and (c) 0.36t1.
The values of t1 = 1.0, t12 = 0.5t1, λ1 = 0.5t1, and λ12 = 0.32t1 are
used in (d). � = 0.05t1 and VZ = 0.1t1 are employed to construct
the BdG Hamiltonian, Eq. (8). The blue (red) color represents the
component of electron (hole) branches.

gap (Fig. S7 [58]), which shows nonzero Berry curvature dis-
tributes around the FS contours and is especially pronounced
at the k points with large out-of-plane spin polarization (Fig.
S6 [58]). Integrating the Berry curvature over the first BZ
leads to the Chern number of C = 2 for the type-IV and
type-II RNP at the Kc point, while the C = −1 is evaluated
for the type-III and type-I′ one at the M11 point (Table I).
To further demonstrate the topological nontriviality, we cal-
culated the quasiparticle band dispersions of 1D nanoribbons
with the periodic direction along a1 (Fig. S8 [58]), i.e., (100)
direction. One can clearly see the existence of chiral MEMs
within the superconducting gap, and the number of the MEMs
residing at each edge is equal to the Chern number C. This
indicates these RNPs indeed spark nontrivial TSC phases.
Interestingly, except the type-I′ RNP [Fig. S8(d)], a significant
feature different from the type-I RNP is the existence of bulk

TABLE I. The Chern number C of the RNPs at symmetry-
equivalent k points for the centered rectangular, square, and
hexagonal Bravais lattices. The labels of TRI points are marked in
Fig. S1.

TRI Points � Kc M11 M Notes

Centered
rectangular

1 2 −1 −2 η < 0

lattice 1 – 1 −2 η � 0
Square lattice 1 – 1 −2 M11 becomes K
Hexagonal lattice 1 2 – −3 M11 becomes

M; Kc becomes
K

states within the superconducting gap [Figs. S8(a)–S8(c)].
This is also attributed to the Pauli paramagnetic mechanism
suppressing the magnitude of superconducting gap (Fig. 3). If
the suppressing effect is large enough to closing the supercon-
ducting gap at certain k points when the Zeeman (pairing) gap
is increased (decreased), nodal TSC phase with the Majorana
zero-energy edge modes are expected to emerge [59].

We emphasize that the value of Chern number is fun-
damentally rooted in the number of symmetry-equivalent k
points associated with the RNP in the first BZ. This is further
confirmed by the calculated Chern number (Table I) for the
type-I RNPs at the symmetry-enforced one �, two equivalent
M, and one M11 points [Fig. 2(b)]. The Chern number at spe-
cific TRI point of the centered rectangular lattices is similar to
that of square lattice (hexagonal lattice) for η � 0 (η < 0),
when considering the corresponding relations between the
TRI points of different Bravais lattices [Figs. S1(d)–S1(f)]
[58]. Notably, the Chern number can be enlarged in the lattice
with higher symmetry. For example, E (M ) = E (M11) can
be easily realized in the hexagonal lattice with t1 = t12 and
λ1 = λ12, which will lead to the Chern number of −3 that is
evaluated by summing the Chern number at M and M11 points
(Table I).

In addition to the symmetry-enforced high Chern numbers
C, the RNPs at unequivalent k points could be equal in energy
under specific parameter values in the generic TB model,
which provides opportunities to composite the Chern number
and MEMs. For example, the E (Kc) and E (M11) will be
equal with each other when t1(2λ2

12 − λ1λ12
√

2−2 cos θ ) =
t12[2λ2

12−λ2
1(1− cos θ )]. The summation of Chern number

associated with the RNPs at Kc and M11 points (Table I)
generates the composited Chern number of 1. However, by
constructing 1D nanoribbon along the (100) direction, the
MEMs are calculated to be three residing on each edge
[Fig. 4(a)], unequal to the composited Chern number. On the
contrary, the number of MEMs on the edge of 1D ribbon with
the periodic direction of a1 + a2 [Fig. 4(b)], i.e., (110) direc-
tion, is equal to the composited Chern number [Fig. 4(b)]. This
indicates the number of MEMs depends on the edge direc-
tions, which will provide promising opportunity of tuning the
MEMs within one composited TSC phase.

To understand this interesting behaver, we analyze the
MEMs of C = −1 (or 2) TSC phase solely induced by the
RNPs at M11 (or Kc) point when E (Kc) �= E (M11) (Fig. S9
[58]). The C = −1 phase give rise to one MEM near the
momentum π on each edge of the (100) ribbon [Fig. S9(a)],
while the two MEMs of C = 2 phase deviate from the high-
symmetry points of the BZ [Fig. S9(b)]. This separation in
momentum space ensures the MEMs with opposite chirality
being not canceled out even at the same edge, which induce
three MEMs [Fig. 4(a)] when the two TSC phases are com-
posited. Actually, the position of MEMs in 1D BZ is closely
related to the projected points of RNPs. Because both the
RNPs at Kc and M11 points will be projected to the same k
point in the BZ of (110) ribbon, the MEMs of associated TSC
phases cannot be separated from each other in momentum
space [Figs. S9(c) and S9(d)]. Then, the MEMs with opposite
chirality will annihilate each other, leading to the consistence
between composited Chern number and the number of MEMs
[Fig. 4(b)].
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FIG. 4. The chiral MEMs of composited TSC phases from the RNPs (a), (b) at Kc and M11, (c) at Kc and M, and (d)–(f) at M11 and M. The
red (blue) color represents the MEMs locating at the right (left) edge of the 1D nanoribbon, the periodic direction of which is a1 + a2 for (b),
(f) and is a1 for rest of the figures.

Accordingly, E (Kc) = E (M ) can be realized when√
2t1λ12 = t12λ1

√
1− cos θ , which lead to zero composited

Chern number. Despite this, four MEMs emerge at each rib-
bon edge [Fig. 4(c)], stemming from the RNPs with the Chern
number C = 2 and −2 for Kc and M points (Table I), respec-
tively. Because the Kc and M points cannot be projected into
the same k point in the BZ of 1D nanoribbon with arbitrary
directions, the four MEMs are expected to be robust against
the change of edge directions. Moreover, in addition to the
hexagonal lattice, one can easily learn the E (M ) = E (M11)
once t1 = t12 [Eqs. (12) and (13)] for centered rectangular
lattices, which will induce the total Chern number of −3
(−1) for η < 0 (η � 0). The C = −3 TSC phase enables the
formation of three MEMs on each edge [Fig. 4(d)], while
the MEMs of C = −1 phase are dependent on the direc-
tion of 1D nanoribbon [Figs. 4(e) and 4(f)]. There is one

TABLE II. The synthesized 2D surface metal layers that could
enable (“�”) the proposed RNPs.

Candidate materials Type IV Type III Type II Ref.

(Bi,Ag)/Si(111) � � � [45]
Au/Si(111)�3×�3 � [46]
(Bi,Na)/Si(111)�3×�3 � [46]
(Tl,Pb)/Si(111)�3×�3 � [46–48]
Au/Si(111)5 × 2 � [49]
In/Si(111)�3×�7 � � [50,51]
(Tl,Pb)/Ge(111)�3×�3 � [47,52]
Pb3Bi/Ge(111) � � [53,54]
Bi/Al2O3(0001) � [55]
Pb/Al2O3(0001) � [55]
BiPb/Al2O3(0001) � [55]
Au/InSe � [56]

MEM on each edge of the ribbon along the (100) direction
[Fig. 4(e)], where the M11 and M points can be projected to
the k points that are very close with each other in its 1D
BZ. This indicates the MEMs will annihilate each other as
long as the corresponding RNPs with opposite sign of Chern
number are projected to near-k points, and the ideal case is
projected to one k point exactly [Fig. 4(b)]. Otherwise, multi-
ple MEMs, different from the composited Chern number, will
emerge [Figs. 4(a), 4(c), and 4(f)], where the original Chern
number of symmetry-enforced equivalent RNPs remains
working.

Having demonstrated that the TSC phase can be induced
by the RNPs with different ISC, we would like to briefly
comment on the comparison between our theoretical models
and real materials. Firstly, we only considered single orbital
and NN interactions in our generic TB model, which may
deviate from the cases when multiple orbitals and long-range
interactions exist in real materials. Despite this, we believe our
proposed RNPs are complete. The only influence may be that
the crystal structures of realizing specific RNPs differ from
the corresponding 2D Bravais lattices used in TB models (see
the next section). Secondly, the assumption of s-wave pairing
seems to be oversimplified because the Rashba SOC could
induce mixing of the s- and p-wave pairing. Given the intrinsic
TSC phase is readily realized when the p-wave component is
dominant [60], the TSC phases of different RNPs are expected
to be robust against parity mixing of Cooper pairs. Last but
not least, the condition of V 2

Z > �2 for realizing the TSC
phases is rather harsh in real materials. Therefore, searching
candidate materials that can fulfill this condition appears an
important topic in this field. Our work, however, expands
the scope of candidate materials by demonstrating that the
TSC phases are not limited to a restricted set of materials
but in principle can be realized in a wide variety of 2D
materials.

245409-6



PREDICTION OF TOPOLOGICAL SUPERCONDUCTIVITY … PHYSICAL REVIEW B 104, 245409 (2021)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

E-
EF

(e
V)

K M Γ M' K'

Type-II

-1

1

0

Type-I or -IV

x�

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

E-
EF

(e
V)

K M Γ M' K'
-1

1

0

y� y� z�

Γ

K M

M' K'kx

ky

Bi
Sb

(a) (b)

(c) (d)

FIG. 5. (a) Top and side views of BiSb monolayer with the opti-
mized lattice constant of 4.10 Å and the buckling height of 1.74 Å.
(b) The high-symmetry paths in the first BZ used for calculating
the band structures plotted in (c) and (d). The six blue and six red
dots represent the positions of type-I (or -IV) and type-II RNPs,
respectively. (c) The band structures with the expectation values of
σx at the path of M-�-M′ and of σy at K-M (K′-M′) paths being
represented by colors. Type-I (or -IV) and type-II RNPs deviated
from the TRI point are marked in this figure. (d) The band structures
with the colors represent the expectation values of σz. The black
solid lines are the fitted band structures using the WFs, where the
out-of-plane directed Zeeman field VZ = 40 meV was introduced.

V. MATERIALS REALIZATION OF THE PROPOSED
RNPS WITH EXPECTED TSC

The Rashba SOC widely exists in the 2D materials with
the out-of-plane space-inversion symmetry breaking. There
are tremendous works reporting the 2D metal layers fabricated
on the surface of substrate materials possessing large Rashba
spin splitting [45–56]. However, their attentions are mainly
focused on the type-I RNPs at TRI points, while other types of
RNPs we proposed here are ignored. We searched the reported
2D surface metal layers that could enable the proposed RNPs
with the ISC different from (kxσy−kyσx ) in Table II. One
can easily conclude the type-IV, type-III, and type-II RNPs

indeed exist in real materials, while the type-I′ one is rare
due to the rigorous realizing conditions, e.g., the t1 = 2t12 in
our TB model. These RNPs (Table II) are expected to enable
the related materials showing TSC. The needed Zeeman gap
could be introduced by applying external magnetic field, while
the pairing gap can be intrinsic [48,50–52] or induced by the
proximity effect.

In addition to the 2D surface metal layers, isolated 2D
bulked monolayer also holds the possibility of breaking the
space-inversion symmetry, such as the monolayer GeTe [18]
and BiSb [61] with honeycomb lattice. We take the BiSb
monolayer [Fig. 5(a)] as a represented material to prove the
existence of type-I, type-II, and even type-IV RNPs at the k
points deviated from the TRI points, by using first-principles
calculations based on the density-functional theory imple-
mented in the QUANTUM ESPRESSO package [62]. The full
relativistic pseudopotential of projector-augmented wave with
the functional type of Perdew-Burke-Ernzerhof was employed
and the kinetic energy cutoff was set to 60 Ry for wave
functions. The BiSb monolayer was simulated by introducing
a vacuum region of more than 15 Å, whose lattice constant and
atomic positions are fully optimized with considering SOC on
the uniform 12 × 12 × 1 k-point sampling in BZ.

Following a self-consistent calculation, the electronic
band structures are calculated along high-symmetry lines
[Fig. 5(b)], as shown in Figs. 5(c) and 5(d). Due to absenting
out-of-plane and in-plane inversion symmetry simultaneously,
both the Rashba and Ising spin splitting are sparked. The
Rashba spin splitting is significant at the k points near the cen-
ter of BZ [Fig. 5(c)], while the Ising one is dominant around
the corners of BZ [Fig. 5(d)]. Importantly, one can notice the
type-I and -II RNP, respectively, existing in the conduction
and valence bands along the path of the �-M (−M ′) direction.
Due to the symmetry of honeycomb lattice, there are six type-I
and six type-II RNPs in the first BZ [Fig. 5(b)].

To study the TSC of RNPs in BiSb monolayer, we fit the
first-principles band structures by employing the WANNIER90-
2.1 code [63] under the basis of Wannier functions (WFs),
where the p orbitals of Bi and Sb are used as the initial guess
for the unitary transformations. This procedure will generate
a real-space Hamiltonian, which enables us to construct the
momentum space electronic Hamiltonian hWFs(k) by using
Fourier transform. Then the material-specific BdG Hamilto-
nian can be generally written as

hBdG
WFs(k) =

(
hWFs(k) + h(VZ) − ERNPs h(�)

h∗(�) −h∗
WFs(−k) − h(VZ) + ERNPs

)
. (22)

Here, h(VZ) denotes the out-of-plane directed Zeeman ex-
change field and h(�) represents the intraorbitals spin-singlet
pairing. Details of this first-principles approach for specific
materials have been given previously [18]. With the hBdG

WFs(k)
in hand, we can determine the TSC of specific materials with
the RNPs at the energy of ERNPs by calculating the Berry
curvature and evaluating the Chern number of pairing gaps.

The dispersion of superconducting quasiparticles with the
ERNPs being set to the energy of type-I and -II RNPs in BiSb

monolayer are, respectively, plotted in Figs. S10(a) and S10(c)
[58]. We can see a not fully opened but continuous gap exists
for type-I RNPs, while the pairing gap associated with type-II
RNP is fully opened. The continuous gap is attributed to
the interaction between the Ising SOC and the Zeeman field,
which leads to unequal eigenvalues between the states at the
k and the −k points, as shown by the comparison between
the band structures plotted by colored lines and black solid
line near the K and K′ points in Fig. 5(d). Meanwhile, similar
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to our model calculations, the magnitude of the pairing gap
varies at different k point due to the effect of Pauli paramag-
netic mechanism.

The distributions of calculated Berry curvature for the
states below the pairing gap condensing at type-I and -II RNPs
are, respectively, plotted in Figs. S10(b) and S10(d) [58]. Inte-
grating the Berry curvature leads to the Chern number C = 6,
due to the existence of six symmetry-equivalent RNPs in the
first BZ [Fig. 5(b)]. This indicates the RNPs deviated from
TRI points present advantages over the ones at TRI points in
inducing high Chern number TSC phases. Moreover, consid-
ering strain providing a feasible route to tune the magnitudes
of hopping energy and Rashba SOC strength, we anticipate
the type-I RNPs in the conduction bands of BiSb monolayer
can be transformed to the type-IV and -II RNPs by applying
in-plane biaxial strain, based on our TB model prediction.
This tendency was already shown by previous report [61].
Because our model calculation indicates this transformation
cannot change the TSC phase, the strain-induced type-IV and
-II RNP in strained BiSb monolayer are also expected to in-
duce TSC with Chern number C = 6. Additionally, preparing
the heavy atoms, e.g., Bi, Pb, BiPb, and BiSb monolayer on
the surface of Al2O3(0001) [55], type-III RNPs emerge, which
will definitely enable the TSC phase with Chern number C =
±1 based on the above analysis.

VI. CONCLUSIONS

By constructing a generic TB model with Rashba SOC on
the 2D Bravais lattices, we propose the type-IV, -III, -II, and

-I′ RNPs, whose FS contours and low-energy effective ISC
forms are different from that of the known isotropic type-I
RNP. Despite this, our calcualtions indicate these proposed
RNPs could spark TSC phases with nonzero Chern number
and chiral MEMs. High Chern number can be reached for
multiple symmetry-equivalent RNPs, especially for the RNPs
deviated from TRI points. Moreover, the Chern number can
be composited when the symmetry-unequivalent RNPs are
equal in energy, where the chiral MEMs are edge depen-
dent. Furthermore, by using first-principles calculations, we
demonstrate BiSb monolayer acts as an ideal material plat-
form for realizing the type-I, -II, and even -IV RNPs that
are deviated from the TRI point, which give rise to TSC
with Chern number C = 6. We emphasize these types of RNP
widely exist in the 2D materials with the inversion symme-
try being broken by buckling or substrates, which not only
expands the horizon of finding multiple and edge-dependent
MEMs, but also provides promising platforms to investigate
physics of Rashba SOC.
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