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Unidirectional coupling of a quantum emitter to a subwavelength grating waveguide
with an engineered stationary inflection point
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In this work, we propose an approach for the design of a waveguide structure that allows for efficient and
highly asymmetric coupling of the quantum sources with circularly polarized transition dipole moments to the
guided mode of the structure. The approach is based on the mixing of the two quasidegenerate modes of a
periodic waveguide with an auxiliary single-mode waveguide leading to the formation of the dispersion with a
stationary inflection point and consequently to the high coupling efficiency of this mode with a dipole source. We
show that the distribution of the field polarization inside the waveguide is relatively homogeneous, maintaining
the circular polarization in a large area. Consequently, this leads to a high degree of tolerance of the coupling
asymmetry and strength to the position of the quantum emitter. We believe that our results will extend the variety
of designs of the efficient chiral nanophotonic interfaces based on planar semiconductor nanostructures.
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I. INTRODUCTION

Tailoring of the light-matter interaction at nanoscale has
attracted a lot of attention in the last decades due to increased
technological capabilites of creating various optical nanos-
tructures and their potential in the development of compact
and scalable quantum-integrated components based on the
deterministic nanophotonic interfaces between the quantum
emitters (QE) and light. One of the recently proposed ways
to achieve this goal is based on the so-called chiral light-
matter interaction [1], which manifests itself in an asymmetric
interaction between the QEs with circularly polarized dipole
transition moments and localized optical modes propagating
in opposite directions.

All studies that utilize effects based on the chiral light-
matter interaction can be categorized based either on the type
of the QEs or on the type of the photonic nanostructures
employed in the design. From the “matter” point of view one
can distinguish a few main platforms including cold atoms
[2–4], semiconductor quantum dots [5], and two-dimensional
materials [6]. Each of them, however, possesses specific fea-
tures and limitations related to their experimental realization.
Therefore, quite a variety of photonic nanostructures were
theoretically and experimentally investigated in application to
these platforms, including photonic crystal waveguides [7,8],
homogeneous optical nanowaveguides [9–13], whispering
gallery-type resonators [2,14,15], and, more recently, topo-
logical semiconductor waveguides and resonators [16–19].
Arguably one of the most suitable technologies for the prac-
tical purposes is based on a semiconductor GaAs platform
that allows for integration of planar optical waveguides and
cavities with quantum dots and efficient control of their emis-
sion properties [5,20,21]. Several studies have experimentally
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demonstrated asymmetry of coupling of a quantum dot to
a waveguide close to 100% [8,10,13,22,23]. In addition, the
strength of the coupling can also be increased when employ-
ing a cavity or slow-light modes of photonic crystal (PhC)
waveguides or cavities [8,16–18,22]. However, both coupling
asymmetry and strength in such systems remain sensitive to
the position of the QE due to the rather inhomogeneous field
distribution in the unit cell of the PhC.

Lately, an alternative to the PhC-based systems in the form
of various nanostructures composed of Mie resonant dielec-
tric and semiconductor nanoparticles has been extensively
explored [24,25]. Such a bottom-up approach allows one to
design structures with different geometry and with differ-
ent optical properties by careful tuning of their individual
building blocks and coupling between them. This includes
single nanoantennas and their ensembles for control of the
QE luminescence radiation patterns [26–30], optical cavities
and waveguides composed of dielectric and semiconductor
nanoparticles for the Purcell enhancement and lasing [31–34],
and active metasurfaces [35,36]. In this context, periodic di-
electric waveguides provide vast opportunities for dispersion
engineering [37–39] and achieving slow light regimes for effi-
cient modulation of optical signals [40] as well as polarization
control due to the mode degeneracy engineering [41–43].

In this work, we propose an approach for the design of an
optical nanostructure based on a periodic waveguide that can
serve as an efficient chiral interface between the propagating
waveguide modes and the circularly polarized dipole sources
embedded in the structure. This approach relies on two fac-
tors: the presence of two quasidegenerate orthogonal modes
in a periodic waveguide, and a specific type of the dispersion
of the whole structure possessing a stationary inflection point
(SIP). The combination of these factors leads to the increase
the strength of the light-matter interaction while at the same
time maintaining its high level of asymmetry. Moreover, un-
like other designs studied before, the coupling of a quantum
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FIG. 1. Scheme of the considered system: two orthogonal modes
of a periodic waveguide and a single mode of a homogeneous waveg-
uide couple with each other forming a single supermode with low
group velocity and local circular polarization of the field inside the
periodic waveguide. Arrows indicate the dominant polarization of the
field.

source to the mode of the proposed structure is substantially
more tolerant to the position of the source, which makes it
beneficial from the practical point of view. We believe that
the presented results will allow for the development of the
advantageous bottom-up designs of compact chiral nanopho-
tonics interfaces for efficient and scalable integrated quantum
circuitry.

II. FORMULATION OF THE IDEA

The design of the proposed waveguiding structure that
allows for efficient and uniform coupling with circularly po-
larized dipole emitters is based on a specific type of the
waveguide dispersion ω(k) that contains a stationary inflec-
tion point, i.e., a point at which the group velocity dω/dk and
the group velocity dispersion d2ω/dk2 vanish. It is known that
such type of dispersion emerges when at least three modes
are coupled in a specific way, forming an exceptional point of
degeneracy of the third order [44–46]. In the current work we
consider a structure in which two of the three modes belong
to the same periodic waveguide and the third one belongs to
the auxiliary spatially separated homogeneous waveguide, as
schematically shown in Fig. 1. If two quasidegenerate modes
of the periodic waveguide have local electric field polarization
orthogonal to each other, then the polarization of the mixed
mode of the coupled waveguides will be elliptical in general,
with the specific type of polarization depending on the type of
the coupling between the modes. Further, if the characteristics
of the third mode are chosen in a proper way, the mixed mode
will possess a SIP in the dispersion.

Such a mode of the structure exhibits several features ben-
eficial for the chiral light-matter interaction. First, the group
velocity of the mode tends to zero at a certain frequency,
providing a potential for an arbitrarily strong coupling of the
point dipole source to the guided structure. Second, by tuning
the geometrical parameters of the structure, one can effec-
tively control a type of the coupling between the modes, which
determines the local field polarization of the mode. Thereby,
one can design a waveguide with circular local polarization of

the electric field and thus reach the fully asymmetric coupling
of the dipole source to the modes propagating in forward
and backward directions along the waveguide. Finally, the
distributions of the field of uncoupled modes, which can be
considered as rather homogeneous (e.g., compared to the ex-
ponentially decaying waves), are inherited by the supermode.
This allows one to maintain efficient and asymmetric coupling
to a single quantum emitter located not only at a specific point
but rather in a random point in the relatively large area.

III. ENGINEERING OF THE DISPERSION AND
POLARIZATION IN COUPLED WAVEGUIDES

The group velocity of the coupled mode is determined
by the weighted sum of the group velocities of the isolated
modes; therefore, it can be equal to zero only if at least one
of the modes is a backward wave, i.e., has a negative group
velocity. This can be realized in two different ways. First, we
consider the case when two quasidegenerate forward waves
belong to a periodic waveguide, while the backward wave
is supported by a homogeneous waveguide, as shown in the
dispersion diagram in Fig. 2(a) with dashed lines. From what
follows, we assign indices “1” and “2” to the modes of the
periodic waveguide, and we assign the index “3” to the mode
of the homogeneous waveguide. Although a homogeneous
waveguide generally supports modes only with positive group
velocity, in the considered system the mode effectively be-
comes a backward wave after the dispersion folding, which
occurs due to its coupling with the periodic waveguide (see
Supplemental Material [47], Sec. A). In an alternative design,
the mode with a negative group velocity belongs to a periodic
waveguide, while the mode of a homogeneous waveguide is a
forward one [Fig. 2(b)].

Although these two designs have qualitative differences
that are explained further, the physical insight into the de-
terminants of the interaction between the waveguide modes
can be gained from the analysis carried out within the same
framework of the conventional coupled-mode theory (CMT)
[48–50]. Once the characteristics of the modes of the isolated
waveguides are known, e.g., from numerical simulations, one
can find the eigenfrequencies ω of the coupled modes from the
following matrix equation (see Supplemental Material [47],
Sec. B for general formulation of the CMT and its application
to both designs):

MA = ωA, (1)

where M is the 3 × 3 coupling matrix, and A = (a1, a2, a3)T

is the vector of the amplitudes a of the three interacting
modes. Generally, all variables in Eq. (1) depend on the Bloch
wave number k, thus allowing one to obtain a dispersion
ω(k) of the coupled modes and their field distributions. The
elements of the coupling matrix M can be adjusted in a wide
range of values by tuning the geometrical parameters of the
considered structures. For instance, the diagonal elements
are mostly determined by the dispersion of the modes of
the isolated waveguides, and they can be tuned by changing
the geometrical parameters of the isolated waveguides. The
nondiagonal element M12 describes the coupling between the
modes of the periodic waveguide and its value is mostly influ-
enced by the type of the asymmetry (with respect to xz plane)
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FIG. 2. Dispersion of the modes of coupled waveguides (solid
curves) calculated within the framework of the CMT. Stationary
inflection point is marked with a red circle. Dashed lines correspond
to the modes of the isolated waveguides. Parameters of the system are
as follows. (a) Group velocities vg1 = 1, vg2 = 0.9, and vg3 = −1.2;
frequency detuning of the third mode �3 = 0; coupling constants
M12 = −0.1258, M13 = 0.1i, and M23 = 0.1. The eigenvector at the
SIP is (1, i, 1.258)T . (b) Group velocities vg1 = 1, vg2 = −2, and
vg3 = 2; frequency detuning of the third mode �3 = 0.172; coupling
constants M12 = −0.145i, M13 = 0.077, and M23 = 0. The eigenvec-
tor at the SIP is (1, 1.2i, −0.97)T .

introduced in the initially symmetric periodic waveguide. In
turn, the elements M13 and M23 that describe the interaction
between the modes of periodic and homogeneous waveguides
are mostly determined by the distance between the waveg-
uides. The relations between the geometrical parameters of
the system and the elements of the matrix M are described in
the Supplemental Material [47], Sec. C.

Using the formalism of the CMT one can analyze the
requirements to the elements of the coupling matrix that allow
one to achieve the desired characteristics of the waveguide,
i.e., dispersion with a SIP and circular polarization of the
local electric field in the periodic waveguide. To derive such
requirements, we impose the following conditions on the
eigenmode of Eq. (1) at the wave number k0:

dω

dk

∣
∣
∣
k=k0

= 0,
d2ω

dk2

∣
∣
∣
k=k0

= 0, (2)

A(k0) = (1, iα, β )T , (3)

where α and β are arbitrary real numbers (the phase of the
third mode can be chosen at will). Equation (2) specifies the
existence of the SIP, ω(k) ≈ ω(k0) + γ (δk)3, at the point k0,
while the eigenvector (3) ensures the desired polarization of
the field in the periodic waveguide. Note that we are interested
in the circularly polarized electric field rather than the circu-
larly polarized eigenvector A of the coupled mode; therefore,
the coefficient α in a realistic design should be imaginary but
its amplitude should not be necessarily equal to 1.

In Figs. 2(a) and 2(b) we show two dispersion diagrams
of the coupled waveguides with the parameters that satisfy
the conditions (2) and (3). In Fig. 2(a), the third mode has
negative group velocity, while in Fig. 2(b) the second mode
has negative group velocity. In the first case, we have found
that the conditions (2) and (3) can be fulfilled when, first, all
three modes intersect at the same point k0 = 0 and, second,
the elements M12 and M23 are real, while M13 is imaginary,
resulting in the eigenvector with α = Im(M13)/M23 and β =
−M12/M23. In this case, the ±π/2 phase difference between
modes 1 and 2 is ensured by the zero phase of the coeffi-
cient M12, while the magnitude of α is defined by the ratio
|M13/M23|, which is of the order of 1 in realistic systems due
to the quasidegeneracy of the first two modes. In the second
case, Fig. 2(b), mode 2 has negative group velocity and there-
fore it typically interacts weakly with mode 3, and we assume
that M23 = 0. In this case, first, we need to properly tune the
frequency detuning of the third mode � and the amplitudes of
the coupling constants M12 and M13, and second, in contrast
to the first design the M12 constant should be imaginary, as we
demonstrate in the Supplemental Material [47], Sec. B.

Although, in these simple calculations we assumed that
nondiagonal elements of the matrix M do not depend on k,
and diagonal elements are linear functions of k, such simpli-
fication allowed us to identify the critical requirements to the
waveguide design used in the following section.

IV. DESIGNS OF THE WAVEGUIDES BASED ON
STRUCTURED SEMICONDUCTOR MEMBRANES

In order to demonstrate the feasibility of the proposed
approach in the design of realistic optical structures we have
developed two designs of the coupled waveguides based on
the nanostructured GaAs membranes with the refractive index
n = 3.5. The parameters of the structures were tuned to a
wavelength around 950 nm corresponding to the emission
wavelength of the InGaAs quantum dots. The schemes of the
structures are shown in Figs. 3(a) and 3(d) with the geomet-
rical parameters given in the caption. In Figs. 3(b) and 3(e)
we show the dispersion properties of isolated and coupled
waveguides with dashed gray and thick solid red curves, re-
spectively. As it follows from the CMT, the distance between
the waveguides d mainly affects the relative contribution of
the mode of the homogeneous waveguide to the supermode,
which in turn affects its group velocity. This can be observed
in Figs. 3(c) and 3(f): by adjusting the distance d , it is formally
possible to achieve an ideal SIP. We have chosen the optimal
values of d so that the structure supports a single mode with
the group velocity value around c/200 (where c is the speed
of light) near the operational frequency marked with a black
circle in Figs. 3(c) and 3(f).
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FIG. 3. (a), (d) Schemes of the guided structures under consideration (top view): (a) a = 270 nm, b = 170 nm, w1 = 390 nm, w2 =
154 nm, d = 170 nm, thickness of the membrane h = 220 nm, shift between the upper and lower vertices of the hole in the z direction is
10 nm; (b) a = 310 nm, r = 90 nm, w1 = 250 nm, w2 = 197 nm, d = 240 nm, h = 245 nm, shift of the holes in the y direction is δy = 15 nm.
(b), (e) Dispersion of the modes of the isolated (gray dashed curves) and coupled (solid red curves) waveguides for the structures shown in
panels (a) and (d), respectively. Black dots indicate the SIPs. (c), (f) Group velocity of the mode with a SIP as a function of the wave number
for three values of the gap between the waveguides.

Besides the evanescent coupling between the waveguides,
the modes of the periodic waveguide were also coupled with
each other due to slight asymmetry introduced to the waveg-
uide: in the first design the rectangular holes were modified
by the slight shear deformation in the z direction, and in the
second design the circular holes were shifted in the y direction
by a small distance δy. By doing this the coupling constant
M12 satisfied the previously derived conditions and the modes
of the periodic waveguide were coupled with the π/2 phase
difference, providing the local circular polarization of the
electric field. In order to quantify the resulting polarization
properties of the waveguide and the slow-light enhancement
of a dipole emission at the same time, we have performed
calculations of the coupling strength of a dipole QE to a
waveguide mode γW G using Fermi’s golden rule, i.e., assum-
ing weak interaction. Within this framework, γW G normalized
by the decay rate in the bulk material γ0 is found using the
following formula [22,51]:

γ ±
W G

γ0
= 3πc3a|E±(rd ) · d∗|2

2ω2
d

√
εvg

, (4)

where c is speed of light, a is the waveguide period, ωd is
the dipole oscillation frequency, vg is the eigenmode group
velocity, ε is the permittivity of the waveguide material, rd

is the radius vector that defines the position of the dipole
with unit vector d, and E± is the electric field distribution of
the modes propagating in positive and negative z directions,
respectively, normalized in such a way that

∫
unit cell ε|E|2dV =

1. We calculate this quantity for the fixed polarization of

the dipole source d = (0, 1, i)/
√

2 located in the plane
x = ±90 nm and oscillating at the frequency that corresponds
to the SIP. Note that since the fields of the modes propagating
in opposite directions are related via complex conjugation, the
change of the handedness of the dipole source results in the
interchange between the decay rates γ +

W G and γ −
W G.

The results of calculations are presented in Fig. 4. One can
observe that the coupling rate of the dipole source to the mode
propagating in the positive z direction, γ +

W G, normalized by
the rate of emission in the bulk semiconductor γ0 [Figs. 4(a)
and 4(d)] reaches values up to 10 in both designs, and it is
much stronger than the coupling to the mode propagating in
the negative z direction, γ −

W G [Figs. 4(b) and 4(e)], in most
parts of the periodic waveguide cross section. The directivity
of the emission D, calculated as D = (γ +

W G − γ −
W G)/(γ +

W G +
γ −

W G), reaches values close to 1 in most parts of the waveguide
cross section. The asymmetry of the directivity distribution
with respect to the y = 0 plane is caused by the interference of
the even and odd modes supported by the periodic waveguide
as well as by the asymmetric perturbation introduced in the
unit cell.

In order to better illustrate the robustness of the coupling
asymmetry to the position of the QE, we have introduced the
figure of merit that characterizes the average directivity of
emission of a randomly located point dipole source defined as
Dav = 〈γ +

W G − γ −
W G〉/〈γ +

W G + γ −
W G〉, where averaging is per-

formed over the cross-sectional area of the periodic waveguide
in the plane x = 90 nm. Figure 4(g) shows that for the chosen
parameters Dav reaches at least ≈0.65 in both cases. Such a
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FIG. 4. (a), (b), (d), (e) Emission rate of the slow-light mode propagating in (a), (d) the positive z direction and (b), (e) the negative z
direction as a function of the position of a CP dipole source in the cross section x = 90 nm of the periodic waveguide. (c), (f) Directivity of
the emission. Panels (a)–(c) correspond to the first design, and panels (d)–(f) correspond to the second one. (g) Average directivity Dav (black
curves, left axis) and normalized group velocity (red curves, right axis) as a function of the normalized wave number detuning. Zero detuning
corresponds to the minimum group velocity. Solid curves correspond to the first design, and dashed curves correspond to the second one.

high value of the average asymmetry becomes possible due to
the locked π/2 phase difference between two guided modes
with orthogonal polarization of the electric field, achieved by
proper engineering of the coupling between the waveguides.
Note that a somewhat similar approach to achieve an efficient
unidirectional coupling robust to the position of the source
based on a photonic crystal cavity with two quasidegenerate
modes was recently reported [52].

V. ESTIMATION OF THE β FACTOR

Although the main characteristics of the coupling between
the dipole source and the waveguide can be well understood
from the eigenmode simulations, these characteristics lack
the information about the coupling strength of the dipole to
all other modes of the surrounding environment. In order to
estimate the β factor, which is the ratio of the decay rate to the
given waveguide mode and the total decay rate β = γW G/γ ,
we have performed direct numerical simulations of the finite-
size structure fed by a quasipoint dipolelike source. Since
there is no qualitative difference in the characteristics of both
designs, further we present the results only for the second
design.

Calculation of the β factor to the infinite periodic waveg-
uide is not a straightforward problem due to the necessity
of applying the special boundary conditions that will absorb
the propagating mode [53]. Such a problem is especially
complicated when the considered guided mode has a slow
group velocity [54]. In our simulations we have considered
a finite-size waveguide with the adiabatic absorbers at the end
of the waveguide fed by a circularly polarized dipole source
with two possible polarizations d± = (ey ± iez )/

√
2 placed

at the point with coordinates r = (90,−25, 0) nm, where
maximum coupling asymmetry was expected. From the simu-
lations we have extracted the power emitted into waveguide
modes propagating in positive and negative z directions as
well as the power radiated into free space and other modes
of the system. In order to check the validity of the results

we have performed several simulations varying the size of
the waveguide and the absorbing part, making sure that the
corresponding variation of the power coupled to the waveg-
uide and the β factor becomes insignificant. Additionally, we
have calculated the power emitted by the same source in the
bulk semiconductor γ0 and compared the results of the ratio
γW G/γ0 obtained in the simulations with the source and the
eigenmodes simulations.

The results of calculations of the emission enhancement
factor into the waveguide γ ±

W G/γ0 are presented in Fig. 5(a).
The peak value of γ +

W G/γ0 ≈ 8 is in a good agreement with
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FIG. 5. (a) Rate of emission of a circularly polarized dipole
source into the slow-light mode propagating in the positive z direc-
tion γ +

W G (solid red) and the negative z direction γ −
W G (solid blue)

normalized by the emission rate in a bulk semiconductor γ0 as a
function of frequency. (b) Directivity (black curve, left axis) and β

factor (green curve, right axis) as a function of frequency.
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γ +
W G/γ0 ≈ 8.5 obtained from the eigenmode simulations for

the given position and polarization of the source [Fig. 4(c)],
which confirms that the simulations of the system with the
dipole source provide reliable characteristics of the structure.
The substantial difference between γ +

W G and γ −
W G rates leads to

the almost perfect directivity near the frequency correspond-
ing to the SIP [see the black curve in Fig. 5(b)]. The β factor
at the same time reaches values up to 94%. Note that theoret-
ically it is possible to increase the coupling to the waveguide
modes, and consequently the β factor, in an unlimited way by
fine tuning of the system parameters. The current values were
obtained for experimentally achievable group indices as large
as 200.

VI. SUMMARY

To summarize we have demonstrated a possibility of en-
hancement of the chiral light-matter interaction in the periodic

dielectric waveguides through simultaneous engineering of
the stationary inflection point in the dispersion and tailoring
local polarization of the electric field by exploiting a multi-
mode regime of the waveguides. Highly efficient and directive
emission of the circularly polarized dipole sources into the
desired guided mode was demonstrated in numerical simula-
tions. Along with the robustness of the system to the position
of the source, this makes the proposed design promising for
the further development of the planar integrated spin-photon
interfaces enabled by the spin-orbit interactions of light.
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