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Transition from degeneracy to coalescence: Theorem and applications
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An exceptional point (EP) is exclusive for non-Hermitian systems and distinct from that at a degeneracy point
(DP), supporting intriguing dynamics which can be utilized to probe quantum phase transitions and prepare
eigenstates in a Hermitian many-body system. In this paper, we investigate the transition from a DP for a
Hermitian system to an EP driven by non-Hermitian terms. We present a theorem on the existence of a transition
between a DP and EP for a general system. Specifically, one of twofold degenerate eigenstates of a Hermitian
system becomes a coalescing state when a selected non-Hermitian term is added. The obtained EP is robust to
the strength of non-Hermitian terms. We illustrate the theorem by an exactly solvable quasi-one-dimensional
model, which allows for the existence of a transition between fully degenerate and exceptional spectra driven by
non-Hermitian tunnelings in real and k spaces, respectively. We also study the EP dynamics for generating
coalescing edge modes in Su-Schrieffer-Heeger-like models. This finding reveals the ubiquitous connection
between DPs and EPs.
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I. INTRODUCTION

Theoretical [1–3] and experimental studies [4–14] on
non-Hermitian systems indicate that the interplay of lattice
geometry and non-Hermitian elements, such as an imaginary
on-site potentials [15,16] and asymmetry tunneling [17], can
induce exotic quantum dynamics [18–22], which never hap-
pens in Hermitian systems. Intuitively, these phenomena are
known to arise from the appearance of complex eigenenergies
within a symmetry-broken region, leading to the explosion of
the Dirac probability of the eigenstate. However, it follows
from a peculiar feature of the non-Hermitian system, the ex-
ceptional point (EP) dynamics, without the need for symmetry
breaking. The EP in a non-Hermitian system occurs when
two or more eigenstates coalesce, which is usually associated
with a non-Hermitian phase transition [12] . In a parity-time
(PT )-symmetric non-Hermitian system (or other similar sys-
tems), the PT symmetry of the eigenstates spontaneously
breaks at the EP, which determines the exact PT -symmetric
phase and the broken PT -symmetric phase in this system.
The EP plays a pivotal role in intriguing dynamics and
applications including asymmetric mode switching [23], uni-
directional lasing [21,24,25], and enhanced optical sensing
[26–33]. Recently, EP dynamics has been employed to engi-
neer a target quantum state [34–37] and probe quantum phase
transitions [38]. The mechanism of such a scheme is setting
the target state as the coalescing state of a non-Hermitian
Hamiltonian. In general, a familiar target state as the cen-
tral resource of quantum information processing is always
an eigenstate of a Hermitian system, such as a topological
state, or a many-particle entangled state. It therefore requires
the coalescing state to be Hermitian related and robust to the
perturbation.

*songtc@nankai.edu.cn

The aim of this paper is to provide a method for setting
a target quantum state to be a coalescing state. As is well
known, an EP is exclusive for non-Hermitian systems and
is distinct from a degeneracy point (DP). We will show that
the transition from a DP for a Hermitian system to an EP
can be realized by proper non-Hermitian terms. This theorem
indicates that, for a general Hermitian system with a DP,
one of the degenerate eigenstates can be set as a coalescing
state of a non-Hermitian system. This allows the scheme to
prepare a target quantum state based on the EP dynamics.
To illustrate the theorem, we investigate an exactly solvable
quasi-one-dimensional model, which supports the transition
between fully degenerate and exceptional spectra. It is shown
that such a model in the thermodynamic limit is equivalent to a
two-coupled ring with a power-law decay long-range hopping
term. As its application, we also study the EP dynamics for
generating coalescing edge modes in Su-Schrieffer-Heeger
(SSH)-like models. This finding provides a way to construct
a non-Hermitian system with an EP based on a Hermitian
system with a DP. The advantage of this method is that the
coalescing state is the eigenstate of a Hermitian system and is
robust to the strength of the non-Hermitian term. We expect
our results to benefit experimental research.

This paper is organized as follows. In Sec. II, we present a
theorem for a general system to create robust EPs from DPs. In
Secs. III and IV, we illustrate the theorem using two examples.
In Sec. V, we propose a dynamic scheme to prepare edge
modes as the application of the theorem. Finally, we provide
a summary in Sec. VI.

II. THEOREM ON ROBUST EP FROM DP

A general system at an EP is obtained by tuning an imag-
inary parameter, such as an imaginary potential or flux, to
switch real energy levels to complex ones. The critical value
of the parameter is usually the solution of a transcendental
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equation, and the EP system is sensitive to the imaginary
parameter. Then it is a little difficult to set an EP system
precisely in practice. The main aim of this paper is to answer
the question of whether a robust EP system can be obtained.
In this section, we present a theorem on establishing an EP
based on a DP of a Hermitian system. The obtained EP is not
sensitive to the strength of the non-Hermitian parameters.

We consider a general non-Hermitian Hamiltonian in
the form

H = H0 + H ′, (1)

which can be separated into two parts, Hermitian and non-
Hermitian ones, i.e.,

H0 = (H0)†, but H ′ �= (H ′)†
. (2)

Theorem. Hamiltonian H = H0 + H ′ must possess an EP
in its spectrum if it is constructed under the following condi-
tions:

(i) Hamiltonian H0 has twofold degenerate eigenstates |A〉
and |B〉 with eigenvalue E .

(ii) |A〉 (|B〉) is a nondegenerate eigenvector of H (H†) with
eigenvalue E .

Proof. Based on the assumptions on H (H†), two states |A〉
and |B〉, we have

H |A〉 = E |A〉, H†|B〉 = E |B〉. (3)

It means that two states |A〉 and |B〉 are mutually biorthogo-
nally conjugate and the biorthogonal norm of them is 〈B|A〉.
Condition (i) states 〈B|A〉 = 0. According to the theory of
non-Hermitian systems [2,39–41], the vanishing norm indi-
cates that state |A〉 is a coalescing state of H , i.e., Hamiltonian
H gets an EP.

So when a Hermitian Hamiltonian H0 and a non-Hermitian
Hamiltonian H (H†) have a common eigenstate |A〉 (|B〉)
with a corresponding energy E , and in the meantime |A〉 is
degenerate for H0 but not degenerate for H , one can say that
Hamiltonian H gets an EP. The theorem is given here without
specific reference to the detailed form of the Hamiltonian.
It should work for nonrelativistic and relativistic, continu-
ous and discrete Hamiltonians. Applying it to a tight-binding
model, we can find some detailed signatures of the degen-
erate eigenstates. One can get H ′|A〉 = 0 and (H ′)†|B〉 = 0
according to the two conditions. The simplest example for
such a H ′ is a unidirectional hopping term, i.e., κa†

i a j (i �= j),
where ai and a j are fermion or boson operators. Note that the
above conditions can be satisfied if a j |A〉 = 0 and ai|B〉 = 0.
It means that the two states |A〉 and |B〉 have nodal points at
j and i, respectively. In addition, the existence of an EP is
independent of the nonzero value of κ . Notably, states |A〉
(|B〉) can be multifermion or boson states. Considering an
n-boson system, we have

|A〉 = 1√
n!

(
a†

i

)n|Vac〉, |B〉 = 1√
n!

(a†
j )

n|Vac〉, (4)

where |Vac〉 is the vacuum state, and we still have H ′|A〉 = 0
and (H ′)†|B〉 = 0 from the fact that a j |A〉 = 0 and ai|B〉 = 0.

Then for the initial state

|ψ (0)〉 = |B〉 = 1√
n!

(a†
j )

n|Vac〉, (5)

the evolved state is

|ψ (t )〉 = exp(−iHt )|B〉

= exp (−inEt )√
n!

n∑
m=0

(−iκta†
i a j )m

m!
(a†

j )
n|Vac〉. (6)

For a long timescale, we have

|ψ (t )〉 ∝ (κt )n|A〉, (7)

which indicates that the system has the behavior of an (n + 1)-
order EP [28,42–44]. This rigorous conclusion has important
implications in the design of quantum devices to prepare
a target quantum state at will, which can be a topological
insulating state [45] and quantum spin states [37]. In the fol-
lowing sections, we will present several illustrative examples
to demonstrate the theorem.

III. ZERO POINT IN REAL SPACE

Consider a uniform 2N-site ring system with the
Hamiltonian

H0 =
2N∑
j=1

(a†
j a j+1 + H.c.) = 2

∑
k

cos ka†
kak, (8)

where

a†
k = 1√

2N

2N∑
j=1

eik ja†
j , (9)

with the wave vector k = πn/N , n = 1, 2, . . . , 2N . a†
j is the

creation operator of the fermion or boson at the jth site. We
note that there are N − 1 pairs of degenerate eigenstates. The
aim of this section is to answer the question of what kind of
H ′ can result in the transition from a DP to EP. Here, we
only focus on a single-particle case, and the extension for
multiboson and fermion cases is straightforward. For H0, a
single-particle eigenstate has the form

|k〉 = 1√
2N

2N∑
j=1

eik j | j〉, (10)

which has no nodal point for any k. Here, | j〉 = a†
j |Vac〉 is the

position state. However, we can construct twofold degenerate
eigenstates in the form

|ψ±
k 〉 = 1√

2

(|k〉 ± ei2kl0 |−k〉), (11)

with 〈ψ+
k |ψ−

k 〉 = 0. The additional factor ei2kl0 leads to a
nodal point at the l0th site, i.e.,

〈l0|ψ−
k 〉 = 0. (12)

It easy to check that for another state |ψ+
k 〉, there is a nodal

point at the (l0 + r)th site, i.e.,

〈l0 + r|ψ+
k 〉 = 0, (13)
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FIG. 1. Schematic illustration of the levels of a Hermitian 12-site ring, which shows the effect of an additional single unidirectional hopping
(red arrow) crossing two sites. Two degenerate levels are indicated by a pair of blue segments, while a coalescing level is in red. The parameter
for the red arrow is κ = 0.5. We can see that a single asymmetric hopping term for a Hermitian ring can drive the transition between a DP and
EP for some specific but not all levels.

when the following condition is satisfied,

cos (kr) = 0, (14)

which requires k to have specific values

k = (2m + 1)π

2r
, m = 0, 1, 2, . . . . (15)

Then the non-Hermitian term H ′ is in the form

H ′ = κa†
l0

al0+r . (16)

For instance, for r = 1, we have k = π/2, and for r = 2, we
have k = π/4 and k = 3π/4. It means that one can take H ′ =
κa†

l0
al0+1 to acquire the coalescing state |ψ+

π/2〉, while taking

H ′ = κa†
l0

al0+2 to obtain |ψ+
3π/4〉. In Fig. 1, we schematically

illustrate a finite system with several kinds of non-Hermitian
hopping terms and plot the corresponding energy levels.
It indicates that for the finite system, there are some DPs
that cannot be transmitted to EPs by a single asymmetric
hopping term.

IV. ZERO POINT IN K SPACE

In the previous section, we have shown that a single
asymmetric hopping term for a Hermitian ring can drive the
transition between a DP and EP for some specific but not
all levels. A natural question is what kind of H ′ can re-
sult in the transition from a DP to an EP for any given k.
Actually, this can be done by simply taking H ′

k = Ja†
ka−k ,

which contains all range unidirectional hopping terms. In
the above example, H ′ = κa†

i a j , we do not restrict a†
i and

a j to be the operators in real space. For example, an EP
Hamiltonian can be H ′ = κa†

k1
ak2 . The corresponding coa-

lescing state is a†
k1
|Vac〉k1 |Vac〉k2 , while the auxiliary state is

a†
k2
|Vac〉k1 |Vac〉k2 .
Now we investigate an example to demonstrate the appli-

cation of the above result. We consider a system with the
non-Hermitian term

H ′ =
∑

π�k�0

H ′
k =

∑
π>k>0

a†
ka−k + 1

2
(a†

0a0 + a†
π aπ ). (17)

a†
k is the creation operator of the fermion or boson with mo-

mentum k in momentum space. In the case of k �= 0 and π ,
both H ′

k|k〉 = 0 and (H ′
k )†| − k〉 = 0 always hold for arbitrary

k, which indicates H ′ drives all DPs into EPs. A straightfor-
ward derivation leads to

H ′ = 1

2N

∑
l+ j=odd(l> j)

i cot

[
(l + j)π

2N

]
(a†

l a j + H.c.)

+1

2

∑
l+ j=2N,4N

a†
l a j, (18)

where the system size in real space is 2N, i.e., l, j = 1 . . . 2N.

In Fig. 2(a), we schematically illustrate a finite system with
the above H ′. We note that the non-Hermitian hopping
strength i cot[(l + j)π/(2N )]/(2N ) is as large as l + j close
to 0, 2N , and 4N . For l + j = 2N + 1, we have l − j = 2N +
1 − 2 j, which indicates long-range hopping. For example,
taking j = N/2, we have l = 3N/2 + 1. Then the hopping
spacing is l − j = N + 1. However, if we reshape the ring as
a ladder, such long-range hopping terms become short range
as shown in Fig. 2(b). We can rewrite the distance between
two sites, i.e., l + j, as l + j = 2nN + � (� = ±1,±3, . . .,
and n = 0, 1), and considering the case with � � 2N , we can
simplify the coupling constant

1

2N
cot

[
(l + j)π

2N

]
= 1

�π
+ 1

2N
O

(
�π

2N

)
. (19)

This example indicates that for the finite system, 2N − 1 pairs
of degenerate levels can be switched into 2N − 1 coalescing
levels by H ′.

The underlying mechanism of realizing the transition from
a degeneracy spectrum to a coalescing spectrum can be re-
vealed by the following model. Inspired by Eq. (19), we
consider a two-coupled uniform chain system, which has a
two-leg ladder structure. Figure 2(c) sketches the geometry
of the system, in which the hopping amplitudes in each leg
are uniform and the hopping strengths are distance dependent.
Such a ladder system is a bipartite lattice system, consisting
of two sublattices A and B. We write down the Hamiltonian
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FIG. 2. (a) The schematic diagram of Hamiltonian in Eq. (18). The black straight lines denote the real long-range couplings. The colored
lines with bidirectional arrows denote the pure imaginary couplings, and we adopt different colors and opacities to distinguish the imaginary
couplings. The dark red lines represent the coupling where the sum of the site’s position is equal to 5 or 3, and we further distinguish 5 and 3
by the reduced transparency. The same goes for the green lines standing for 23, 21, 19, the dark green lines for 11, 9, 7, and the red lines for
17, 15, 13. (b) We reshape the schematic diagram of (a) to be a ladder system. (c) A schematic illustration of the Hamiltonian in Eq. (20). The
black ladder represents H0, and the colored lines with bidirectional arrows denote H ′. Ignoring the hoppings on the boundary, the intralayer
long-range hoppings for (b) and (c) have the same linking method but different strengths.

for the system in the form

H0 =
N∑

j=1

(α†
j β j + α

†
j α j+1 + β

†
j β j+1 + H.c.), (20)

H ′ = iJ

2

N∑
j=1

∑
n=1

1

2n − 1
(α†

j β j+2n−1 − β
†
j α j+2n−1 + H.c.),

where α
†
l and β

†
l are the creation operators of the fermion or

boson at the lth site of sublattice A and B, respectively. We
take a periodic boundary condition by setting α

†
N+1 = α

†
1 and

β
†
N+1 = β

†
1 . Taking the transformation

αk = 1√
N

∑
j eik jα j,

βk = 1√
N

∑
j eik jβ j,

(21)

we have

H =
∑

k

Hk =
∑

k

(α†
k , β

†
k )hk

(
αk

βk

)
, (22)

where the wave vector k = π (2n − N )/N (n = 0, 1, . . . ,

N − 1). The Bloch Hamiltonian is

hk =
(

0 1 − �k

1 + �k 0

)
+ 2 cos k, (23)

where

�k = J
∑
n=1

sin [(2n − 1)k]

2n − 1
. (24)

The Hamiltonian H can be easily diagonalized since
[Hk, Hk′ ] = 0, and the spectrum is

εk = 2 cos k ±
√

1 − (�k )2. (25)

We note that when the summation in �k covers to infinity, �k

is a step function

�k = Jπ

4
sgn(k), (26)

according to Fourier analysis. Then the spectrum becomes

εk = ±
√

1 − (Jπ/4)2, (27)

which vanishes at J = 4/π and the EP spectrum appears.

V. EMERGING EDGE MODES

In the above sections, the obtained coalescing states are
all extended states, which have real wave vectors. In this
section, we focus on the transition from a DP to EP where the
coalescing bound states appear. A coalescing bound state is a
local state and lives at an energy gap, and then can be a stable
target state of the time evolution at an EP. In the following,
we at first present two examples of coalescing edge states in
SSH-like models. Then we study the dynamical preparation
of a two-dimensional (2D) edge state.

A. SSH chain

We start our investigation by considering a SSH chain
with single unidirectional hopping across two ends, with the
Hamiltonian in the form

H0 = 1

2

2N−1∑
l=1

[1 + (−1)lδ]a†
l al+1 + H.c.,

H ′ = κa†
1a2N , (28)

where a†
l is the creation operator of the fermion or boson at

the lth site. It is a bipartite lattice, i.e., it has two sublattices
A, B such that each site on lattice A has its nearest neighbors
on sublattice B, and vice versa. The Hermitian system H0 is
the prototype of a topologically nontrivial band insulator with
a symmetry-protected topological phase [46,47]. In recent
years, it has attracted much attention and extensive studies
have been demonstrated [48–53]. The degenerate zero modes
take the role of a topological invariant in the infinite N limit
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(a)

(b)

y

x

FIG. 3. (a) Schematic illustration of the SSH chain. The unidirec-
tional hopping κ pointing from the head to the tail of the SSH chain
is denoted by a red arrow. Two degenerate edge states |R〉 (yellow)
and |L〉 (blue) appear when taking κ = 0. When κ �= 0, there only
exists a coalescing state |L〉. (b) Schematic illustration of the SSH
cylinder. The details of the couplings are shown in the inset, wherein
the unidirectional coupling is indicated by the red arrow.

and are explicitly expressed as

|L〉 = 1√



N∑
j=1

(
δ−1
δ+1

) j−1
a†

2 j−1|Vac〉,

|R〉 = 1√



N∑
j=1

(
δ−1
δ+1

)N− j
a†

2 j |Vac〉,
(29)

for δ > 0 where the normalization factor is 
 = {1 −
[(δ − 1)/(δ + 1)]2N }/{1 − [(δ − 1)/(δ + 1)]2}. It is easy to
check that

a2N |L〉 = a1|R〉 = 0, (30)

which results in

H ′|L〉 = (H ′)†|R〉 = 0. (31)

According to the aforementioned theorem, |L〉 is a coalescing
edge state. In previous work [54], it has been shown that two
bound states appear in the bulk of a chain when a strong bond
is replaced by a tiny one. Now we take it as a unidirectional
hopping as described in H ′. In this sense, it is not surprising
that a single bound state |L〉 can appear in the bulk of a
finite size but sufficiently long chain. The profiles of the edge
modes are schematically illustrated in Fig. 3(a). In contrast,
when the unidirectional hopping replaces a weak bond, no
zero mode appears. Therefore, the topological feature can
be demonstrated by adding a non-Hermitian impurity, as a
generalization of the bulk-edge correspondence.

B. SSH cylinder

A similar situation can occur in a 2D system by adding
a local non-Hermitian impurity. In the following we present
an example of a 2D system, which is an extended 2D SSH
cylinder. The 2D SSH cylinder consists of M (even) chains
which are uniformly coupled,

H0
sc =

M∑
j=1

2N−1∑
l=1

[
1 + (−1)lδ

]
a†

j,l a j,l+1

+J
M∑

j=1

2N∑
l=1

a†
j,l a j+1,l + H.c., (32)

and a perturbation on the boundary,

H ′
sc = κa†

1,1aM,1, (33)

where j (l) is the index of row (column), and a†
j,l is the

creation operator of the fermion or boson at the site ( j, l).
Therefore, the Hamiltonian of the SSH cylinder reads Hsc =
H0

sc + H ′
sc. Figure 3(b) shows the schematic illustration of the

SSH cylinder, where the red arrow in the inset represents the
perturbation. H sc

0 has four degenerate local zero modes, two
of which localize at the left boundary,

|Le〉 = 1√



M/2∑
j=1

N∑
l=1

( δ−1
δ+1 )l−1a†

2 j,2l−1|Vac〉,

|Lo〉 = 1√



M/2∑
j=1

N∑
l=1

( δ−1
δ+1 )l−1a†

2 j−1,2l−1|Vac〉,
(34)

where 
 = M/2{1 − [(δ − 1)/(δ + 1)]N }/{1 − [(δ −
1)/(δ + 1)]2}. It is not hard to check that

H ′
sc|Lo〉 = 0, (H ′

sc)†|Le〉 = 0, (35)

which means |Lo〉 is a coalescing edge state of Hsc, and |Re(o)〉
remain degenerate states, H |Re(o)〉 = 0.

C. Dynamical preparation of edge state

It seems that DP and EP systems are totally different.
Taking H ′ → κH ′ to impose a strength on the non-Hermitian
term, one can investigate the effect of H ′ on the system
quantitatively. Intuitively, a small change of κ from zero can
result in a drastic change. However, in the following, we
will show that there exists a continuous crossover between
them. We measure the signature of the system by detecting
the dynamics of the observable, such as the time evolution
of particle probability. As the application of the theorem, the
relationship between time and particle probability is another
approach to prepare the edge modes.

We consider a two-site system as the simplest example for
the obtained theorem, which has the Hamiltonian

H2s = κa†
1a2 + ε0(a†

1a1 + a†
2a2), (36)

where a†
i (i = 1, 2) is the creation operator of the fermion or

boson. The time evolution operator has the form

U (t ) = exp(−iH2st )

= exp[−iε0(a†
1a1 + a†

2a2)t] exp(−iκa†
1a2t ), (37)
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which drives the time evolution for an initial state |ψ (0)〉,
|ψ (t )〉 = U (t )|ψ (0)〉. (38)

(i) In the case of κ = 0, we have

|ψ (t )〉 = exp[−iε0(a†
1a1 + a†

2a2)t]|ψ (0)〉. (39)

Then for an initial state with fixed particle number, i.e.,
(a†

1a1 + a†
2a2)|ψ (0)〉 = n|ψ (0)〉 with n being the particle

number, U (t ) only contributes a phase factor to |ψ (0)〉.
(ii) In the case of κ �= 0, we have

exp(−iκa†
1a2t ) =

∑
m=0

1

m!
(−iκa†

1a2t )m. (40)

Then the time evolution of the coalescing state |ψc〉 =
a†

1|Vac〉 is

U (t )|ψc〉 = exp (−iε0t )|ψc〉, (41)

while the time evolution of the auxiliary state |ψa〉 =
a†

2|Vac〉 is

U (t )|ψa〉 = exp (−iε0t )(|ψa〉 − iκt |ψc〉), (42)

where we have used the identity (a†
1a2)2|ψa〉 = 0. The differ-

ence between a DP and EP is obvious when κt 
 1. However,
within the timescale t � 1/κ , the dynamics under the DP and
EP has no difference. It indicates that the crossover from a
DP to EP is continuous. Similarly, it has been shown that
a non-Hermitian system around an EP exhibits some pecu-
liar critical dynamics as an EP [36]. For a multiboson case,
see Eq. (6).

Equation (42) indicates that the time evolution of the coa-
lescing state linearly depends on time t , so the evolved state is
approximately equal to |ψc〉 for the relatively large timescale.
When |ψc〉 is a localized coalescing state, the dynamical
preparation of the robust edge state is as follows. Consider
the time evolution driven by Hamiltonian Hsc, so the initial
state is

|ψ (0)〉 = 1√
M/2

M/2∑
j=1

a†
2 j−1,1|Vac〉, (43)

which is just |Le〉 when δ infinitely approaches 1. Figure 4(a)
exhibits numerical simulations of |ψ (t )〉, where the system
size is N = 100, M = 20. We only show the region N � 30
because the probability is almost zero in the other region.
Figure 4(b) exhibits the fidelity

F (t ) = 〈Lo |ψ (t )〉 (44)

to evaluate the closeness of the evolved state |ψ (t )〉 and the
coalescing edge state |Lo〉. In Fig. 4(a), we show the probabil-
ity distribution of |ψ (0)〉 in the real space, where the fidelity
is almost zero. Before t = 100, the probability distribution of
|ψ (t )〉 is presented as an unstable stripe, and the fidelity has
a small value. At t = 200, the stripe tends to be stable and
is similar in appearance to the edge state, where the fidelity
reaches to around 0.9. At t = 800, we get a stable stripe, and
the fidelity is close to 1 which indicates that |ψ (t )〉 is the
coalescing edge state. Our numerical results show that the EP
dynamics based scheme has better efficiency. The setting of
the system parameters is expected to provide guidance for the
experiment.

1
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20

1 10 20 30

1

10

20
1 10 20 30

x 10-2

(a)

0 200 400 600 800
0

0.5

1
(b)

FIG. 4. (a) Snapshots of the probability distribution at various
time moments for initial excitation in Eq. (43). The probability is
normalized at any moment. The system size is M = 20, N = 100 .
Only the limited region within N = 30 is shown because the intensity
is almost vanishing outside this area. The other parameters are δ =
0.1, J = 1, and κ = 0.5. (b) The fidelity between the evolved state
|ψ (t )〉 and the coalescing edge state |Lo〉. The units of time are 1/J .

VI. SUMMARY

In summary, we have developed a theory for a class of
non-Hermitian Hamiltonians which supports robust EPs. Such
a Hamiltonian consists of two separate parts, the Hermitian
and non-Hermitian ones. The Hermitian Hamiltonian has de-
generate eigenstates, which coalesce into a single state by
the non-Hermitian part. The most fascinating and important
feature of such systems is that the EP is not sensitive to
the strength of the non-Hermitian perturbation. As examples,
we have investigated three types of systems: (i) a uniform
ring system with a single asymmetric hopping term, in which
several pairs of degenerate states become coalescing states,
(ii) a uniform ladder system with long-range power-law de-
caying imaginary hopping terms, in which the degenerate
spectrum becomes a coalescing spectrum, and (iii) a SSH-
like system in a nontrivial topological phase with a single
asymmetric hopping term, in which the degenerate edge state
becomes a coalescing edge state. We also demonstrated the
application of the EP dynamics based on a numerical sim-
ulation. It was shown that the 2D coalescing edge state can
be generated by a local initial state. Our findings offer a
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method for the efficient construction of a robust EP system
and are expected to be necessary and insightful for quantum
engineering.
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