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Geometric wavefront dislocations of RKKY interaction in graphene
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Magnetically doped graphene has great potential for applications in spintronics, in which local magnetic mo-
ments are coupled by the Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction. RKKY interaction in graphene
has attracted intensive interest. However, previous studies only show the features of the RKKY interaction
dictated by energy dispersion, leaving the effect of the geometric nature of electronic structures unexplored. Here,
we focus on the short-range oscillation behaviors of RKKY interaction contributed by intervalley scattering.
Due to the unique geometric nature of electronic structures, two wavefront dislocations emerge in the RKKY
interaction corresponding to winding number 1 of graphene. We further demonstrate the robustness of wavefront
dislocations against the doping, trigonal warping, and gap opening of energy bands. This study reveals a unique
feature for the RKKY interaction and implies the importance of the geometric nature of electronic structures for
magnetism.
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I. INTRODUCTION

Graphene, due to its unique electronic structure, exhibits
novel physical properties and has great potential applications
[1]. Graphene-based spintronics is very promising due to the
long spin relaxation and decoherence time [2]. However, in-
trinsic graphene is nonmagnetic, which hinders its application
in spintronics. One way to surmount this obstacle is to intro-
duce the magnetic moments into graphene [3], e.g., through
the carbon vacancy [4] or substitutional magnetic atoms [5,6].
Usually, the introduced magnetic moments are away from
each other and have no direct coupling, but they can be cou-
pled indirectly by the propagation and interference of itinerant
carriers in graphene, i.e., the Rudermann-Kittel-Kasuya-
Yosida (RKKY) interaction [7–9]. The RKKY interaction
plays a crucial role in fundamental physics and realistic ap-
plications, e.g., it is responsible for the formation of different
magnetic phases in diluted magnetic systems [10] and is the
underlying mechanism for applications in spintronics [11–13]
and scalable quantum computation [14,15]. Such importance
makes the RKKY interaction a central topic in the field of
graphene since its discovery [16–36].

The intensive studies demonstrate some main features of
RKKY interaction in uniform graphene, which are caused
by two factors, i.e., system dimension and energy disper-
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sion [3]. The RKKY interaction in a two-dimensional system
should have an R−2 decay rate with R being the impurity
spacing. In doped graphene, the RKKY interaction assumes
the expected decay and oscillates in the period of a half
Fermi wavelength which originates from the energy disper-
sion [23]. In undoped graphene, the linear energy dispersion
with electron-hole symmetry dictates the very remarkable
RKKY interaction such as the R−3 decay rate and the sublat-
tice dependence (ferromagnetic/antiferromagnetic interaction
between moments on the same/opposite sublattice sites) [18].
Except for the unique energy dispersion, the electronic struc-
ture of graphene possesses geometric ingredients, e.g., the
Berry phase π in gapless graphene [1] or the invariant winding
number 1 in gapless and gapped graphene [37]. The geometric
quantities underlie a lot of exotic phenomena in graphene such
as Klein tunneling [38,39] and the unconventional quantum
Hall effect [40–42]. However, it is not clear how the geometric
nature of the electronic structure acts on the RKKY inter-
action, which is a fundamental question for graphene-based
spintronics.

With the wave propagation and interference, singular
wave defects may occur, namely, wavefront dislocations [43].
Wavefront dislocations inherit the singularity of a wave field,
at which the wave amplitude vanishes, leading to an inde-
termination of the phase [43]. Since the seminal discovery
[43], they have become a fundamental and ubiquitous wave
phenomenon possible in any wave field [44]. Recently, they
have been observed by two experiments [45,46] in Friedel
oscillations induced by the vacancy in graphene. We call
them geometric wavefront dislocations (GWDs) since they are
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explained by the Berry phase in gapless graphene [45,46]
and/or the winding number in gapless and gapped graphene
[47,48]. In light of the overlap in the physics underlying
Friedel oscillations and RKKY interaction [7–9,49], i.e., the
propagation and interference of itinerant carriers, we expect
the emergence of GWDs in RKKY interaction. In this paper,
we revisit the RKKY interaction in graphene and further fo-
cus on the intervalley scattering contribution, demonstrating
the GWD and their robustness against the doping, trigonal
warping, and gap opening of the energy band. As a result,
we introduce a unique feature for the RKKY interaction
in graphene with the geometric origin in contrast to the
well-known features due to the energy dispersion, which pre-
liminarily associates the RKKY-induced magnetism with the
geometric nature of an electronic structure.

The rest of this paper is organized as follows. In Sec. II,
we introduce the standard theoretical formalism for the cal-
culations of the RKKY interaction in graphene. In Sec. III,
we present our numerical results to show the emergence and
robustness of GWD in intrinsic graphene (without doping
and gap opening), doped graphene (without gap opening),
and gapped graphene. Finally, we briefly summarize the main
results of this paper in Sec. IV.

II. THEORETICAL FORMALISM

In this section, we introduce the model structure and the
convention used to express the theoretical formalism for the
RKKY interaction in graphene, which is rather brief since
there are a lot of relevant studies [16–36].

A. Preliminary model Hamiltonian

Figure 1(a) shows the honeycomb lattice of graphene con-
sisting of two sublattices (denoted by A and B in dashed
ellipse). The tight-binding Hamiltonian of graphene is [1]

Ĥ0 = t
∑
〈i, j〉

|i, A〉〈 j, B| + H.c., (1)

where 〈i, j〉 sums over all the electron hopping between the
nearest-neighbor carbon atoms, |i, τ 〉 (τ = A, B) is the πz

orbital on the sublattice site τ of unit cell i. For brevity,
we use the magnitude of the nearest-neighbor hopping (i.e.,
t0 = −t due to t < 0) and the lattice constant a0 as the energy
and length units from now on. One can obtain the energy
dispersion through the standard Fourier transform [50], and
we make the Fourier transform using the location {R} of the
carbon sites,

|k, τ 〉 ≡ 1√
N

∑
i

eik·R |i, τ 〉, (2)

which transforms the basis {|i, τ 〉} into the basis {|k, τ 〉}.
Thus, the Hamiltonian in momentum space has a form

Ĥ0 =
∑

k

f (k)|k, A〉〈k, B| + H.c., (3)

where

f (k) = −
∑

m=1,2,3

eik·dm , (4)

FIG. 1. Schematic RKKY interaction in graphene and the inter-
valley scattering contribution with the geometric origin. (a) Real-
space structure of graphene with the unit cell consisting of two
carbon atoms (dashed ellipse), one on sublattice A and one on sub-
lattice B. For two local magnetic moments S1 and S2, they couple
indirectly with each other through the itinerant electron states in
graphene, namely, RKKY interaction. (b) Momentum-space struc-
ture of graphene with the six famous Dirac cones K1−6. The RKKY
interactions are mainly contributed by the backscattering events of
propagating electron states between S1 and S2. When S2 rotates
around S1 in real space [blue arrow and circle in (a)], the contributing
states to RKKY interaction change the momenta along the isoenergy
contour, e.g., intervalley scattering between K1 and K2 in (b). As a
result, the RKKY interaction should reflect the nontrivial geometric
nature of electronic structure of graphene since Berry phase or wind-
ing number is defined for the circling motion of electronic states in
momentum space.

and dm denotes the relative displacements of the three nearest-
neighbor B sites with respect to the A sites:

d1 =
(

1

2
,−

√
3

2

)
, (5a)

d2 =
(

1

2
,

√
3

2

)
, (5b)

d3 = (−1, 0). (5c)

To diagonalize the Hamiltonian in the momentum space, the
energy dispersion is given by

E±(k) = ±
√

3 + 2 cos(
√

3ky) + 4 cos
3kx

2
cos

√
3ky

2
, (6)

which presents six Dirac points at the edge of the first Bril-
louin zone, i.e., K1−6 [cf. Fig. 1(b)]. Due to K1, K3, K5

(K2, K4, K6) being related to each other through a reciprocal
basis vector, only two Dirac points are inequivalent, e.g., K1

and K2, and we have

K1 = 2π

3

(
1,

1√
3

)
, (7a)

K2 = 2π

3

(
1,− 1√

3

)
. (7b)

Around the Dirac points, we can define the winding number
[37]

WC ≡
∮

C

dθ

2π
= 1, (8)
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with

θ = −arg f (k). (9)

In graphene, the winding number always equals 1 for the elec-
tronic states of the whole energy band, even there is one gap
[37]. So, the winding number is one more intrinsic quantity
than Berry phase π in gapless graphene when the low-energy
linear dispersion is considered. We have identified the winding
number as the underlying mechanism of robust GWDs of
Friedel oscillations in gapped graphene [47,48]. Based on this
deep understanding, we expect the emergency of GWDs of
RKKY interaction in graphene.

B. RKKY interaction

The RKKY interaction is the usual long-range coupling
among the local magnetic moments in the diluted doped
host system [10]. To consider two local moments Ŝ1,2 at
R1,2 [cf. Fig. 1(a)], they couple to the carrier spin density
ŝ(x) = ŝδ(r̂ − x), respectively, via the s-d exchange inter-
action −λ

∑
l=1,2 Ŝl · ŝ(Rl ) with λ the coupling strength.

Then, each local moment can excite the spin density fluc-
tuation of the itinerant carriers, whose propagation between
Ŝ1,2 realize their indirect coupling, i.e., RKKY interaction
[7–9]. At zero temperature, the RKKY interaction ĤRKKY =∑

α,β=x,y,z Jαβ Ŝ1,α Ŝ2,β is characterized by the RKKY tensor
[51–53]

Jαβ (EF ) = − λ2

π

∫ EF

−∞
Im Trspin G(R1, R2, ε)ŝβ

× G(R2, R1, ε)ŝαdε, (10)

which is determined by the Green’s function (GF) or propaga-
tor G(R2, R1, ε) ≡ 〈R2|(ε + i0+ − Ĥ0)−1|R1〉 of the carriers
between the localized spins. For the system without spin-
orbit coupling, e.g., the graphene considered in this paper,
the RKKY interaction assumes the Heisenberg form ĤRKKY =
Jττ ′ Ŝ1 · Ŝ2, where the scalar range function is

Jτ ′τ (EF , R) = − λ2

2π

∫ EF

−∞
dε Im G2

ττ ′ (R2, R1, ε). (11)

To arrive at Eq. (11), the time-reversal symmetry dictat-
ing Gττ ′ (R1, R2, ε) = Gτ ′τ (R2, R1, ε) has been used [52].
Here, R = R2 − R1, and τ , τ ′ = A or B are implicitly de-
termined by R1,2 of Ŝ1,2. According to Eq. (11), the key is
to calculate the GF. For the calculation of the GF, we have
developed an efficient wave function approach [54], which
fully utilizes the translational invariant symmetry of the host
system and reduces the calculation of the two-dimensional GF
into the one-dimensional analytical GF plus one integral
over the periodic momentum. Our numerical approach sup-
ports the long-range calculations of RKKY interaction needed
for the filtered Fourier transform as shown in the next sec-
tion. Note that one possible alternative approach to tackle the
massive amount of numerical calculations is presented in one
recent paper [55] and is developed in the same spirit as ours.
In this paper, we focus on the RKKY interaction contributed
by the intervalley scattering, so the filtered Fourier trans-
form is needed, which can be separated into two steps. First,
Jττ ′ (EF , R) is transformed from real space into momentum

space:

Jττ ′ (EF , k) =
∑

R

e−ik·RJττ ′ (EF , R). (12)

To obtain the numerical convergence, R should be large
enough, in particular, when Jττ ′ (EF , R) oscillates. Second, we
perform the inverse transform:

Jττ ′ (EF , R) = 1

Nk

∑
k∈kfilter

eik·RJττ ′ (EF , k). (13)

Here, the summation is over momentum k in the limited
region kfilter including Nk points. For example, kfilter comprises
two nonzero regions around two central momenta ±(K2 −
K1) when one considers the intervalley scattering between
valleys K2 and K1.

III. RESULTS AND DISCUSSIONS

As a significant underlying mechanism for graphene-based
spintronics, the RKKY interaction has attracted wide interest
and a lot analytical and numerical efforts have been made
[16–36]. In this section, we revisit the RKKY interaction in
graphene and focus on the intervalley scattering contribution.

Before presenting the numerical results, we qualitatively
discuss the existence of the GWD in the RKKY interaction.
The wavefront dislocations as a ubiquitous wave phenomenon
may occur in any wave field [44]. In particular, they are
observed in Friedel oscillations in graphene on which the
vacancy is intentionally introduced [45,46]. We expect the
existence of GWD in the RKKY interaction based on two
reasons. On one hand, Friedel oscillations and the RKKY
interaction share the identical physics, i.e., the propagation
and interference of electron waves of the host system, which
qualitatively ensures the emergency of GWD. Second, Friedel
oscillations and the RKKY interaction are both two-point
responses of the host system. In the former, the two-point
measurement is realized by one vacancy plus the tip of scan-
ning tunneling microscopy (STM) while it is through two
local magnetic moments in the later. Thus, if we shift one
local moment around the other fixed local moment, in analogy
to scanning the tip of STM around the fixed vacancy to mea-
sure Friedel oscillations, we expect the possible emergence
of GWD in the RKKY interaction. In addition, the observa-
tion of GWDs in Friedel oscillations depends on the relative
sublattice sites on which the vacancy and the tip of STM
place. Thus the RKKY interaction between two moments on
the same sublattices should differ significantly from that on
the opposite sublattices. The qualitative emergence of GWD
are also favored by the analytical formulas of the RKKY
interaction (see the Appendix for the relevant derivations),
e.g., the GWD in Friedel oscillations are shown by plot-
ting the intervalley scattering parts of the analytical formulas
on the artificial continuous points [45,46]. The Appendix is
applicable to intrinsic, doped, and/or gapped graphene in
the linear dispersion regime. However, realistic experiments
are performed on the discrete sites and the doping may go
beyond the linear dispersion of graphene. Subsequently, we
numerically demonstrate the emergence and/or robustness of
the GWD for the RKKY interaction in intrinsic graphene, in
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FIG. 2. The range function of RKKY interaction in intrinsic graphene (without gap opening and doping) and geometric wavefront
dislocations. (a), (b) [(c), (d)] for JAA (JAB) and its filtered Fourier transform. JAA or JAB features zero or two wavefront dislocations as shown
in (b) or (d). Here, the range function is multiplied by R3 to account for the decay factor R−3 of RKKY interaction in intrinsic graphene.

doped graphene with special attention on the trigonal warping,
and in gapped graphene. We hope these numerical simulations
are helpful to future experiments.

A. Intrinsic graphene

For intrinsic graphene without gap opening and doping,
Fig. 2 shows the range function of RKKY interaction between
two local magnetic moments. In Fig. 2 and similar figures
elsewhere, we fix one local magnetic moment at the coordi-
nate origin and scan the position R2 = (x2, y2) of the other
magnetic moment. The top (bottom) row of Fig. 2 is for JAA

(JAB), representing the RKKY interaction between two local
magnetic moments on the same (opposite) sublattice sites.
Here, the range function is multiplied by R3 to avoid the fast
decay R−3 of RKKY interaction in intrinsic graphene [22]. In
Figs. 2(a) and 2(c), the rather long-range RKKY interactions
are shown for JAA and JAB, which are necessary to perform
the further filtered Fourier transform. Figures 2(a) and 2(c)
show no particular fine structure except the short-range os-
cillations induced by the intervalley scattering, which can
also be obtained analytically with the proper cutoff technique
for the energy integral in deriving the RKKY interaction.
There are six Dirac cones in graphene [cf. Fig. 1(b)], which
determines three different characteristic vectors correspond-
ing to the momentum change of intervalley scattering, and
three different characteristic vectors are related to each other
through C3 symmetry. Figures 2(b) and 2(d) are plotted by
performing the filtered Fourier transform to Figs. 2(a) and
2(c), in which we focus on the intervalley scattering between

K1 and K2 without loss of generality, i.e., the short-range
oscillating wavefronts are perpendicular to K1 − K2 with the
period 2π/(K1 − K2) = 2.6a0. The GWDs are visible (invis-
ible) in Fig. 2(d) [Fig. 2(b)]. The emergence of the GWD and
its sublattice dependence can also be explained by the analyt-
ical formulas for JAA and JAB in undoped graphene (see the
Appendix for the derivation of RKKY interaction for intrinsic
graphene):

JAA(EF = 0, R) ∝ 1 + cos[(K1 − K2) · R2], (14)

JAB(EF = 0, R) ∝ 1 − cos[(K1 − K2) · R2 − 2θR2 ]. (15)

Here, θR2 is the azimuthal angle of R2, which also represents
the relative vector between two local magnetic moments since
R1 = 0. R2 has the vanishing amplitude when the second
magnetic moment is also at the coordinate origin, and then
leads to the singularity of JAB as a wave field. The GWD
of the RKKY interaction in intrinsic graphene should be ex-
plained by the Berry phase π or winding number 1. Note
that in intrinsic graphene, there is zero Fermi surface and no
Friedel oscillations as the Fermi surface property. Therefore,
the GWD in the RKKY interaction should be due to the
valence band states since it includes the energy integral over
the whole valence band.

B. Doped graphene

To consider the effect of doping, Fig. 3 shows the range
function of RKKY interaction in doped graphene. In the light
of the sublattice dependence of the GWD, we focus on JAB
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FIG. 3. The range function of RKKY interaction in doped graphene (without gap opening) and geometric wavefront dislocations. (a),
(b) [(c), (d)] for JAB and its filtered Fourier transform with EF = 0.15t0 (0.5t0). Except the usual half Fermi wavelength oscillations, the
wavefront dislocations emerge in (b) and (d) although in (d) they are blurred by the intravalley scattering induced short-range oscillations due
to the short Fermi wavelength and by trigonal warping near the coordinate origin. Here, the range function is multiplied by R2 to account for
the decay factor R−2 of RKKY interaction in doped graphene.

later. In the top row of Fig. 3, EF is tuned in the linear regime
of energy dispersion and EF = 0.15t0 is used [1]. In Fig. 3(a),
the intervalley scattering induced short-range oscillations per-
sist as those in intrinsic graphene. The long-range oscillations
occur corresponding to the intravalley scattering, and have
the period of half Fermi wavelength which is ∼π/kF =
π/(EF /vF ) = 31.4a0 with vF = 1.5a0t0. The GWD can be
clearly seen in Fig. 3(b) filtered from Fig. 3(a). And the
robustness of GWD against the doping in linear energy dis-
persion has been checked by using the other values of EF

(not shown here). In fact, the GWD in doped graphene is
also assured by the analytical formula (see the Appendix for
the derivation of RKKY interaction for doped graphene), i.e.,
JAB(EF �= 0, R) ∝ JAB(EF = 0, R) holding the singularity of
θR2 . With increasing doping, it is well-known that the Fermi
surface of graphene becomes trigonal warping [1]. Trigonal
warping has a profound effect on the electron propagation in
graphene, e.g., it causes the broken chirality in STM mea-
surements [56] and modifies focusing behaviors [57–60] and
perfect transmission [50] across graphene junctions. Whether
trigonal warping affects the existence of GWD is not clear,
even for Friedel oscillations. Due to the complexity induced
by trigonal warping, the RKKY interaction and Friedel os-
cillations both cannot be derived analytically, which calls for
numerical treatment. In the bottom row of Fig. 3, we use

EF = 0.5t0 beyond the linear energy dispersion of graphene.
The GWDs persist in Fig. 3(d) but are blurred by (not the
intravalley scattering) the envelop oscillations with the short
wavelength corresponding to the finite Fermi surface at large
doping and by trigonal warping near the coordinate origin.
The blurred GWD can be highlighted through the gap opening
of graphene as shown in the next section.

C. Gapped graphene

Gapped graphene has paramount importance as gapless
graphene viewed from the fundamental physics [61,62] and
potential applications [63]. There are many ways to achieve
the gap opening of graphene, and the gap opening usually
introduces different on-site potentials for two sublattice sites
of graphene [64]. To be specific, we assume that the gap open-
ing introduces the additional term Ĥ
 = 


∑
i |i, A〉〈 j, A| −



∑

j | j, B〉〈 j, B|) to the Hamiltonian Ĥ0. Our numerical ap-
proach is well applicable for gapped graphene [54]. In Fig. 4,
we show the range function JAB of RKKY interaction in
gapped graphene. In the top row of Fig. 4, we use EF =
0.15t0 and the very actual gap value 
 = 0.033t0 [65,66]. The
GWDs are clearly shown in Fig. 4(b) filtered from Fig. 4(a)
as expected, since they also emerge in Friedel oscillations in
gapped graphene [47,48]. In the bottom row of Fig. 4, we use
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FIG. 4. The range function of RKKY interaction in gapped graphene and geometric wavefront dislocations. (a), (b) [(c), (d)] for JAB and
its filtered Fourier transform with EF = 0.15t0 and 
 = 0.033t0 (EF = 0.5t0 and 
 = 0.4t0). Gap opening leads to the longer half Fermi
wavelength oscillations and the clear wavefront dislocations in (b) and (d), which counteracts the effect of trigonal warping in (d). Here, the
range function is multiplied by R2 to account for the decay factor R−2 of RKKY interaction in gapped graphene.

EF = 0.5t0 and 
 = 0.4t0. The large gap effectively deduces
the Fermi wave vector, then elongates the oscillation period
of RKKY interaction contributed by the intravalley scattering
as shown by Fig. 4(c). Performing the filtered Fourier trans-
form to Fig. 4(c), we obtain Fig. 4(d) which shows the clear
GWD although the presence of trigonal warping of the energy
band. So, the gap opening can counteract the effect of trigonal
warping on the GWD.

D. Discussions

To be here, the robust GWD of RKKY interaction in
graphene has been demonstrated; some discussions follow.
The RKKY interaction in graphene has been studied very
well [16–36] and its calculation and description are very con-
sistent. The usual cognition is that the RKKY interaction is
dictated by the energy dispersion of the electronic structure.
The modern electronic structure theory surpasses the tradi-
tional energy band description [67] and is enriched by the
new ingredients, e.g., the geometric nature of the electronic
structure such as Berry phase and the winding number. To
our knowledge, there is no relevant reference on the effect
of geometrical quantities on the RKKY interaction. Here, we
indeed find the interesting GWD, which may be important
for the RKKY-induced magnetism in diluted magnetic sys-
tems. This paper uses graphene as an example to show the
geometric effect of RKKY interaction, which is one prelim-
inary attempt. It is more interesting to explore the geometric

effect of magnetism due to the RKKY interaction, in partic-
ular, in the system with the rich RKKY interaction terms,
e.g., Dzyaloshinskii-Moriya and Ising terms occur in spin-
orbit coupling systems [51,53], except the Heisenberg term in
graphene.

IV. CONCLUSIONS

The RKKY interaction is a basic mechanism for mag-
netism and spintronics, and in graphene it attracts wide
interest. Previous studies showed that the features of the
RKKY interaction in graphene are dictated by the energy
dispersion. For Friedel oscillations, two recent experiements
[45,46] revealed the fingerprint of the geometric nature of the
electronic structure, i.e., GWDs. The RKKY interaction and
Friedel oscillations both originate from the propagation and
interference of the electron waves, so we revisit the RKKY in-
teraction in graphene and focus on the short-range oscillation
behaviors of RKKY interaction contributed by the intervalley
scattering. For the RKKY interaction in graphene, we demon-
strate the emergence and/or robustness of GWDs against the
doping, trigonal warping, and gap opening of energy band. In
light of the successful observation of the RKKY interaction
[68], we expect the observation of the wavefront disloca-
tions of the RKKY interaction on the nanometer scale in the
present experimental condition. This paper reveals a unique
feature for the RKKY interaction and associates the RKKY-
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induced magnetism with the geometric nature of electronic
structures.
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APPENDIX: THE ANALYTICAL RKKY INTERACTION IN
INTRINSIC, DOPED AND/OR GAPPED GRAPHENE

In this Appendix, we derive analytical expressions for the
RKKY interaction in graphene based on the continuum model.
In the low-energy continuum limit of the tight-binding model,
the Hamiltonian of gapped graphene is expressed as

hξ = vF (ξσxkx − σyky) + 
σz (A1)

by using the sublattice basis {A, B}. Here, ξ = ± denotes
two inequivalent valleys K1,2 of graphene, vF = 3/2a0t0 is
the Fermi velocity, σx,y,z is the Pauli matrix, and ±
 is the
staggered potential on sublattices A and B induced by the
breaking of the inversion symmetry. The RKKY interaction in
graphene assumes the Heisenberg form ĤRKKY = Jττ ′ Ŝ1 · Ŝ2,
where the scalar range function is

Jτ ′τ (EF , R) = − λ2

2π

∫ EF

−∞
dε Im[Gττ ′ (R2, R1, ε)

× Gτ ′τ (R1, R2, ε)], (A2a)

= − λ2

2π

∫ EF

−∞
dε Im

[
G2

ττ ′ (R, ε)
]
. (A2b)

Here, time-reversal symmetry has been used to arrive at the
second line [i.e., Eq. (11) in the main text], λ is coupling
strength between the local magnetic moment and the itinerant
electrons, EF is the Fermi level, and R = R2 − R1 due to the
translation invariance of the host system (namely, graphene)
for the magnetic moments. For the range function calcula-
tions, the key is to derive the GF in real space. For the electron
states of the energy ε, the valley-contrasting GF in real space
is

Gξ (R,ε) = 1

4π2

∫
d2keik·RGξ (k, ε). (A3)

It is the Fourier transform of the valley-contrasting GF in
momentum space,

Gξ (k, ε) ≡ 1

z − hξ

, (A4a)

= 1

z2 − 
2 − v2
F k2

[
z + 
 ξvF keiξθk

ξvF ke−iξθk z − 


]
,

(A4b)

where z = ε + i0+ with 0+ the positive infinitesimal quantity
for the retarded property of GF, and θk is the azimuthal angle

of the momentum k. As a result, we have

Gξ (R,ε) =
[ −iε+H0(u) ξ

√
ε+ε−H1(u)eiξθR

ξ
√

ε+ε−H1(u)e−iξθR −iε−H (1)
0 (u)

]
,

(A5)

where Hj is the jth order Hankel function of the first kind,
ε± = z ± 
, u = R

√
q+q− with q± = ε±/vF , and θR is the

azimuthal angle of R. Noting here θR in the nondiagonal
elements of Gξ (R,ε) inherits from θk in the nondiagonal el-
ements of Gξ (k,ε), this implies the synchronous change of
θR in real space and θk in momentum space. Since θk is used
to define the winding number [cf. Eq. (8) in the main text],
the synchronous θR and θk imply the profound connection
between the winding number and the real space physical
quantities determined by the GF, e.g., the Friedel oscillation
and the RKKY interaction. To collect the contributions of two
valleys, the whole GF in real space is

G(ε, R) = 1

4v2
F

[eiK1·RG+(R,ε) + eiK2·RG−(R,ε)]. (A6)

Substituting G(ε, R) into the range function, one can make the
straightforward derivations as done in Refs. [22,23]. However,
the usual results are not concise enough, except for intrinsic
graphene (EF = 0 and 
 = 0), for which the range functions
are

JAA(EF = 0, R) = − λ2

128πvF R3
[1 + cos (
K · R)], (A7)

JAB(EF =0, R) = 3λ2

128vF πR3
[1−cos (
K · R−2θR)]. (A8)

For the range functions JAA(EF = 0, R) and JAB(EF = 0, R),
the first constant (second envelope) term is contributed by
the intravalley (intervalley) scattering. 
K = K1 − K2 is the
momentum change corresponding to the intervalley scattering
between valleys K1 and K2. The analytical formulas agree
with those in Ref. [22] except one numerical factor, which
originates from the use of 4π2 in our Eq. (A3) but not the
reduced Brillouin zone area BZ = 8π2/(3

√
3a2

0) of graphene
in Ref. [22]. For doped and/or gapped graphene, we can
also derive concise analytical formulas which are not pre-
sented in the previous references. In the long-range limit,
the asymptotic expression for the Hankel function is Hn(u) ≈√

2/
√

πuei(u− π
2 n− π

4 ) with n = 0, 1 [69]. Thus, the asymptotic
expression for the matrix elements of G(ε, R) are

GAA(ε, R) ≈ q+e−i π
4

4ivF

√
2

πu
eiu(eiK+·R + eiK−·R ), (A9)

GBA(ε, R) ≈
√

q+q−e−i 3π
4

4vF

√
2

πu
eiu(eiK+·Re−iθR − eiK−·ReiθR ).

(A10)

Using the analytical matrix elements GAA(ε, R) and
GBA(ε, R), the range functions for doped and/or gapped
graphene are

JAA(EF , R) ≈ −
λ2(EF + 
)2 sin

(
2R

√
E2

F −
2

vF

)
16π2R2v2

F EF

× [1 + cos (
K · R)], (A11)
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JAB(EF , R) ≈
λ2(E2

F − 
2) sin

(
2R

√
E2

F −
2

vF

)
16π2R2v2

F EF

× [1 − cos (
K · R−2θR)]. (A12)

To realize the above analytical derivations, the stationary
phase approximation [70] has been used, and it implies the
integral over the energy for the range function is contributed
mainly by the electronic states near the Fermi energy EF ,
which leads to the Taylor expansion:

u ≈ R

vF

√
ε2

F − 
2 + REF

vF

(
E2

F − 
2)− 1
2 (ε − EF ). (A13)

Noting here, comparing to the intrinsic case, the intravalley
and intervalley terms of JAA(EF , R) and JAA(EF , R) both are
fringed by the additional envelope oscillations. As a result, for
the intrinsic, doped, and/or gapped graphene, the contribu-

tions of the intervalley scattering to the range functions have
the general form

J inter
AA ∝ cos (
K · R), (A14)

J inter
AB ∝ cos (
K · R−2θR). (A15)

Obviously, −2θR in JAB inherits from the GF GBA(ε, R),
while it is not absent in JAA since the GF GAA(ε, R) has no
θR. The singularity of −2θR, namely, it is indeterminate at
R = 0, leads to the emergence of the wavefront dislocations,
i.e., when shifting circularly one magnetic moment at R �=
0 around the other fixing magnetic moment at R = 0, the
Berry phase π or winding number 1 of graphene causes an
extra accumulation phase 4π , which is accommodated by two
wavefront dislocations. As a result, the wavefront dislocations
are visible (invisible) in JAB (JAA). So, the wavefront disloca-
tions of the RKKY interaction share the same mechanism as
those of Friedel oscillations [45,47].
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