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Microscopic calculation of polariton scattering in semiconductor microcavities
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Recent experiments in exciton-polariton systems have provided high-precision measurements of the value
of the polariton-polariton interaction constant, which is a key parameter that governs the nonlinear dynamics
of polariton condensates and potentially enables quantum correlated polaritons. Yet, until now, this parameter
has only been addressed theoretically using perturbative treatments or approximations that do not include the
composite nature of the excitons. Here, we use a recently developed microscopic description of polaritons
involving electrons, holes, and photons, where the interactions between charged particles are assumed to be
highly screened. Within this model, we perform an exact four-body calculation of the spin-polarized polariton-
polariton and polariton-exciton interaction constants. In the limit of weak light-matter coupling relevant to an
atomically thin semiconductor in a microcavity, we obtain excellent agreement with a recently proposed universal
form of low-energy polariton-polariton scattering [O. Bleu et al., Phys. Rev. Res. 2, 043185 (2020)]. At stronger
light-matter coupling, of relevance to multilayer microcavities, we observe that the interaction constant increases
towards that predicted by the Born approximation. We show that in all regimes of interest the interaction constant
can be accurately obtained from the exciton-exciton scattering phase shift at negative collision energy, and we
argue that this has important implications for interactions in other systems featuring strong light-matter coupling.
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I. INTRODUCTION

Exciton-polaritons are hybrid light-matter quasiparticles
resulting from the strong coupling between photons trapped
inside a microcavity and excitons in a two-dimensional (2D)
semiconductor [1,2]. Such microcavity polaritons provide a
powerful platform for the investigation of Bose-Einstein con-
densation [3,4], superfluidity [5–7], polariton lasers [8–10],
and topological phase transitions [11]. Many of these appli-
cations rely on the interactions within a polariton condensate,
or the interaction between condensed polaritons and an ex-
citonic reservoir. In particular, the nonlinear dynamics of a
polariton condensate has been successfully modeled by an
open-dissipative Gross-Pitaevskii equation [12] with nonlin-
ear interaction coefficients given by the polariton-polariton
and polariton-exciton interaction constants gPP and gPX, re-
spectively. Both of these are therefore of vital importance
for an accurate modeling of polaritonic systems. While ex-
perimental measurements have historically differed from each
other by several orders of magnitude [13,14], recently there
have been several high-precision measurements which have
narrowed down the possible range of interaction constants
[13,15–18].

Microscopically, the polariton nonlinearity originates from
their excitonic component. This has motivated the widely used
expressions for the polariton-polariton and polariton-exciton
interaction constants [19]:

gBorn
PP = |XLP|4gBorn

XX , gBorn
PX = |XLP|2gBorn

XX . (1)

Here, |XLP|2 is the excitonic fraction of the lower polari-
ton, and gBorn

XX is the exciton-exciton interaction constant

calculated within the Born approximation, assuming spin-
polarized polaritons. While there have been several proposed
corrections to these expressions (see, e.g., Refs. [19–23]),
until recently these have all been perturbative in nature. This
lack of progress towards determining these key parameters of
polariton physics is primarily due to the complexity of includ-
ing multiple electronic exchange processes, and the challenge
of taking into account the modification of the internal structure
of the exciton due to the coupling to light.

Recently, we have demonstrated that the polariton interac-
tion constant can be calculated exactly in the limit of weak
light-matter Rabi coupling relative to the 1s exciton binding
energy [24]. This result is, for instance, of direct applicabil-
ity to the emerging class of atomically thin transition metal
dichalcogenide (TMD) semiconductors, which feature tightly
bound excitons. Generalizing our result [24] to the polariton-
exciton interaction constant, we have the following universal
expressions for a single semiconductor layer:

gPP = 4π h̄2|XLP|4
mX ln

(
εX

2|ELP+εB|
) , gPX = 4π h̄2|XLP|2

mX ln
(

εX
|ELP+εB|

) , (2)

where ELP is the lower polariton energy measured from the
electron-hole band gap, and mX and εB are the 1s exciton
mass and binding energy, respectively. Importantly, just like
the Born approximation in Eq. (1), these expressions only de-
pend on a single parameter εX that characterizes the excitonic
interactions. Furthermore, since εX appears under a logarithm,
the resulting interaction constant is quite insensitive to its
precise value and thus εX may simply be replaced by the
exciton binding energy to a good approximation. Low-energy
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expressions such as Eq. (2) have already provided a possible
explanation [25] for the size of the polariton antibunching
observed in recent experiments [16]. It has also been shown
that gPP in Eq. (2) emerges in a Gaussian pair fluctuation
treatment of a polariton condensate [26].

Equation (2) was derived within a model that assumes
structureless (tightly bound) excitons [24]. In order to go be-
yond this to systems that feature larger light-matter coupling
relative to the exciton binding energy, such as GaAs quantum
wells or multilayer TMD systems, where the internal structure
of the excitons becomes important, one needs to introduce
the constituent electrons and holes explicitly into the theory.
The description of a polariton as a superposition of a photon
and an electron-hole pair has only recently been developed,
first in a model featuring Coulomb electronic interactions
[27] and later in the case of strongly screened interactions
[28–30]. These models can provide the basis of few-body
scattering calculations in exciton-polariton systems. However,
while there has been recent progress in exactly solving the
three-body problem with Coulomb interactions [31,32], such
calculations are highly challenging and have not yet been
carried out for the four-body problem (two electrons and two
holes) in the presence of coupling to light.

In this work, we use a diagrammatic approach to perform
a full four-body calculation of the polariton-polariton and
polariton-exciton scattering in a 2D semiconductor micro-
cavity. The calculation is based on the electron-hole-photon
polariton model with strongly screened Coulomb interactions,
which we have already successfully used to derive universal
features of polariton-electron scattering [29,30]. Within the
accuracy of the model, the diagrammatic approach sums all
contributions to the interaction constants, and it is thus ex-
act. Specifically, it includes all possible direct and exchange
processes present in the model as well as the saturation of the
exciton oscillator strength due to strong light-matter coupling.
In the case of small light-matter coupling, our calculations
perfectly match Eq. (2), providing further evidence for this
universal low-energy description of polariton interactions.
Whereas this simplified expression loses its validity when the
Rabi coupling is large, our full four-body calculation does not
suffer from this drawback. In particular, we find that the inter-
action constants approach the predicted results from the Born
approximation (1) in the regime of a very strong light-matter
coupling that exceeds the exciton binding energy. Thus, our
approach allows us to explore the full range of light-matter
coupling strengths, from the universal behavior at weak Rabi
coupling towards the perturbative regime at very strong cou-
pling. Finally, we find that a simple generalization of Eq. (2)
based on the exciton-exciton scattering phase shift at nega-
tive collision energy can accurately reproduce our calculated
interaction constants, a result which has general implications
for strongly coupled light-matter systems.

This paper is organized as as follows. In Sec. II, we present
the model Hamiltonian and review its properties including
the theoretical description of the resulting polariton states.
In Sec. III, we discuss in detail the full set of four-body
diagrams for the polariton-polariton scattering process, their
numerical solution, and the results for the interaction constant.
In Sec. IV, we extend our diagrammatic approach to the case
of polariton-exciton interactions, and in Sec. V we discuss

the extension of our theory to multilayer systems, and the
comparison with experimental data. In Sec. VI we conclude.
Technical details are given in the Appendixes.

II. HAMILTONIAN

A. Model

We consider a 2D semiconductor embedded in a microcav-
ity. The semiconductor can either be an atomically thin TMD
[33] or a conventional quantum well such as GaAs [34]. Our
aim is to calculate the scattering of identical polaritons, and
therefore we will throughout consider a spin-polarized sys-
tem. For simplicity, in the following we consider only bright
excitons that directly couple to light, and we specialize to a
single active layer; however, our results also apply with minor
modifications to multilayer systems that feature both bright
and dark excitons, as discussed in Sec. V. Approximating the
interaction between charged particles by a contact interaction,
we therefore use the Hamiltonian

Ĥ =
∑

k

(
εe

ke†
kek + εh

kh†
khk

) − V0

∑
kk′q

e†
kh†

q−khq−k′ek′

+
∑

k

(ω + εc
k )c†

kck + g
∑
k q

(
e†

kh†
q−kcq + H.c.

)
, (3)

where we work in units where h̄ and the system area are set to
unity. Here, the first line describes the semiconductor, while
the second line describes the coupling to a single photonic
mode inside the microcavity. e†

k, h†
k, and c†

k are creation oper-
ators with planar momentum k for electron, hole, and photon,
respectively. They have the corresponding dispersions εe,h,c

k =
k2/2me,h,c with effective masses me,h,c, where we have sep-
arated out the zero-momentum cavity photon energy in the
absence of light-matter coupling, ω. The contact electron-hole
interaction of strength −V0 serves as an approximation of the
highly screened Coulomb interaction, where the minus sign
implies an attractive interaction. On the other hand, owing to
Pauli exclusion, electrons (and holes) do not interact among
themselves. The last term describes the light-matter coupling
of strength g, where we have applied the rotating-wave ap-
proximation. Note that all energies are defined with respect to
the semiconductor band gap.

The coupling of light and matter in the semiconductor
microcavity leads to the formation of exciton polaritons.
These new quasiparticles are often described using a model
of two coupled oscillators consisting of the cavity photon
mode and the exciton [2]. Taking the exciton-photon coupling
to have strength � and the exciton energy at momentum k
to be −εB + εX

k , with εX
k = k2/2mX the exciton dispersion

and mX = me + mh the exciton mass, we have the coupled-
oscillator Hamiltonian

Ĥosc =
(−εB + εX

k �

� ω + εc
k

)
. (4)

Solving for the eigenstates, this then gives the upper (+) and
lower (−) polariton dispersions

Eosc
± (k) = − εB + 1

2

(
δosc + εc

k + εX
k

)
± 1

2

√
(δosc + εc

k − εX
k )2 + 4�2. (5)
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Here we have defined the photon-exciton detuning at normal
incidence δosc ≡ ω + εB. Within the coupled oscillator model,
the polaritons have the corresponding photon fraction

|Cosc
± (k)|2 = 1

2

⎛
⎝1 ∓ εX

k − δosc − εc
k√

(εX
k − δosc − εc

k )2 + 4�2

⎞
⎠, (6)

and exciton fraction |X osc
± (k)|2 = 1 − |Cosc

± (k)|2. The coeffi-
cients X , C are also known as Hopfield coefficients.

The model employed in this work is obviously more
complicated, as it explicitly includes electrons and holes
rather than a structureless exciton. In particular, the use of
contact light-matter and electron-hole interaction potentials
introduces ultraviolet divergences that must be cured by the
process of renormalization. This was first carried out in the
case of Coulomb electron-hole interactions in Ref. [27], and
for contact electron-hole interactions in Ref. [28]. In the fol-
lowing we use the scheme of Refs. [29,30] which has the
advantage that it is fully analytic.

The Hamiltonian (3) features an electron-hole bound state
with the appropriate dispersion, which we identify as the 1s
exciton state. In terms of the parameters of the model, the
exciton binding energy satisfies (see, e.g., Ref. [35])

1

V0
=

�∑
k

1

εB + εe
k + εh

k

, (7)

where � is an ultraviolet cutoff. Applying the same cutoff
to the light-matter interactions, we can relate the physically
meaningful Rabi coupling to the bare model parameters V0

and g via [29,30]

� = g

V0

√
2πεB

mr
, (8)

where m−1
r = m−1

e + m−1
h is the electron-hole reduced mass

and we take the limit � → ∞. The cavity photon-exciton
detuning within this model is

δ = ω + εB − �2

2εB
. (9)

We then obtain the polariton spectrum by solving the im-
plicit equation for the energy E [30]:(

δ − εB + �2

2εB
+ εc

k − E

)
ln

[
εX

k − E

εB

]
= �2

εB
, (10)

which yields two states below the electron-hole continuum
that starts at the band-gap energy.1 Defining the energy of
these two states to be E±(k), the associated photon fractions
are

|C±(k)|2 = 1

1 + (E±(k)−δ+εB− �2
2εB

−εc
k )

2

�2
εB

|E±(k)−εX
k |

, (11)

1The exception to this statement is cases where we have a very
large Rabi coupling and/or a large positive detuning, when instead
the upper polariton exists as a resonance in the continuum.

and |X±(k)|2 = 1 − |C±(k)|2. Reference [30] demonstrated
that Eqs. (10) and (11) very accurately match the results of
the simple coupled-oscillator model in Eqs. (5) and (6) for
Rabi couplings up to � ∼ εB.

Before moving on to utilize the above results, we dis-
cuss the relationship between our Hamiltonian in Eq. (3)
and realistic models of materials. In practice, electrons and
holes interact with each other via an unscreened or par-
tially screened Coulomb potential, for instance, the Keldysh
potential [36–38], which is long range. By contrast, the
contact interaction used here might appear as an oversimpli-
fication. Nevertheless, recent theoretical calculations on the
exact exciton-electron scattering in atomically thin semicon-
ductors [32] involving the Coulomb/Keldysh potentials have
obtained a phase shift that has the same universal behavior at
low collision energies as that obtained from the Hamiltonian
with contact interactions [30,39]. Physically, this is due to
the fact that exciton-electron interactions are of the charge-
induced dipole type and are therefore short range [40]. This
reasoning can be extended to the case of polariton-polariton
interactions where the underlying exciton-exciton interaction
is that of two induced dipoles, which is even shorter ranged
than exciton-electron interactions. Indeed, as we will see
below, the full four-body calculation matches the universal
low-energy behavior of two-particle scattering presented in
Eq. (2), in agreement with previous microscopic calculations
of exciton-exciton scattering [41] but in contrast to the Born
approximation [19].

B. Foundations of diagrammatic approach

In the diagrammatic approach to few-body problems in-
volving polaritons [29,30], we first need to define the relevant
propagators. The single-particle electron and hole propagators
at momentum k and energy E take the form

Ge,h(k, E ) = 1

E − εe,h
k + i0

, (12)

where in the denominator the infinitesimal +i0 shifts the
energy pole slightly into the lower half of the complex E plane
indicating the retarded Green’s function [42].

By considering the sum of all possible repeated inter-
actions between an electron and a hole in the absence of
light-matter coupling, we arrive at the electron-hole T matrix
at total momentum k and energy E [35]:

D0(k, E ) = 2π/mr

− ln
[

εX
k −E−i0

εB

] , (13)

the pole of which precisely corresponds to the exciton energy.
We will refer to this as the (unnormalized) exciton propaga-
tor. Including light-matter coupling, Ref. [30] found that the
electron-hole T matrix becomes

D(k, E ) = 2π/mr

− ln
[

εX
k −E−i0

εB

]
− �2

εB

1

E−δ+εB− �2
2εB

−εc
k+i0

. (14)

To distinguish Eq. (14) from the electron-hole T matrix in the
absence of light-matter coupling, we will refer to this as the
polariton propagator.
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=T TΓ Γ+

FIG. 1. Diagrammatic representation of Eq. (18) satisfied by the
polariton-polariton scattering T matrix (shaded square). 	 (white
square) is the sum of all two-polariton-irreducible diagrams. The po-
lariton propagator in Eq. (14) is represented by the double-line arrow.
The corresponding scattering momentum and energy are listed adja-
cent to each polariton propagator with E the total energy, ε = E/2
the energy per particle, and ε1,2 the energy difference for the incom-
ing and outgoing scattering pairs, respectively. Note that external
propagators are not included in T or 	.

The denominator of the polariton propagator in Eq. (14)
gives rise to two energy poles corresponding precisely to the
dispersions of upper and lower polaritons in Eq. (10). The
residue of the propagator at the poles gives the normalization
factors [30]

Z±(k)|X±(k)|2, (15)

where we define

Z±(k) = 2π |E±(k) − εX
k |

mr
. (16)

We see that the normalization in Eq. (15) is directly related to
the polariton exciton fraction [30].

In the remainder of this paper, we will restrict our attention
to the lower polariton branch, which is typically probed in
experiments investigating polariton interactions. For conve-
nience, we will therefore denote the polariton energy, exciton
Hopfield coefficient, and normalization at zero in-plane mo-
mentum by ELP = E−(0), XLP = X−(0), and ZLP = Z−(0).

III. POLARITON-POLARITON SCATTERING

We now proceed to solve the polariton-polariton (PP)
scattering problem exactly within the model introduced in
Sec. II. We take advantage of the diagrammatic techniques
that were first developed for three-body problems in nuclear
physics [43], and later extended to the four-body problem in
the context of cold-atomic gases [44–47]. Indeed, the model
Hamiltonian in cold atoms is precisely the same as the first
line of Eq. (3), i.e., the electron-hole problem with strongly
screened interactions and no coupling to light. For the case of
equal-mass atoms (carriers), the 2D low-energy dimer-dimer
(exciton-exciton) scattering has previously been calculated in
Ref. [48] using an alternative wave-function-based approach.

In the following, we will first outline the diagrammatic cal-
culation and then we will present the results both at weak and
at strong light-matter coupling relative to the exciton binding
energy. Finally, we will discuss how an extended version of
the universal low-energy expression in Eq. (2) allows us to
interpret our results across the whole range of light-matter
coupling strengths.

Γ = + χ

χ = + χ

(a)

(b)

+ (e ��h)

FIG. 2. Diagrammatic representation of the 	 and χ functions.
(a) 	 consists of a simple fermion exchange process and the infinitely
repeated polariton decomposition process represented by χ . (b) The
integral equation satisfied by χ . It represents a polariton decompos-
ing and recombining process such that one of the outgoing polaritons
is split into a free electron and hole. The last line represents the same
set of diagrams with electron and hole propagators being swapped.
The solid- and dashed-arrow lines represent the propagators of a free
electron and a free hole, respectively.

A. Four-body formalism

The PP scattering process can be readily calculated by
extending the diagrammatic approach developed for the scat-
tering of diatomic Feshbach molecules in an ultracold-atomic
gas [44–47] to include the polariton propagator in Eq. (14).
The fundamental difference is the following. In standard
scattering theory, a scattering process is calculated in the
center-of-mass frame of the interacting pair, where a partial-
wave expansion can be performed in which the partial waves
decouple [49]. In semiconductor microcavities, the light-
matter coupling results in a nonparabolic polariton dispersion.
This is a signature of a broken Galilean invariance, that
prevents the use of a Galiliean transformation between the
laboratory frame and the center-of-mass frame. The issue
of finding a reliable reference frame transformation for a
superposition of two quantum systems of different mass is
nontrivial [50], and likewise performing the calculation in
the laboratory frame where all partial waves are intrinsically
coupled is not an easy task. To circumvent this difficulty,
we restrict our calculations to the special situation where the
laboratory frame coincides with the center-of-mass frame,
i.e., where incoming and outgoing polaritons have equal and
opposite momenta.

The strength of the corresponding interaction is quantified
by a scattering T matrix which has contributions from an
infinite number of diagrams. However, fortunately these can
be exactly resummed by solving a set of integral equations
[44–47]. In this work, we will use the formulation of Ref. [47].
Figure 1 illustrates diagrammatically the integral equation sat-
isfied by the PP scattering T matrix, where the external incom-
ing and outgoing polaritons determine the scattering parame-
ters such as energy and momentum, but otherwise do not form
part of the T matrix. Note the similarity between the diagrams
in Fig. 1 and the ladder approximation to the Bethe-Salpeter
equation [42]. To be explicit, we consider the scattering of two
identical polaritons with opposite initial and final momenta
±p1 and ±p2, respectively, and we denote the T matrix by
T (E ; p1, ε1; p2, ε2), where E is the total collision energy, and
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the energy of incoming (outgoing) polaritons is shifted by
±ε1 (±ε2) relative to the energy per particle ε = E/2. The
low-energy PP interaction constant is then obtained by taking
the total energy E = 2ELP, while pi and εi are set to 0:

gPP = T (2ELP; 0, 0; 0, 0). (17)

This is the interaction constant that would appear, for instance,
in a Gross-Pitaevskii equation treatment of a dilute polariton
condensate [2,51]. It is therefore a key parameter in polariton
physics.

The block 	 appearing on the right-hand side of the
equation in Fig. 1 represents the sum of all possible two-
polariton-irreducible processes2 that begin and end with two
polaritons. The diagrammatic representation has a one-to-one
correspondence with the following integral equation for the
unnormalized T matrix:

2Diagrams that cannot be cut in half at any intermediate step by
cutting two polariton propagators only.

t (E ; p1, ε1; p2, ε2) = 	(p1, ε1; p2, ε2)

+ i
∫

dεq

2π

∑
q

t (E ; p1, ε1; q, εq )D(q, ε + εq)D(q, ε − εq)	(q, εq; p2, ε2), (18)

where we suppress the dependence of 	 on E . The full T matrix is then given by

T (E ; p1, ε1; p2, ε2) = Z−(p1)Z−(p2)|X−(p1)|2|X−(p2)|2t (E ; p1, ε1; p2, ε2), (19)

where the prefactor is the normalization factor in Eq. (15) that accounts for the residue of the four external polariton propagators
[30]. Note that Eq. (18) depends parametrically on p1 and ε1, and therefore it can be solved separately for each value of these.

Next, we proceed with the construction of 	 that appears in the kernel of our integral equation. This is conveniently written
as the sum of two diagrams: a simple exchange of the two fermions, denoted as 	(0); and another describing the processes where
we have formation of an intermediate polariton. The construction of 	 is illustrated in Fig. 2(a). The χ block represents the sum
of all two-polariton-irreducible processes that begin with two polaritons and end with one polariton and two free fermions. From
Fig. 2(a), the expression for 	 can be written as

	(p1, ε1; p2, ε2) =	(0)(p1, ε1; p2, ε2) − 1

2

∑
Q1Q2

[
Gh

(
p2 − Q1, ε + ε2 − εe

Q1

)
Ge

(
p2 + Q2, ε − ε2 − εh

Q2

)
+ Gh

(
p2 + Q1, ε − ε2 − εe

Q1

)
Ge

(
p2 − Q2, ε + ε2 − εh

Q2

)]
× D

(
Q1 + Q2, 2ε − εe

Q1
− εh

Q2

)
χ (p1, ε1; Q1, Q2). (20)

Here, Q1 and Q2 are the internal momenta within the fermion-exchanged loops emitting on the right of the χ function in Fig. 2(a)
and we have already carried out the corresponding energy integration by Cauchy’s residue theorem [47]. Again, we suppress the
dependence of χ on E , and Q1,2 = |Q1,2| is the magnitude of the vector.

Figure 3 shows in detail the energy and momentum exchanged within 	(0). In Fig. 3, we adopt a symmetric labeling of each
of the exchanged energy and momentum for the convenience of later integration of εQ and Q. Written out explicitly, 	(0) reads
as

	(0)(p1, ε1; p2, ε2) = − i
∫

dεQ

2π

∑
Q

[
Ge

(
Q + p1

2
+ p2

2
,
ε

2
+ ε1

2
+ ε2

2
+ εQ

)
Ge

(
Q − p1

2
− p2

2
,
ε

2
− ε1

2
− ε2

2
+ εQ

)

× Gh

(
−Q + p1

2
− p2

2
,
ε

2
+ ε1

2
− ε2

2
− εQ

)
Gh

(
−Q − p1

2
+ p2

2
,
ε

2
− ε1

2
+ ε2

2
− εQ

)]
, (21)

where the minus sign comes from the exchange of identical fermions. The energy integration of εQ over the real axis can be
performed by either enclosing the upper-half or lower-half complex εQ plane and summing over the residues of 2 simple poles.
We provide an explicit expression in Appendix A.

Now we proceed to investigate the χ function. By definition, this contains all possible two-polariton-irreducible processes
that end up with one polariton and two free fermions. The sum of those infinite processes again allows us to write an integral
equation for χ that automatically includes all orders. Figure 2(b) shows the diagrammatic representation of the integral equation,
which reads as

χ (p1, ε1; Q1, Q2) = − [
Gh

(
p1 − Q1, ε + ε1 − εe

Q1

)
Ge

(
p1 + Q2, ε − ε1 − εh

Q2

) + [(p1, ε1) ↔ (−p1,−ε1)]
]

−
∑
Q3

[
Ge

(
Q1 + Q2 + Q3, 2ε − εe

Q1
− εh

Q2
− εh

Q3

)
D

(
Q1 + Q3, 2ε − εe

Q1
− εh

Q3

)
χ (p1, ε1; Q1, Q3)

+Gh
(
Q1 + Q2 + Q3, 2ε − εe

Q1
− εh

Q2
− εe

Q3

)
D

(
Q2 + Q3, 2ε − εh

Q2
− εe

Q3

)
χ (p1, ε1; Q3, Q2)

]
. (22)

Like Eq. (18), this equation depends parametrically on p1 and ε1.
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FIG. 3. Diagrammatic representation of the 	(0) function with
symmetric energy and momentum exchanged.

In the following, we will also compare our results with the
Born approximation. This corresponds to replacing the full
sum of diagrams in the T matrix by the fermion-exchange
diagram 	(0) in Fig. 2(a). This allows us to calculate the
corresponding approximation of the interaction constant

gBorn
PP = Z2

LP|XLP|4	(0)(0, 0; 0, 0) = 2π |XLP|4
mr

, (23)

where the last term is evaluated using the expressions in
Appendix A. Here, the factor 2π

mr
is the Born approximation

for the exciton-exciton interaction constant in the absence
of light-matter coupling. We can directly compare this re-
sult with the Born approximation in the case of Coulomb
interaction gBorn

PP 	 3.03|XLP|4
mr

[19]. We see that, in the Born
approximation, the PP interaction constant is roughly a factor
2 larger within our model (3) than in the case of Coulomb
interactions between charge carriers.

B. Calculation of the polariton-polariton T matrix

As seen in Eq. (17), the interaction coefficient gPP is evalu-
ated for polaritons at zero momentum, and hence it only has a
contribution from s-wave scattering. We thus start by defining
the s-wave components of T , 	, and χ as

Ts(E ; p1, ε1; p2, ε2) =
∫ 2π

0

dφ12

2π
T (E ; p1, ε1; p2, ε2), (24)

	s(p1, ε1; p2, ε2) =
∫ 2π

0

dφ12

2π
	(p1, ε1; p2, ε2), (25)

χs(p1, ε1; Q1, Q2) =
∫ 2π

0

dφ1

2π
χ (p1, ε1; Q1, Q2), (26)

where we have taken advantage of the fact that the system is
isotropic, i.e., the scattering does not depend on the overall
orientation but only on the angle between incident and out-
going particles. Here, φi is the angle of pi with respect to a
fixed axis, and φ12 = φ1 − φ2 is the angle between p1 and p2.
While χs does not depend on the overall orientation of the
system, it still depends on the angle between Q1 and Q2. With
these s-wave projections, we can solve the set of equations
(18)–(22) fully within the s-wave channel.

To proceed, we discretize all integrals using Gauss-
Legendre quadrature. In this way, we convert all integral
equations into sets of linear equations that can be solved by
appropriate matrix inversions [52]. In defining our grids, we
use a Wick rotation for the energy shift in T , which means

that εi goes from −i∞ to +i∞ [45], effectively shifting the
integration contour away from poles and branch cuts of the
polariton propagators. We then solve for χ on this grid using
Eq. (22), insert the result into the equation for 	, Eq. (20),
and finally obtain T by solving Eq. (18). In the final step, we
use the fact that T only depends parametrically on incoming
momentum and energy shift to solve for Ts(2ELP; 0, 0; p2, ε2),
and we then iterate Eq. (18) to obtain Ts(2ELP; 0, 0; 0, 0).

Finally, we remark on what low-energy scattering of po-
laritons means in practice. Two-dimensional scattering theory
dictates that the two-body scattering T matrix must vanish
when the particles’ momenta vanish [53]. However, due to
the light-matter coupled nature of polaritons, the polariton T
matrix only goes to zero below the momentum scale k∗ ∼
e−mX /mc/a0, with a0 = 1/

√
2mrεB the exciton Bohr radius

[24]. Given the large exciton-photon mass ratio, this momen-
tum scale is so small that it is inaccessible in any realistic
experiment. Therefore, p1 = p2 = 0 should be understood as
k∗ � p1, p2 � 1/a0.

C. Polariton-polariton interaction strength

1. Transition metal dichalcogenides

In Fig. 4, we show the result of our numerically exact
calculation of the PP interaction constant as a function of
detuning for me = mh, with parameters corresponding to a
monolayer TMD [Figs. 4(a) and 4(b)], and with a larger value
of the light-matter coupling relative to the exciton binding
energy [Fig. 4(c)]. In all cases, we find that the interaction
increases as we go from photon-dominated polaritons at neg-
ative detuning toward positive detuning, which is as expected.
However, we also find that the interaction constant has a
peak at positive detuning, a feature which is absent in the
commonly applied Born approximation, Eq. (1). Furthermore,
comparing Figs. 4(a) to 4(c), we see that the interaction gen-
erally increases with increasing light-matter coupling �/εB.

Figure 4 also compares our diagrammatic calculation with
the universal form of the low-energy PP scattering introduced
in Ref. [24]:

gPP 	 4π |XLP|4
mX ln

(
εX

2|ELP+εB|
) . (27)

We see that this simple approximation is highly accurate
when �/εB � 1, which is to be expected since it is based
on low-energy exciton-exciton (XX) scattering. We stress that
Eq. (27) only contains one parameter that characterizes the
low-energy XX scattering: the energy scale εX . This is in
turn related to the 2D XX s-wave scattering length aX via
εX ≡ 1

mX a2
X

. Within our description of the electronic interac-
tions, this scattering length was previously calculated in the
context of ultracold atoms to be aX ≈ 0.56a0 [48], which
we have used to generate the corresponding lines. This value
has also been obtained by quantum Monte Carlo calculations
[59] and from mean-field theory with Gaussian fluctuations
[60]. From the form of Eq. (27), we see that there is a com-
petition between the Hopfield coefficient and the logarithm
since the excitonic fraction |XLP|2 increases towards 1 as
the polariton energy approaches that of the exciton, while
the logarithm diverges as ELP → −εB, thus suppressing the
scattering process. This explains the presence of the peak
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(a)

(b)

(c)

FIG. 4. Polariton-polariton interaction constant gPP (blue solid
line) as a function of detuning. We show our results for a fixed
Rabi coupling of (a) �/εB = 0.025 corresponding approximately
to the case of a MoSe2 [54], MoS2 [55], or WSe2 [56,57] mono-
layer; (b) �/εB = 0.05 corresponding to a WS2 [58] monolayer;
(c) �/εB = 0.2. In all panels, we have me/mh = 1 [33] and mc/mX =
10−4. The gray dashed line is the approximation in Eq. (27).

at positive detuning in Fig. 4. We note that a low-energy
expression similar to Eq. (27) has already been verified in the
case of polariton-electron scattering by comparing with exact
three-body calculations [29,30].

Our results also show that the interaction constant is signif-
icantly smaller than that predicted by the Born approximation,
which, for instance, yields an interaction constant gBorn

PP =
2π/mX at zero detuning according to Eq. (23), independently
of the strength of the light-matter coupling.3 The qualitative

3In practice, within the model (3) there is a small correction to the
Hopfield coefficients at large Rabi coupling [30], which we neglect
here.

FIG. 5. Polariton-polariton interaction constant gPP as a function
of Rabi coupling �, at a fixed detuning of δ = 0. As in Fig. 4, we
take me/mh = 1 and mc/mX = 10−4. We show the exact four-body
calculation (blue solid line), the approximation in Eq. (27) (gray
dashed line), and the Born approximation in Eq. (23) (purple dashed
line).

difference between our results and the Born approximation is
particularly evident when considering the system at a fixed
exciton fraction as a function of light-matter coupling. This
is shown in Fig. 5 where we plot the interaction constant as
a function of Rabi coupling (which corresponds to scanning
across different semiconductor microcavities) with fixed de-
tuning δ = 0 such that the polariton is half light, half matter.
We see that the interaction becomes stronger with increasing
Rabi coupling, which we interpret as being due to the stronger
energy shift of the polariton from the exciton. When � � εB,
we see that the Born approximation greatly overestimates the
interactions, which only approach gBorn

PP when � � εB (note
that the Born approximation serves as an upper bound on the
interaction constant when there are no biexciton bound states
[30]). On the other hand, the universal low-energy expression
in Eq. (27) is clearly seen to work well at small �/εB.

It is important to remember that Eq. (27) will no longer
be valid at large Rabi coupling, � ∼ εB, and/or at large
negative detuning δ ∼ −εB [24]. Both of these cases are
formally outside the regime of validity of a model assum-
ing structureless excitons since the assumption of low-energy
exciton-exciton scattering is no longer satisfied. In this limit,
Eq. (27) predicts a divergence when 2|ELP + εB| = εX . While
this divergence has previously been used to argue that the
polariton interactions could be anomalously enhanced at large
negative detuning [61], we see that this divergence is cured
by considering the full four-body problem, and it is therefore
an unphysical feature of the approximation. We also note that
such a divergence is incompatible with the fact that the Born
approximation serves as an upper bound of the interaction
constant (see Fig. 5).

2. Systems with electron-hole mass imbalance

Next, we consider the effect of changing the electron-hole
mass ratio me/mh. Physically, this corresponds to differ-
ent semiconductor microcavities. For instance, in a GaAs
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FIG. 6. Exciton-exciton scattering length aX as a function of
inverse electron-hole mass ratio. Blue circles are the best fits obtained
from the procedure described in the main text, the blue line is a guide
to the eye through the data points, and the shaded area represents the
uncertainty of the fit.

quantum well we have me/mh ≈ 0.15 [62]. Figure 6 shows
the fitted value of the XX scattering length aX as a function
of electron-hole mass ratio. Each data point was obtained
by solving the four-body T -matrix equation (18) with a
fixed mc/mX = 10−4 and �/εB = 0.05 within the detuning
range of −0.1 � δ/εB � 0.1, and then fitting Eq. (27) using
aX = 1/

√
mX εX as a free parameter. This fitting procedure

builds on the observation in Fig. 4 that the simple expres-
sion overlaps mostly with the four-body calculation in the
range of small detuning. We see that the scattering length
increases in mass-imbalanced systems, corresponding to in-
creased polariton-polariton interactions.

For the particular case of a GaAs quantum well system, the
electron-hole mass ratio me/mh ≈ 0.15 generally implies that
the value of gPP is increased compared to the corresponding
equal-mass case. We show our results in Fig. 7 for three differ-
ent Rabi couplings, corresponding to systems with 1, 4, or 12
quantum wells [however, we stress that these results are still
calculated within our model Hamiltonian (3) which considers
a single quantum well; we will discuss the extension of our
theory to multilayer systems below in Sec. V]. Indeed, we see
that the result in Fig. 7(a) is larger than that for equal masses
in Fig. 4(c), with all other parameters being the same. We
also see that, due to the large value of aX for this mass ratio,
the simple approximation in Eq. (27) breaks down for smaller
Rabi couplings, and even for the Rabi coupling corresponding
to a single GaAs quantum well the approximation only works
for large positive detuning [Fig. 7(a)].

D. Off-shell exciton-exciton scattering approximation

We have seen in Fig. 4 that the universal low-energy for-
mula in Eq. (27) works extremely well at relatively small
�/εB, while Fig. 7 illustrated its breakdown at stronger
light-matter coupling and in the mass-imbalanced system.
We now discuss how we can generalize Eq. (27) to stronger
light-matter coupling. The central point is that because the
underlying interactions are electronic, the typical momenta
relevant to the scattering process are k ∼ 1/a0. At these mo-
menta, the lower polariton propagator in Eq. (14) essentially
reduces to the exciton propagator in Eq. (13) due to the small

(a)

(b)

(c)

FIG. 7. Polariton-polariton interaction constant gPP (blue solid
line) in a GaAs system with varying Rabi coupling (a) �/εB = 0.2;
(b) �/εB = 0.2

√
4 = 0.4; (c) �/εB = 0.2

√
12 ≈ 0.7. In all panels,

we have me/mh = 0.15 and mc/mX = 10−4. The gray dashed line is
the approximation in Eq. (27) with the value aX /a0 = 0.74 obtained
from Fig. 6.

photon mass. Therefore, to a large degree of accuracy, we
can replace all internal polariton propagators with exciton
propagators in Eqs. (18)–(22). Formally, this corresponds to
taking the limit of vanishing photon mass mc → 0.

Consequently, we can directly relate our results to the
corresponding exciton-exciton scattering problem, which is
outlined in Appendix B and illustrated in Fig. 8. Taking into
account the difference in the overall normalization of the T
matrices in the XX and the PP scattering [compare Eqs. (19)
and (B1)], we find

gPP 	 |XLP|4
(

ELP

εB

)2

TXX(2ELP). (28)

245404-8



MICROSCOPIC CALCULATION OF POLARITON … PHYSICAL REVIEW B 104, 245404 (2021)

=T TΓ Γ+

FIG. 8. The polariton-polariton scattering process can be approx-
imated as an off-shell exciton-exciton scattering process. The exciton
propagators are represented by shaded rectangles with arrows. The
	 diagram is given by Figs. 2 and 3 by replacing the polariton
propagators with the exciton ones.

Here, TXX(2ELP) is the XX scattering T matrix evaluated for
excitons at rest with a shifted collision energy. Equation (28)
has a natural interpretation as an off-shell exciton scatter-
ing process weighted by the normalization of the external
polariton propagators. The off-shell exciton approxima-
tion provides a different perspective in understanding the
polariton-polariton interaction process. As we show in the
next sections, this will be useful in understanding the
polariton-exciton interaction process, and in generalizing our
results to multilayer systems. We furthermore expect that this
result can be generalized to scattering processes involving
other light-matter coupled quasiparticles.

We illustrate the utility of Eq. (28) in Fig. 9. Figures 9(a)
and 9(d) show the XX scattering T matrix as a function of
energy for the case of me = mh and me = 0.15mh relevant to
TMDs and GaAs quantum wells, respectively. This function
then serves as an input that allows us to approximate, for
instance, all the results in Fig. 4. In the remaining panels we
show the comparison between our numerically exact results
and the approximation in Eq. (28) for large Rabi couplings,
where the simple expression in Eq. (27) clearly fails. We see
that the agreement is essentially perfect, with the relative error
incurred of order mc/mX . This clearly demonstrates that PP
scattering should be understood as off-shell XX scattering.

Finally, we comment on the relationship between the two
approximations in Eqs. (27) and (28). The XX T matrix at
energy E takes the universal form [35]

TXX(E ) = −4/mX

cot δ(Ecoll ) − i
, (29)

in terms of the scattering phase shift δ, where the collision
energy Ecoll = E + 2εB since the energy E is measured from
the electron-hole continuum. The phase shift, in turn, has the
universal low-energy expansion [53]

cot δ(Ecoll ) 	 1

π
ln

[
Ecoll + i0

εX

]
+ O(Ecoll ), (30)

which is valid when |Ecoll| � εB, i.e., when the energy is close
to that of two excitons. Indeed, Figs. 9(a) and 9(d) show that,
in this regime, Eqs. (29) and (30) agree very well with our
exact calculation of TXX. Keeping the leading term of the
phase shift and taking ELP 	 −εB in the prefactor, Eq. (28)
exactly reduces to Eq. (27).

IV. POLARITON-EXCITON INTERACTION

The polariton-exciton (PX) interaction constant gP X can
be calculated using the same diagrammatic method as that
applied in Sec. III to polaritons. In this case, we consider
the incident and outgoing particles to be one exciton and one
polariton. Since we are working with a single semiconductor
layer and since we ignore any spin degree of freedom, there
is only one type of exciton. Hence, the exciton state couples
to light, and all internal electron-hole pair propagators will be
polaritonic. Therefore, with the exception of external legs, the
diagrams are unchanged from those in Figs. 1 and 2. Note that
this situation can be more complicated in microcavities with

FIG. 9. (a), (d) Exciton-exciton T matrix at negative energy (yellow dashed curve) and the low-energy approximation in Eqs. (29) and
(30) (gray solid curve). (b), (c), (e), (f) Comparison of the polariton-polariton interaction constant of the full four-body calculation (blue solid
curve) and the off-shell exciton-exciton scattering approximation (28) (yellow dashed curve) for various Rabi couplings. (a)–(c) Correspond
to TMD mass ratio; (d)–(f) correspond to GaAs mass ratio.
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FIG. 10. Comparison of four-body calculation (32) (brown solid
curve) and the approximation in Eq. (33) (gray dashed curve) for
the polariton-exciton interaction constant gPX with �/εB = 0.05,
me/mh = 1, and mc/mX = 10−4 corresponding to a WS2 monolayer.

multiple semiconductor layers; we discuss this scenario below
in Sec. V.

To be concrete, we will consider the low-energy scattering
of a polariton with an exciton in the limit where both of these
are at rest. The particles have rest energies ELP and −εB,
respectively, and thus the total energy is E = ELP − εB. To en-
sure the correct rest energies in our calculation, we therefore
take ε1 = ε2 = (ELP + εB)/2 at the end of the calculation.4

With these considerations, we arrive at the equation for the
PX scattering T matrix:

TPX(E ; p1, ε1; p2, ε2) = ZX

√
Z−(p1)Z−(p2)

× |X−(p1)X−(p2)|t (E ; p1, ε1; p2, ε2), (31)

in terms of the unnormalized T matrix in Eq. (18). Here, the
prefactor is due to the normalization of external legs, and we
have defined the exciton residue ZX ≡ 2πεB/mr [30]. The T
matrix allows us to obtain the PX interaction constant

gPX = TPX(ELP − εB; 0, (ELP + εB)/2; 0, (ELP + εB)/2).
(32)

This interaction constant would appear, for instance, in a
Gross-Pitaevskii treatment of a polariton condensate interact-
ing with an excitonic reservoir [12]. We also expect this to
be relatively insensitive to the momentum p of the scattering
exciton if |p| � √

mX � such that the collision energy is un-
affected.

Figure 10 displays the result of our calculation for the case
of a TMD monolayer. We see that qualitatively the result is
similar to the P-P interaction constant, with a maximum close
to δ = 0. Furthermore, we note that contrary to the expecta-
tions of the Born approximation we can have gPX � gPP when
δ is above this maximum, since in this regime the strength
of interactions is dominated by the energy shift due to the
light-matter coupling, which is larger in the two-polariton
problem.

By the same reasoning as in Sec. III D, we can approximate
all internal polariton propagators in the collision process by

4Note that we can still perform a Wick rotation in εi in our inte-
gral equation; we simply perform the rotation in the complex plane
around the point (ELP + εB )/2.

their excitonic counterparts. Since the excitonic system is
Galilean invariant, it only depends on the total energy in the
center-of-mass frame, and therefore we can approximate

gPX 	 |XLP|2 |ELP|
εB

TXX(ELP − εB). (33)

Figure 10 shows the essentially perfect agreement between
this result and the exact calculation in Eq. (32). This is highly
significant since it implies that in general we can extract gPX

directly from our calculation of TXX in Fig. 9(a), and likewise
for the GaAs mass ratio in Fig. 9(d).

Finally, by using the low-energy expression in Eqs. (29)
and (30), we find the universal low-energy behavior

gPX 	 4π |XLP|2
mX ln

(
εX

|ELP+εB|
) , (34)

valid when |ELP + εB| � εB. This proves the corresponding
expression in Eq. (2).

V. IMPLICATIONS FOR MULTILAYER MICROCAVITIES

Thus far, we have been focusing on systems with a sin-
gle semiconductor layer in a microcavity. This could, for
instance, be a TMD monolayer or a single GaAs quantum
well. However, in many situations it is advantageous to use
structures with multiple semiconductor layers since the Rabi
coupling increases with the number of layers. Without writing
an explicit Hamiltonian for the multilayer system, we will now
take advantage of our observation that polaritons interact as
off-shell excitons to discuss how our results generalize to the
multilayer case.

We therefore consider polariton scattering in a structure
with N layers which are equally coupled to light, but which are
otherwise independent in the sense that there is no tunneling
between them. In this case, the coupling to light defines a
bright exciton, an equal superposition of excitons in each
semiconductor layer, and N − 1 dark excitons that remain
uncoupled [2]. The effective Rabi coupling of the bright ex-
citon is now enhanced to � = √

N�1, where �1 is the Rabi
coupling to a single layer. Within the new single-particle
basis of bright and dark excitons, the interaction term in the
Hamiltonian is rather complicated [24]. However, the key
idea is that the underlying electronic interactions in polariton
scattering only take place within the individual layers. Since
each exciton in a particular layer within a polariton has an
amplitude 1/

√
N , and since there are N semiconductor lay-

ers, the polariton-polariton scattering T matrix is suppressed
by an overall factor 1/N . Therefore, taking into account the
energy shift in the scattering process due to the light-matter
coupling and using our previous observation that the polariton
interaction can very accurately be viewed as off-shell exciton
scattering, we find the simple expression for the multilayer PP
interaction constant

gPP(N ) 	 1

N
|XLP|4

(
ELP

εB

)2

TXX(2ELP). (35)

Importantly, apart from the factor 1/N , the right-hand side
corresponds precisely to the polariton interaction constant for
a single semiconductor layer in Eq. (28), evaluated with the
Rabi coupling for the N-layer system. While this equation
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FIG. 11. Comparison of the polariton-polariton interaction con-
stant in a N-layer GaAs system with me/mh = 0.15 and mc/mX =
10−4, calculated by different methods. Solid dots are the calculated
data points and lines are guides to the eye. The blue solid curve is our
expression for the multilayer interaction [Eq. (35)] at δ = 0, �/εB =
0.2

√
N . The yellow dashed curve is the single-layer four-body result

divided by 1/N at δ = 0, �/εB = 0.2.

may look like a trivial extension to N layers, we remind the
reader that the interaction constant in a single layer generically
increases with Rabi coupling, as shown in Fig. 5. To illustrate
this effect, in Fig. 11 we show our results for gPP(N ) as a
function of N in the case of a GaAs quantum well microcavity,
where up to 12 quantum wells are routinely used. While we
indeed see that the suppression with N is dominant, the result
of Eq. (35) is 50% higher for 12 quantum wells than what
would be expected based on a simple 1/N scaling.

We can also use Eq. (35) to directly compare with exper-
iment. Figure 12 shows our full numerical four-body result
along with the experimental data from Ref. [13], as well as
the Born approximation within our model (3) and within a
model that employs Coulomb electronic interactions [19]. We
see that all these theory lines are not far from the experimental
result. While the close agreement between experiment and the
Born approximation within our model is highly suggestive, we
note that this approximation corresponds to an upper bound of
the theory calculation. Our exact calculation is instead about
a factor of 2 smaller and lies quite close to the Coulomb
Born approximation [19]. Reference [13] has argued that
the difference between experiment and the Coulomb Born
approximation could be due to the quasi-two-dimensional ge-
ometry of the GaAs quantum well microcavity.

The idea of off-shell scattering can also be extended to the
PX scattering problem. Here, the exciton involved can, for
instance, be one of the N − 1 dark excitons (corresponding to
an out-of-phase superposition of excitons in different layers
[24]) or it can be an exciton in one particular layer. In both
cases, by the same reasoning as above, we find

gPX(N ) 	 1

N
|XLP|2 |ELP|

εB
TXX(ELP − εB). (36)

Again, apart from the factor 1/N , the result on the right-hand
side corresponds precisely to the single-layer result in Eq. (33)

FIG. 12. Comparison between experimental measurement of the
polariton-polariton interaction constant extracted from the polariton
blueshift [13] and theoretical calculations (note that the experimental
result is larger in Fig. 12 than in Ref. [13] by a factor 2 since we
do not divide by the two polariton polarizations). The solid curve
is our four-body calculation with �/εB = 0.75, me/mh = 0.15, and
mc/mX = 10−4. The exciton binding energy is εB = 10 meV and
the Bohr radius is a0 = 10 nm [13]. The purple dashed curve is
the Born approximation from the exciton approximation: gBorn

PP (N ) =
4π |XLP |4

N μeV μm2. The light blue dashed curve is the Born approx-
imation from the exciton approximation with Coulomb interaction:

gBorn
PP (N ) = 6.06|XLP |4

N μeV μm2. All theory curves have taken into ac-
count the total number of quantum well layers (N = 12).

evaluated at the polariton energy determined by the enhanced
multilayer Rabi coupling.

Finally, in the limit of weak Rabi coupling relative to the
exciton binding energy, we can further simplify Eqs. (35) and
(36). Using Eqs. (29) and (30), we arrive at the multilayer
version of Eq. (2),

gPP(N ) 	 4π |XLP|4
mX N ln

(
εX

2|ELP+εB|
) , (37)

which was first derived in Ref. [24]. For the PX interaction
constant, we likewise find

gPX(N ) 	 4π |XLP|2
mX N ln

(
εX

|ELP+εB|
) . (38)

VI. CONCLUSIONS AND OUTLOOK

To conclude, we have performed an exact microscopic
calculation of polariton-polariton and polariton-exciton scat-
tering involving the internal electronic structure of identical
excitons. Our results exploit diagrammatic techniques de-
veloped in the context of ultracold-atomic gases [44–47],
appropriately extended to include the light-matter coupling
[29,30]. We expect that this diagrammatic approach will lay
the foundations for more challenging four-body calculations
of the polariton interaction constants within a more realistic
model featuring unscreened Coulomb interactions.

In the case of weak light-matter coupling relative to the
exciton binding energy, our results showed a remarkable
agreement with a recently developed universal expression
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based on low-energy exciton-exciton interactions [24]. This
is of practical relevance since the regime of validity of this
result includes the technologically important TMD mono-
layers. We furthermore extended the ideas of Ref. [24] to
show that, due to the small photon-exciton mass ratio, our
results could accurately be reproduced by calculating off-shell
exciton-exciton scattering processes. Here the coupling to
light controls the collision energy and the overall normaliza-
tion, but does not explicitly modify the diagrams themselves.
We used this idea to generalize our theory to systems with
multiple semiconductor layers. This allowed us to show that
our results are consistent with recent measurements of the
polariton-polariton interaction constant in a GaAs quantum
well microcavity featuring 12 layers [13].

The observation that collision processes involving light-
matter coupled quasiparticles can be thought of as off-shell
matter-only scattering is highly significant. For instance, it
simplifies the calculation of the corresponding interactions
using more realistic electronic interactions since the coupling
to light only affects the normalization and collision energy.
Moreover, scattering processes at negative energy and zero
momentum are similar in complexity to bound-state problems
which are substantially simpler than finite momentum scat-
tering [49]. The off-shell perspective may also prove useful
in translating our results to other nonlinear phenomena in
exciton-polariton systems such as parametric scattering pro-
cesses that populate a polariton condensate [63], polariton
Feshbach resonances [64], and interactions with other elemen-
tary excitations in semiconductors such as phonons [65,66].
More broadly, we expect the off-shell description to apply to
any scattering process involving quasiparticles that are part
light, part matter.
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APPENDIX A: EVALUATION OF THE
FERMION-EXCHANGE DIAGRAM �(0)

Performing the integration over the energy εQ in Eq. (21)
by Cauchy’s residue theorem, we find

	(0)(p1, ε1; p2, ε2) = −2
∑

Q

A

(A2 − B2)(A2 − C2)
. (A1)

Here we define

A = ε − Q2

2mr
− p2

2

8mr
− p2

1

8mr
− p2 · p1

4me
+ p2 · p1

4mh
, (A2a)

B = ε2 − Q · p2

2me
+ Q · p2

2mh
− Q · p1

2mr
, (A2b)

C = ε1 − Q · p1

2me
+ Q · p1

2mh
− Q · p2

2mr
. (A2c)

The angular dependence in Eq. (A1) can be simplified in the
case of equal electron and hole masses, me = mh = m, giving

A = ε − Q2

m
− p2

2

4m
− p2

1

4m
, (A3a)

B = ε2 − Q · p1

m
, (A3b)

C = ε1 − Q · p2

m
. (A3c)

APPENDIX B: EXCITON-EXCITON SCATTERING

In the absence of light-matter coupling, we obtain the
exciton-exciton scattering T matrix by solving the integral
equation [47]

TXX(E ; p1, ε1; p2, ε2)

= Z2
X 	(p1, ε1; p2, ε2)

+ i
∫

dεq

2π

∑
q

TXX(E ; p1, ε1; q, εq )

× D0(q, ε + εq)D0(q, ε − εq)	(q, εq; p2, ε2), (B1)

at E = −2εB. Here, ZX ≡ 2πεB/mr is the residue of the
exciton propagator at its energy pole which is needed for
normalization [30]. In calculating 	 and χ via Eqs. (20) and
(22) we furthermore replace all polariton propagators by their
excitonic counterpart.

We then obtain the T matrix discussed in Sec. III D by
solving Eq. (B1) at E = 2ELP and taking pi = 0 and εi = 0:

TXX(2ELP) ≡ TXX(2ELP; 0, 0; 0, 0). (B2)

The result of this calculation is shown in Fig. 9.
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