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Topologically protected edge and junction states, previously predicted, have recently been observed in arm-
chair graphene nanoribbon (AGNR) heterojunctions. Here, via tight-binding-based calculations, we explain the
relation between the nature and number of the zero-mode edge states of finite-length AGNRs and their structure,
topological invariants, and winding number. This allows us to rationalize the design of AGNR heterojunctions
and superlattices with tailored phases. We show how the choice of widths, interface coupling geometry, and
boundaries determines the emergence of topological states following patterns that depend on the structure and
family of the constituent AGNRs. Furthermore, we prove that quantum-well-like states confined in one of the
constituent ribbons develop in all the AGNR junctions irrespective of their trivial or topological character. The
bipartite nature of the honeycomb lattice is determinant for the topological properties of the junctions: their
electronic states can be topologically trivial or nontrivial depending on subtle differences at the boundaries of
the ribbons.
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I. INTRODUCTION

New advances in the fabrication of graphene ribbons by
bottom-up synthesis using molecular precursor led to the re-
alization and characterization of ribbons of nanometric width
and well-defined edge shapes with atomically precise control
of their structural parameters [1–4]. The properties of the
bottom-up synthesized ribbons are accurately tuned by de-
signing their width and termination shape. As recent work has
recognized, graphene ribbons are quasi-one-dimensional (1D)
topological materials, topological order being fundamental to
understanding their properties. Although graphene nanorib-
bons, as carbon nanotubes, have been widely investigated their
topological character has boosted new efforts and triggered
renewed theoretical and experimental work; in particular,
armchair graphene nanoribbons (AGNRs) have drawn great
attention. An important achievement in this context has been
the experimental realization of heterojunctions of different
graphene nanoribbons (GNRs) [5,6]. Due to their topology
AGNRs can present exotic quantum phases with robust edge
states protected against defects and impurities, thus offering
promising potential for the fabrication of nanoelectronic and
spintronic devices [7,8]. In addition, the possibility of engi-
neering topological states is essential for the emerging field of
quantum information [9–13].

In a seminal paper Cao et al. [14] derived the rela-
tion between the band topology and the atomic structure
of AGNRs, predicting the existence of symmetry-protected
topological states in junctions of AGNRs with distinct topo-
logical character. It was shown that the topological phase
of laterally confined semiconducting AGNRs is determined
by their width and terminating crystallographic unit cell and
is characterized by a Z2 invariant [15], the classification in-

dex that differentiates topological insulators (Z2 = 1) from
trivial insulators (Z2 = 0) in gapped 1D systems [16]. Z2 topo-
logical classification requires both time-reversal and spatial
symmetry. Topological bound states were actually observed
in 1D periodically modulated semiconductor AGNRs, in
which the Z2 invariant was tuned through the width and unit
cell edge termination of AGNRs [17,18]. Topological end
states have also been detected in finite ultranarrow AGNRs
[19] and a metal-insulator transition was predicted as a func-
tion of the ribbon length in the five-atom-width AGNR [20].

The explicit categorization of the symmetry-protected Z2

topological classification was extended beyond AGNRs to any
type of termination with spatial symmetry [9] and topological
states were successfully engineered at the junction between
GNR segments of different widths and diverse edge shapes,
such as cove or chevron edges and with varying topological
character [14,17,18,21].

Although the component segments of topological AGNR
junctions have the same crystalline lattice, the inversion or
mirror symmetry of the constituent ribbons is broken at the
interface and the point group of the junction is reduced. So,
based on the chiral symmetry a Z classification, which does
not requires time-reversal and spatial symmetry, was later pro-
posed for GNRs [22,23]. This classification can be applied to
any chiral-symmetric systems, and since chiral symmetry is an
approximate symmetry of graphene, a simple analytic expres-
sion was derived for the Z invariant of graphene structures.
Based on the Z invariant, topological bound states can be
engineered in a broad class of structures including junctions
with an intermediate section, multiway junctions composed
of three or more AGNRs, and even two-dimensional (2D)
networks [23]. Therefore, the Z classification contributes to
the understanding of topological features in 1D systems and
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provides design rules for novel graphene arrangements [24].
The sublattice symmetry is of crucial importance for the topol-
ogy and has been invoked to design zero-energy boundary
states in all systems, both crystalline and amorphous, that have
chiral symmetry [25].

In this work, we investigate the emergence of topological
and confined states in finite AGNRs and junctions of distinct
AGNRs. In particular, we have examined the evolution of the
electronic structure and topological properties depending on
the width, length, and termination of AGNRs, addressing the
emergence of topological edge states at the zigzag ends of
finite ribbons and at the boundaries of junctions. Additionally,
the development of coupled topological interface states, when
distinct AGNRs are periodically arranged in a superlattice, is
analyzed.

We provide the topological class selection of AGNRs for
both the Z and Z2 topological classifications, identifying the
topologically nontrivial AGNRs. We prove that the Z invari-
ant determines the number of zero-dimensional topological
in-gap states at the ribbon termination and that a difference
between invariants, either Z or Z2, other than zero reflects the
presence of protected interface states within the gap of the
AGNR junctions. We have also shown the emergence of topo-
logical states in nominal metallic ribbons and we demonstrate
that trivial states in AGNR junctions are laterally confined to
only one of their constituent segments. Furthermore, adjusting
the length of the ribbons that form the junction, the energy and
coupling of both topological and nontopological states can be
controlled.

II. MODEL AND METHOD

The calculations are based on the tight-binding model,
which captures the essential physics of graphene. We perform
two types of calculations, either with the four-orbital 2s, 2px,
2py, 2pz basis set or with only the pz orbital. The empirical
tight-binding Hamiltonian takes the form

H0 =
∑

i,α,σ

εα
i,σ +

∑

〈i, j〉,α,β,σ

tα,β
i j cα†

i,σ cβ
j,σ + H.c., (1)

where εα represents the atomic energy of the orbital α, i, j
stand for atomic sites of the honeycomb lattice, and cα†

i,σ and
cα

i,σ are the creation and annihilation operators of one electron
at site i, orbital α, and spin σ , respectively.

The Hamiltonian is built following the Slater-Koster
formalism up to the nearest-neighbor hopping. For the four-
orbital basis set we use the Tomanek-Louie parametrization
for graphite [26] while in the pz-orbital model the on-site en-
ergy ε is set to zero and the nearest-neighbor hopping integral
ti j to 2.66 eV which coincides with the ppπ parameter of
Ref. [26]. The two bases give the same results for the energy as
well as for the parity and symmetry of the wave functions, for
states around the zero energy [27,28], that is, for states lying
close to the Fermi energy of graphene (see the Appendix).

The choice of the tight-binding (TB) approach instead of
first-principles calculations allows us to study GNRs of a
long length with a large number of atoms. It is also well
known that the tight-binding model satisfactorily describes
the low-energy physics of graphene nanostructures. Although
ab initio methods, such as density functional theory (DFT)

FIG. 1. Top: Schematic lattice structure of the 7-AGNRs. The
geometry of the R1 and R2 unit cells is shown. Bottom: Graphene
and AGNR Brillouin zones; the allowed transverse wavenumbers for
the 7-AGNR are represented (left). Band structure of the 7-AGNR
(center). Spatial distribution of the valence- and conduction-band
wave functions at the � point on the lattice site positions across the
ribbon (right). Blue and pink indicate positive and negative ampli-
tudes, respectively.

calculations, include additional information to that considered
in the tight-binding model, a comparison of the results shows
a correspondence in symmetry and in dispersion of the signifi-
cant energy bands [29]. In fact experimental results [10,18,30]
note the good agreement observed for the GNR heterojunction
frontier bands with the band structures obtained by DFT and
TB calculations, close to the Fermi energy.

For the sake of clarity we present here results obtained with
the one-orbital pz tight-binding Hamiltonian and thus they
show electron-hole symmetry. As stated before, calculations
performed with the four-orbital basis give similar results with
negligible variations of the band energies, especially in the
zero-energy region since these low-energy states are of pure
pz character. When considering heterojunctions the same hop-
ping parameters are used for all the constituent ribbons and
also in the calculation of the junction properties, in contrast
with other works [17,19].

The atomic structure of the junction at the interface is
simply the one that results from coupling the two adjacent
ribbons without including intermediate extra segments. We do
not consider edge relaxation or passivation.

III. ARMCHAIR GRAPHENE NANORIBBONS

A. Infinite ribbons

The electronic properties of graphene nanoribbons depend
on their geometry: width, length, and edge shape [31–33].
Armchair GNRs, whose edges are formed by dimers of atoms
of the two sublattices, can be classified into three families,
N = 3p, N = 3p + 1, and N = 3p + 2, where N represents
the number of transverse carbon atom rows determining the
width of the ribbon, and p is an integer (see Fig. 1). In the
tight-binding model, the first two families exhibit semicon-
ducting behavior with band gaps inversely proportional to
their width and approaching zero in the limit of very large

245402-2



TOPOLOGICALLY PROTECTED EDGE AND CONFINED … PHYSICAL REVIEW B 104, 245402 (2021)

TABLE I. Topological invariants Z2 and Z calculated following the expressions given in Refs. [14,22] for AGNRs of the three families
with the R1 and R2 unit cells. In the first row, W is the number in parentheses. In the second row, p is the number in parentheses.

(W ) 6(0) + 3 6(1) − 1 6(1) + 1 6(1) + 3 6(2) − 1 6(2) + 1 6(2) + 3 6(3) − 1 6(3) + 1
(p) 3(1) 3(1) + 2 3(2) + 1 3(3) 3(3) + 2 3(4) + 1 3(5) 3(5) + 2 3(6) + 1
N 3 5 7 9 11 13 15 17 19

Z2 (R1) 0 1 1 1 0 0 0 1 1
Z2 (R2) 1 0 0 0 1 1 1 0 0
Z (R1) 0 1 1 1 2 2 2 3 3
Z (R2) 1 2 2 2 3 3 3 4 4

N [33,34]. The N = 3p + 1 family presents the largest gap
while ribbons of the third family show a metallic behavior in
agreement with some experiments reporting nearly metallic
character of 5- and 17-AGNRs [2,7,35,36]. DFT and more
realistic calculations predict edge relaxation that opens a small
gap in the band structure of N = 3p + 2 AGNRs. The in-
clusion of many-electron interactions also produces a gap
in metallic armchair ribbons [37]. These trends can be un-
derstood by considering the discrete k quantization in the
direction perpendicular to the AGNR axis. Considering only
nearest-neighbor hopping between carbon atoms, the wave
function of the AGNR must vanish beyond the carbon atoms
at the armchair edge [38,39]. The transverse wavenumber kn

is thus determined through the edge boundary condition and
takes the values kn = 2πn/(N + 1)agr , n = 1, 2, 3, . . . , Ni,
where agr is the lattice constant of graphene.

Hence, the energy band structure of AGNRs is obtained by
slicing the band structure of graphene at the allowed kn; the K
and K ′ valleys are coupled at the armchair edges. In the case
of the N = 3p + 2 family the allowed kn coincide with the
Dirac point of the graphene band structure. Figure 1 shows
the atomic and electronic band structure of the N = 7 AGNR,
representative of the 3p + 1 family; the discrete transverse
wave numbers determined by the edge boundary condition
are shown in the first Brillouin zone (BZ) of graphene. The
top of the valence band and the bottom of the conduction
band are located at k = 0 and, as a direct consequence of
the band gap opening, electrons in AGNRs of the N = 3p + 1
and N = 3p families cannot be considered as massless Dirac
fermions but they exhibit a finite effective mass. Their wave
functions have a phase difference between A and B sublattice
sites owing to the chiral nature of graphene [40]. Figure 1
also shows the distribution of the 7-AGNR highest valence-
and lowest conduction-band wave functions at the � point.
While the top of the valence band is even under the mirror
and inversion symmetries of the unit cell (u.c.), the lowest
conduction subband is odd.

As stated in the introduction GNRs are quasi-1D topo-
logical materials. Their topology is dictated by the spa-
tial symmetry, width, and termination type. The AGNRs’
symmetry-protected topological phases can be classified by
the Z2 invariant [14]. The Z2 index derives from the Zak phase
[15], which in 1D systems depend on the shape of the unit
cell, and has two contributions: the intracell and the intercell
parts, the latter being quantized at zero or π if the system
has spatial symmetries such as inversion and/or mirror. Since
spatial symmetry may no longer be preserved at the AGNR
frontiers, an alternative Z classification applicable to general

1D systems with chiral symmetry was established, leading to
a Z invariant [22,23], which takes integer values in contrast
to Z2. Chiral symmetry is exact in bipartite lattices, in which
the system can be divided into two sets of atoms, sublattices
A and B, such that interactions only exist between atoms of
different sublattices. Thus, chiral symmetry is an approximate
symmetry of graphene and AGNRs have chiral symmetry
if second-nearest-neighbor interactions are neglected. Hence,
the different topological phases of an AGNR can also be
labeled by this integer Z topological invariant related to the
winding number and, according to the modern theory of polar-
ization, to the bulk polarization of a periodic system [41,42].
Because of the bulk-edge correspondence, topological bound
states emerge at the interface of AGNRs belonging to different
Z2 or Z classes [43,44].

Therefore, the value of the Z2 and Z invariants depends on
the width of the AGNR and the shape of its termination, which
dictates a unique bulk unit cell. Simple analytical expressions
were derived for various terminations [14,22]. They yield the
topological invariants as a function of N , the number of trans-
verse carbon atom rows determining the width of the ribbon.
Table I gives the Z2 and Z invariants of several AGNRs for
two different choices of the 1D bulk unit cell (u.c.), R1 and R2
(see Fig. 1). We restrict ourselves to AGNRs formed by an odd
number of rows across their width, N = odd, although our re-
sults can be generalized to even N ribbons. For N = odd both
R1 and R2 terminations have inversion and mirror symmetry,
and the three families of AGNRs alternate when increasing the
width. Both invariants show an N = 6 variation and the shape
of the unit cell determines the topological class of the ribbon.
The Z2 invariant takes opposite values for the R1 and R2 u.c.,
while the integer Z invariant increases by one unit when the
ribbon width is increased by six rows. Moreover, for a specific
AGNR Z is always one more unit for the R2 geometry than
for the R1. Alternatively to the previous N = 3p, N = 3p + 1,
and N = 3p + 2 description of the AGNR families, the ribbon
width N can be also described by the corresponding winding
number W : N = 6W − 2, 6W − 1, 6W , 6W + 1, 6W + 2, and
6W + 3 (W being an integer). For N = odd the semiconduc-
tor ribbons correspond to N = 6W + 1 and 6W + 3, while
N = 6W − 1 are metallic [23]. The description in terms of W
is directly related to the Z invariant as can be seen in Table I.

B. Finite-length ribbons: Zero-mode edge states

We have calculated the electronic structure of a large num-
ber of AGNRs with both types of unit cell, R1 and R2.
When periodic boundary conditions (PBCs) are imposed to
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FIG. 2. Top: TB energy spectrum for a finite 7-AGNR (left)
and 13-AGNR (right) of R1 geometry, with lengths of 3, 6, and
18 u.c. and with periodic boundary conditions (PBCs). Middle: Wave
function amplitude density |φ|2 per C lattice site, at the � point,
for the 7-AGNR (left) and 13-AGNR (right) corresponding to the
first (top), second (middle), and third (bottom) occupied states for a
ribbon of 6 u.c. length. Bottom: Wave function distribution for the
two first occupied states corresponding to the 7-AGNR. Blue and
pink indicate positive and negative amplitudes, respectively.

an N-AGNR, no differences are found, either between the
band structures or in the amplitude distribution of the wave
functions for the R1 and R2 unit cell geometries. The wave
functions corresponding to the highest occupied valence and
lowest unoccupied conduction states extend along the ribbon,
independently of the different topological invariants of both
geometries. These states are of pure π character. Therefore,
the bulk band structure is unchanged when comparing infinite
ribbons displaced by several atoms [45].

However, when considering finite-length ribbons, marked
differences appear between their electronic properties for the
two types of border. Figure 2 shows the energy spectrum
obtained from the tight-binding Hamiltonian for the symmet-
rical finite-length 7- and 13-AGNRs with the termination R1,
for three different lengths. They are the narrowest ribbons
belonging to the 3p + 1 (6W + 1) family. Because of their
semiconductor character, topological states (TSs) arise within
the gap for both AGNRs, and their energies approach zero as
the length of the ribbon increases. The zero-dimensional (0D)
states are only spin degenerated and always appear in conju-
gated pairs, one in the valence band and one in the conduction
band, due to the presence of two equal terminations in the
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FIG. 3. Same as Fig. 2 for the 3-AGNR (left) and 9-AGNR (right).

symmetric ribbons. In the 7-AGNR, there is just one pair of
TSs within the energy gap of the infinite-length ribbon, while
there are two pairs in the 13-AGNR. Both AGNRs belong to
the same family, and their gaps in the pz model are Eg = 1.24
and 0.7 eV for the 7-AGNR and 13-AGNR, respectively. The
spatial distributions of TSs are also depicted in Fig. 2, showing
that they are mainly localized on the two zigzag edges at the
frontiers of the ribbons with vacuum. They are confined to
the atoms of a sublattice, different in the left and right edges.
The parities of the wave functions under mirror and inversion
symmetries are even and odd for the valence and conduction
TSs, respectively. Further, their spatial extension is almost
independent of the length of the AGNR, while their energy is
modulated by the number of unit cells in the ribbon. Thus, the
atom-projected local density of states (LDOS) is almost the
same for the three finite-length ribbons shown in the figure.
The amplitude decreases with the distance to the edges, being
minimal at the central atoms. There is one electron accom-
modated in each state. For ribbons of about 100 unit cells in
length, TSs are located at zero energy and become one-edge
states, the amplitude of their wave functions being confined to
only one of the borders.

The rest of the states bracketing the topological edge states
extend to the entire length of the AGNR following the quanti-
zation pattern of confined states and accumulate in the energy
ranges of the bulk bands as the length of the AGNR increases.

This behavior is common to all the ribbons of the two semi-
conductor families except the 3-AGNR which never presents
topological states in the semiconductor gap, regardless of the
length of the ribbon. The eigenvalues of the 3-AGNR for three
different lengths are represented in Fig. 3 together with those
corresponding to the 9-AGNR with a pair of conjugated TSs
in the semiconductor gap. The confined state quantification
pattern is particularly transparent for the narrowest 3-AGNR
formed by a linear chain of simple hexagons.

However, for metallic ribbons the behavior of the states
around zero energy differs. The energy spectrum of the rep-
resentative 5-AGNR and 11-AGNR are displayed in Fig. 4.
The low-energy states of the 5-AGNR are equally separated
in energy, reflecting the linear dispersion of metallic ribbons,
and those closest to zero only reach the energy zero for
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FIG. 4. Same as Fig. 2 for the 5-AGNR (left) and 11-AGNR
(right). The wave function distributions correspond to the two first
occupied states of the 5-AGNR.

very long ribbons. For example, the highest occupied state
of the 100 u.c. 5-AGNR appears at −0.0625 eV. Moreover,
the amplitude of their wave function, although slightly larger
at the atoms of the two edges, is significant throughout the
entire ribbon. Therefore, the 5-AGNR does not hold TSs. Sur-
prisingly, despite its metallic character, localized topological
modes emerge in the 11-AGNR. Its energy is almost zero
even for ribbons as short as 3 u.c. in length and are perfectly
localized at the edges. In addition, extended modes with the
same energy and spatial distribution of the wave function as
those of the 5-AGNR are also present.

When the termination of the finite-length AGNRs corre-
sponds to the R2 geometry, a pair of new zero-mode states
emerges independently of the family or length of the ribbon.
These zero modes are truly localized edge states; their wave
function amplitude presents maxima on the zigzag atoms of
one edge and zero on the rest. Figure 5 shows the energy
spectrum and atom-projected LDOS of three representative
AGNRs of very short length, 3 u.c. In all the ribbons, in
addition to the zero modes, TSs equal to those of the corre-
sponding ribbon with the R1 termination appear.

According to Table I, the Z2 invariant of the semiconductor
7- and 9-AGNR with the R1 unit cell is 1 (topologically
nontrivial), whereas that of the 13-AGNR is zero (topolog-
ically trivial). Otherwise, the Z invariant, directly related to
the winding number, takes the values 1 for the 7- and 9-AGNR
and 2 for the 13-AGNR with the R1 unit cell. Moreover, with
the R2 unit cell, Z2 has the opposite value and Z increases
by one unit. Therefore, the number of edge states in the band
gap of all the semiconductor AGNRs, without counting the
spin degree of freedom, coincides with the value of Z indepen-
dently of the value of Z2, zero or 1. Consequently, the number

3AGNR                                       5AGNR                                            7AGNR
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FIG. 5. Top: Energy spectrum of finite 3-, 5-, and 7-AGNR of R2
geometry with 3 u.c. in length. Bottom: Amplitude density |φ|2 per
lattice site, at the � point, of the wave functions corresponding to the
two zero-energy end states of the 5-AGNR.

of topological edge states at the boundary of the AGNR with
vacuum is dictated by the Z index and hence by the width
and structure of the ribbon termination. In the case of metallic
AGNRs, the number of TSs is one unit less than the value of Z .
Furthermore, for a specific type of termination, the number of
localized end states increases with the ribbon width, one state
for every six-atom increase of the width. Thus, in a chiral-
symmetric system, the existence of zero-energy edge states is
exactly correlated with the nonzero winding number and there
are AGNRs, topologically trivial by the Z2 classification, that
exhibit TSs at their borders.

IV. GRAPHENE NANORIBBON JUNCTIONS

Joining AGNRs of different widths allows one to engineer
their electronic structure [46,47] and to realize that for elec-
tronic states localized at the interface, confined to an AGNR
or extended to all the system, the differences arise from the
topological character of the overall junction. If the junctions
are organized in a periodic array, the electronic states may
hybridize and form bands. Such bands have been designed
and experimentally observed in one-dimensional arrays of
AGNRs. The atomically precise synthesis of topological
AGNR superlattices [17,18] has demonstrated that trivial and
nontrivial electronic phases are created by the controlled pe-
riodic coupling between adjacent topological states at the
junctions.

We have analyzed the electronic properties of AGNR junc-
tions with diverse topological character, following the family
classification. To this end, we have calculated the electronic
structure of AGNR junctions of different widths with var-
ious structural couplings. Any junction of two AGNRs of
different width, in which the number of atoms is preserved
at the interface, can be formed by connecting the ribbons
with one of the two geometries R1/R1 or R1/R2, i.e., either
connecting two ribbons with the same R1 termination or with
different endings R1 and R2, respectively. This is because
these geometries are the only two different types of AGNR
structural coupling without dangling bonds. When the two
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FIG. 6. Top: Schematics of the 9-7-AGNRs heterojunction unit
cell structures with 	N = 2. Bottom: Dependence of the energy gap
of the R1/R2 (open circles) and R1/R1 junctions with the length
of the heterojunction expressed as the number of unit cells of the
constituent ribbons for the three different types of superlattices. The
difference between the width of the constituent ribbons is of two
transverse rows (top) and of four transverse rows (bottom).

ribbons differ by only two rows of carbon atoms, the two
types of structural coupling lead to two different structures:
a symmetric junction with mirror and inversion symmetry and
an asymmetric junction. If the difference in width is greater
than two, more than one asymmetric geometry may occur.
Figure 6 represents the structure of the unit cell of the 9-7
armchair graphene superlattice (AGSL) with the two types of
coupling, the length of the constituent segments being 3 u.c.

We consider junctions of two AGNRs of different width
arranged periodically as illustrated in Fig. 6, the width dif-
ference being 	N = N1 − N2 = 2, 4, 6, or 8, where N1 and
N2 are the number of carbon rows of the constituent ribbons.
When 	N = 2, 4, or 8, the two AGNRs belong to differ-
ent families and three distinct cases are possible: 3p/3p + 1,
3p + 1/3p + 2, and 3p + 2/3p. If 	N = 6, the two AGNRs
belong to the same family. For each type of junction, we
perform calculations for AGNRs of various widths with the
two possible structures R1/R1 and R1/R2, in order to identify
general trends, and we have studied different lengths of the
constituent segments. By convention the wider AGNR always
has the R1 termination. We discuss those structures with the
narrowest AGNRs since the behavior is found to be equivalent
for all the junctions of the same type.

Figure 6 presents the dependence of the energy gap be-
tween the highest occupied and lowest empty state with the
length of the heterojunction for representative superlattices of
the three distinct types of unions. Both connections R1/R1
and R1/R2 and 	N = 2 and 4 are displayed. The length
is expressed as the number of unit cells of the constituent

ribbons; for these calculations, both segments are of the same
length. The behavior is similar for junctions that include
a metallic AGNR of the 3p + 2 family, and differ in the
type of coupling, R1/R1 or R1/R2. As the length of the
AGNRs increases, the energy gap for the two different types
of connection tends to zero. Conversely, the energy gap of the
3p/3p + 1 junction, formed by two semiconductor AGNRs,
shows a different dependence for both couplings. In each of
the cases the differences between the energy gap behavior of
junctions with 	N = 2 or 4 are minimal.

These results can be understood in terms of the junction
topology, which is determined by the width and 1D bulk unit
cell of the constituents AGNRs. Table II shows the relation
between the topological invariants of the two AGNRs forming
the three possible types of unions, with a width difference
of two, four, and eight C rows. The invariants are given for
the unit cell RJ , where J is equal to 1 or 2. For each type
of junction, the relation between the topological invariants of
all the superlattices (SLs) that differ by the same number of
C rows is the same. For example, for junctions 3p/3p + 1 and
	N = 2, such as 9-7, 15-13, or 21-19, the Z2 and Z invariants
are the same for the two ribbons, when they have the same
unit cells. Therefore, the topological junction will be formed
by two ribbons with different unit cells. On the contrary,
when the ribbons differ by four C rows, i.e., 3-7 or 9-13, Z2

and Z are different for the two AGNRs with the same unit
cells and consequently the topological junction is formed by
AGNRs with the same unit cells. Therefore, Table II provides
a procedure for designing both nominal trivial and topological
junctions and SLs. Next, we present results for the three types
of AGSL and compare them with the predictions of Table II.

A. Two-semiconductor junctions

As Table II shows, for a specific unit cell the constituent
AGNRs of any 3p/3p + 1 junction with 	N = 2, i.e., 9-7,
15-13, 21-19, etc., belong to the same Z2 and Z topological
class. Therefore, without loss of generality, we focus on the
superlattice (AGSL) formed by 9- and 7-AGNRs with the
larger band gaps. Figure 7 shows the dispersion relations of
the 9-7-AGSL for the two structural couplings, R1/R1 and
R1/R2; calculations have been performed with segments of
6 u.c. length of each constituent ribbon. While the former
presents a large band gap, two symmetric energy bands appear
at low energy in the symmetric R1/R2 9-7-AGSL, whose
constituent AGNRs belong to distinct topological classes (see
Tables I and II). These topologically protected states exhibit a
strong localization at the interface between the two AGNRs,
whereas those defining the band gaps in both structurally
different heterojunctions spread over only one AGNR. In-
creasing the length of the segments, the energy bands become
denser and the gaps decrease toward ≈0.9 eV, the band gap of
the 9-AGNR and the smallest gap of the junction constituents.
Moreover, the energy of the topological bands goes to zero
and the wave functions remain localized at the interface and
mainly confined in a sublattice. In order to show the difference
between the TSs and the confined states the wave function
distributions per lattice site, obtained at the � point of the
BZ, are schematically depicted in Fig. 7 for the first state of
each of the two SL types, R1/R2 and R1/R1. It also shows
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TABLE II. Relation between the topological invariants, Z2 and Z , of the two ribbons forming the three different types of AGSLs, for the
two R1 and R2 u.c. and for width differences 	N = 2, 4, and 8 C rows. The relation between the Z2 invariants is written for the R1 geometry;
the sign changes for the R2 u.c., and therefore the ±1 have to be changed to ∓1 for the R2 geometry.

	N 3p/3p′ + 1 3p + 1/3p′ + 2 3p + 2/3p′

6W + 3/6W ′ + 1 6W + 1/6W ′ − 1 6W − 1/6W ′ + 3

2 p′ = p − 1 Z ′
2(RJ ) = Z2(RJ ) p′ = p − 1 Z ′

2(RJ ) = Z2(RJ ) p′ = p Z ′
2(RJ ) = Z2(RJ ) + 1

W ′ = W Z ′(RJ ) = Z (RJ ) W ′ = W Z ′(RJ ) = Z (RJ ) W ′ = W − 1 Z ′(RJ ) = Z (RJ ) − 1
4 p′ = p + 1 Z ′

2(RJ ) = Z2(RJ ) − 1 p′ = p + 1 Z ′
2(RJ ) = Z2(RJ ) − 1 p′ = p + 2 Z ′

2(RJ ) = Z2(RJ )
W ′ = W + 1 Z ′(RJ ) = Z (RJ ) + 1 W ′ = W + 1 Z ′(RJ ) = Z (RJ ) + 1 W ′ = W Z ′(RJ ) = Z (RJ )

8 p′ = p − 3 Z ′
2(RJ ) = Z2(RJ ) + 1 p′ = p − 3 Z ′

2(RJ ) = Z2(RJ ) + 1 p′ = p − 2 Z ′
2(RJ ) = Z2(RJ )

W ′ = W − 1 Z ′(RJ ) = Z (RJ ) − 1 W ′ = W − 1 Z ′(RJ ) = Z (RJ ) − 1 W ′ = W − 2 Z ′(RJ ) = Z (RJ ) − 2

the spatial distribution of the wave function weights of the
highest valence band states of both junctions, with 9- and
7-AGNR segments of 36 u.c. in length. Interestingly, for the
9-7-AGSL with large segments, the nontopological states of
both junctions remain confined to the 9-AGNR segment and
the second quantized state has a higher energy than the va-
lence band of the 7-AGNR. Therefore, the electronic structure
of the junctions is dictated by their topology.

When the width difference is 	N = 4, i.e., 3-7-AGSL,
13-9-AGSL, for a given unit cell type, either R1 or R2, the
two constituent AGNRs belong to distinct topological classes
(see Table II); hence, the topological junction corresponds to
the R1/R1 geometry which turns out to be the symmetric
one. As Fig. 6 shows, the energy gap dependencies on the
SL length of the TSs and trivial states of the 13-9-AGSL are
analogous to those of the 9-7-AGSL; even the localization
of TSs at the interface is similar. Finally, for 	N = 8, i.e.,
15-7-AGSL, the R1/R1 coupling also defines the topological
phase and, as in the previous case, gives rise to the symmetric
junction. However, due to the large number of unsaturated
zigzag edges at the interfaces, the top of the valence band
of the trivial SL, R1/R2, is also dominated by states mainly
located at the free zigzag borders. This localization is en-
hanced when the length of the constituent ribbons is increased.
Results for the 15-7-AGSL for two different couplings of the
AGNRs are shown in Fig. 8 for two different lengths of the
SL constituent segments, 6 and 36 u.c.

Consequently, all 3p/3p + 1 semiconducting junctions
feature topologically protected interface states for at least one
AGNR connection type.

B. Metal-semiconductor junctions

Next, we investigate the special case of junctions that
contain N = 3p + 2 AGNRs. Without considering the pertur-
bation induced by the structural relaxation of the side edge
atoms, the band gap of 3p + 2 AGNRs closes at the Fermi
level at �. However, Jiang et al. [22] generalized the Z index to
metallic ribbons and obtained the same expressions as for the
semiconductor AGNRs. When 	N = 2, the allowed junctions
are 3p + 1/3p + 2 (7-5, 13-11, etc.) and 3p + 2/3p (11-9,
17-15, etc.), keeping the rule that the wider ribbon with
R1 u.c. is at the first place. Notice that in the case of 3p +
1/3p + 2 AGSLs the topologically nontrivial junction would

be R1/R2 while in the case of the 3p + 2/3p AGSL it would
be the R1/R1 junction, according to Table II.

The dispersion relations of the representative 7-5-AGSL
(3p + 1/3p + 2) are displayed in Fig. 9 for the symmetric
R1/R2 and asymmetric R1/R1 connections. Although there is
a small difference between the values of the band gap of both
junctions, the energy distribution of the bands around zero,
as well as the spatial localization of the |φ|2, are analogous
regardless of the topology of the AGNRs. In both cases, the
states are found on the metallic ribbon, although the largest
density of wave function amplitude is on the atoms of the
interfaces, particularly in the asymmetric R1/R1 junction,
which is a topologically trivial system according to the classi-
fication given in Ref. [22]. Note that even for AGNR segments
as long as 36 u.c. there is a significant gap of ≈0.1 eV in
both SLs.

The behavior of the (3p + 2/3p) 11-9-AGSL (not shown)
is similar to that of the previous junction, the bands around
zero energy being also located in the metallic AGNR irre-
spective of the topological character of the system. Likewise,
junctions between ribbons whose widths differ by four rows of
atoms, 	N = 4, as 11-7- or 9-5-AGSLs, show the same fea-
tures as those that differ by two, 	N = 2. In the 	N = 4 SLs,
the topological phase would appear for the R1/R1 connection
for the 3p + 1/3p + 2 AGSLs and for the R1/R2 connection
for the 3p/3p + 2 AGSLs although the states are found in the
metallic ribbon and not restricted to a sublattice. These results
are implicit in the evolution of the energy gaps with the SL
length shown in Fig. 6; the gap difference between the two
coupling geometries is drastically reduced from a length of
about 15 u.c.

However, when 	N = 8, analogously to the semicon-
ductor SLs, topologically nontrivial and trivial SLs present
interface states. The band structure of the 3p + 1/3p + 2
13-5-AGSL for the R1/R1 symmetric junction presents an in-
gap state very close to zero energy with |φ|2 localized mainly
in the boundary atoms. For the trivial asymmetric R1/R2
junction the band gap is larger and, although a part of the
highest occupied state |φ|2 localizes at the boundaries, there is
some weight extended across the 3p + 2 segment. Figure 10
shows the dispersion relation for the 3p + 2/3p 17-9-AGSL
with the trivial symmetric R1/R1 and nontrivial asymmetric
R1/R2 connections, according to the Ref. [22] classification.
Localized interface states emerge in both cases, although as in
semiconductor AGSLs, the TS extends along all the interface
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FIG. 7. Top: Band structure of the 9-7-AGSL formed by 6 u.c.
length segments. Bottom: Wave function amplitude density |φ|2 per
lattice site across the SL, at the � point, for the two first occupied
states. Results calculated for the R1/R2 symmetric structure (left)
and for the nonsymmetric R1/R1 (right). Wave function distributions
per lattice site, corresponding to the first state of each SL type, are
depicted in blue (pink) circles indicating positive (negative) ampli-
tudes. For comparison, the |φ|2 per lattice site when the length of
each of the constituent ribbons is 36 u.c. is shown below.

atoms, while the trivial states are centered on the free zigzag
edges. The R1/R1 junction despite being trivial presents an
in-gap state at energy close to zero as in the two previous 15-7-
and 13-5-AGSLs.

C. Junctions formed by ribbons of the same family

We have also investigated AGSLs formed by ribbons of
the same family. In this case 	N = 6 and 13-7-, 15-9-, and
11-5-AGSLs are representative of 3p + 1, 3p, and 3p + 2
families, respectively. The SLs formed by ribbons belonging
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FIG. 8. Top: Band structure of the 15-7-AGSL formed by 6 u.c.
length segments. Bottom: Wave function amplitude density |φ|2 per
lattice site across the SL, at the � point, for the two first occupied
states. Results calculated for the R1/R2 nonsymmetric junction (left)
and for the R1/R1 symmetric junction (right). Below the |φ|2 distri-
butions versus lattice sites are shown for SLs made by 36 u.c. length
segments.

to the semiconductor families 3p and 3p + 1 present a topo-
logical phase for the R1/R1 asymmetrical connection (see
Table II and Fig. 11). However, for metallic 3p + 2 junction,
analogous to the previously discussed junctions containing a
metallic AGNR, the nominally topological junctions do not
show an interface localized state.

In all the AGSLs studied, the number of C-C links at the
interface between the constituent ribbons is always one less
in connection R1/R1 than in connection R1/R2. However,
we have found topological states located at the interface with
both kinds of connections depending on the family types of
junction and on 	N . Therefore, our results do not support the
claim that the minimum number of C-C bonds in the interface
is determinant for the development of states located at the
interface [48].

D. Finite-length junctions: End and junction states

All the results discussed above have been obtained for
AGSLs calculated with periodic boundary conditions. We
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FIG. 9. Top: Band structure of the 7-5-AGSL formed by 6 u.c.
length segments. Bottom: Wave function amplitude density |φ|2 per
lattice site across the SL, at the � point, for the two first occupied
states. Results calculated for the R1/R2 symmetric junction (left)
and for the R1/R1 nonsymmetric junction (right).

have also investigated finite-size junctions of different types
and sizes in order to gain insight into the interrelation between
end and topological junction states. Experimental results from
the finite-size 9-7-AGSL [17] have reported, besides the
TSs, end states at the boundaries between the heterojunc-
tion termini and vacuum and the importance of correlation
in these states have been investigated [49]. For junctions
formed by semiconductor ribbons, there is a clear difference
between the topological and trivial cases. Figure 12 presents
the electronic properties of 13-7 AGNR junctions, both trivial
and topological, of finite length, specifically 16 u.c. each seg-
ment. Those corresponding to the periodic AGSLs have been
just discussed and represented in the previous figure. In both
cases edge states confined at the termini of the constituent
segments are present at zero energy. In addition, some meV
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FIG. 10. Same as Fig. 9 for the 17-9-AGSL formed by 6 u.c.
length segments. Results calculated for the R1/R2 nonsymmetric
junction (left) and for the R1/R1 symmetric junction (right).
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FIG. 11. Same as in Fig. 9 for the 13-7-AGSL formed by 16 u.c.
length ribbons, both of the 3p + 1 family. Results for the R1/R2
symmetric junction (left) and for the R1/R1 non-symmetric junction
(right).

below, the topological state appears localized at the bound-
aries between the two ribbons and the 13-AGNR and vacuum
in the topological junctions, while in the other geometry, the
trivial case, a state with density probability localized in the
two ends of the junction emerges, as can be observed in the top
and middle panels of Fig. 12, where the |φ|2 distribution and
the wave function amplitudes are represented, respectively.
This difference between topologically trivial and nontrivial
finite junctions was observed in Ref. [17] along with end states
strongly dependent on the edge structure. In our results the
zero-energy edge states also show dependence on the structure
of the termini, as is clearly shown in the top panel of Fig. 12.
The schematic distribution of the wave functions correspond-
ing to the end and junction states of the nonsymmetric R1/R1
junction are depicted for a smaller heterojunction, segments
of 6 u.c. length; therefore, the localization is less pronounced.

We only present here results for this heterojunction; finite
AGNR junctions of 16 u.c. length of the 3p and 3p + 1
families show similar behavior for 	N = 2, 4, and 6. For
finite-size junctions with one of the constituents from the
metallic family, end states appear at both termini but for both
coupling geometries the |φ|2 of the next state in energy is
extended in the metallic segment. This behavior is common
for SLs of 	N = 2, 4, and 6; however, for 	N = 8 we find the
same difference as in the semiconductor SL as stated above.

V. DISCUSSION AND GENERAL REMARKS

As shown throughout the paper, the presence of edges and
borders in graphene structures has strong implications for
the low-energy spectrum of p electrons. In particular, GNRs
show distinct electronic properties related to their edges. Due
to the spatial and chiral symmetries of the graphene lattice,
armchair-edge GNRs are one-dimensional topological mate-
rials and, depending on their width and the shape of the bulk
unit cell, they belong to different topological classes. Hence,
AGNRs are characterized by the invariants: Z2, determined
by spatial and time-reversal symmetries, and/or Z , defined
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FIG. 12. Wave function amplitude |φ|2 per lattice site corre-
sponding to zero-energy end states confined at the termini of the
heterostructure (top), and the two next occupied states (middle and
bottom) for the R1/R2 symmetric junction (left) and for the R1/R1
nonsymmetric junction (right), for a finite heterostructure formed by
ribbons of 16 u.c. length. The wave function distributions per lattice
site corresponding to the edge and junction states are schematically
depicted for a 6 u.c. R1/R1 junction. Below, the energy spectrum of
the finite 13-7-AGSL is shown for the two junction types.

by chiral symmetry. Periodic AGNRs only exhibit delocal-
ized bands, whose wave functions extend along the ribbon,
independently of their topological character. However, when
frontiers and edges are present localized bound states exist at
the borders.

On the basis of a tight-binding model, we have deter-
mined the topological invariants of AGNRs and elucidated
the intriguing electronic properties of AGNRs with single
or multiples interfaces. In a finite-length AGNR, besides the
armchair edges along the length, there are two interfaces
with vacuum that correspond to two short zigzag edges at

both ends. Whereas the armchair borders do not induce local-
ized states, the zigzag terminations generate bound localized
states. They originate from the boundary conditions, that is,
from the requirement that the probability amplitude of the
electrons must vanish beyond the carbon atoms at the edge.
The emergence of conjugate zero-mode end states is closely
related to the chiral symmetry of the AGNR and, therefore, to
its topology. Actually, their existence is precisely correlated
with a nonzero winding number. In semiconductor AGNRs,
the number of edge states at each end, without counting the
spin degree of freedom, is equal to the Z invariant, while in
metallic AGNRs, in the absence of relaxation at the armchair
borders or electronic correlations, the number is equal to one
unit less than Z . Accordingly, we can readily work out the
number of topological end states in the band gap, located at
the boundaries of the AGNR, by controlling the width of the
ribbon and the shape of the termination. We find that, for
a given type of termination, the number of localized zero-
mode end states generally increases with the ribbon width,
and the energy separation between two conjugate topological
end states, belonging to the valence and conduction bands,
respectively, is defined by the length of the AGNR. Further-
more, the left and right edge states have opposite chirality and
thus they have wave amplitudes exclusively at the A and B
sublattices, respectively. These properties of the zero-mode
end states allow the design of topological states simply by
precisely controlling the structural parameters of the AGNR.

Similarly, the topological character of a junction is defined
by the widths of the ribbons and their structural coupling at
the interface. Therefore, topological bands emerge in AGSLs
with a periodic modulation of their width whenever the in-
terface coupling defines a junction of AGNRs with distinct
topological character, either different Z2 or Z . For junctions
of semiconductor AGNRs of varied widths there is at least
one type of connection that results in a topological junction.
This junction supports topological states, whose wave func-
tion accumulates at the interface and is restricted to atoms
of a single sublattice. When the junctions are arranged peri-
odically the energy of these topological bands is dictated by
the length of the constituent AGNR segments and they are
robust against perturbations since they are well separated from
the bulk states by the semiconducting energy gap of AGNRs.
The presence of midgap states is quite robust against local
perturbations. The stability of the junction states, protected by
spatial symmetries, against local strain and vacancies has been
confirmed by first-principles and tight-binding calculations
[14,48]. On the other hand, end and junction states have been
experimentally observed by scanning tunneling microscopy in
different atomically precise AGSLs [17,18]. If the difference
in the constituent ribbon widths is large, 	N � 8, states lo-
cated on the zigzag atoms of the interface appear for any type
of connection, the coupling barrier being the dominant effect.
However, if both AGNRs belong to the same topological class,
the junction is topologically trivial and the interface states are
not chiral. They have wave function amplitude in both A and
B sublattices and their energy is close to that of bulk states.

In the special case of AGSLs containing a metallic ribbon,
junctions with different structural coupling show a similar
electronic spectrum. The energy distribution of the bands
around zero, as well as their spatial localization, are analogous
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regardless of the topology of the AGNRs. For all AGSLs,
the states are found on the metallic ribbon, although with a
large amplitude at the interface atoms. Only when the width
difference is � 8 do topological and trivial bands accumulated
at the interfaces develop. As in semiconductor junctions the
topological bands are chiral, while the interface trivial states
are not chiral.

Furthermore, in all the analyzed AGSLs, irrespective of
the topology of the constituent ribbons, bulk states brack-
eting the topological interface states extend to only one
AGNR. The highest valence and lowest conduction bands are
located in the widest AGNR with the smallest energy gap.
However, states located in each of the AGNRs alternate, since
the energy and spatial distribution of the wave function of
these bulk states follow the quantization pattern of confined
states, analogously to the allowed states of a particle in a
square potential well. The energy of the quantum-well-like
bulk states depends on the length of the corresponding seg-
ment. This is a particularly unusual and exotic result, since
effective electron confinement is produced in a graphene sys-
tem.

Finite-length AGSLs, in addition to the in-gap topologi-
cal modes, show edge states confined at the termini of both
AGNRs. They are similar to those of the constituent fi-
nite AGNRs and, although they have close energy, the
AGSL end states do not interact with the in-gap topological
states accumulated at the interface atoms. Calculations with
the four-orbital basis (see the Appendix), although without
electron-hole symmetry, give the same results. The σ bands
appear at energies below the highest valence band and the
edge states of the isolated ribbons and of the heterojunctions
are of π character like the interface states.

It is worth it to highlight the importance of the bipartite
nature of the graphene lattice since the number of zero-energy
states is related to the imbalance between the number of A and
B sites or chiral charge [13,25]. The sublattice symmetry is on
the basis of the design of topological phases in AGNRs and
allows different strategies to investigate unknown phenomena
and build new devices [7,10,11,30].

In summary, finite-length AGNRs and AGSLs provide a
route to generate carrier confinement in nanoscale graphene.
By controlling the structural parameters of AGNRs and
AGSLs, topological bound states either at the extreme or at
the interface between two distinct AGNRs can be tailored.
In addition, states constrained to a single AGNR in AGNR
heterojunctions and superlattices can also be induced. These
confined states can be a source of peculiar magnetic and
transport properties, since the Coulomb interaction in the
topological bound states is expected to be much greater than
the bandwidth [50,51], which suggests that they are unique
systems to explore the effect of Coulomb interactions in one
dimension.
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APPENDIX

As stated in Sec. II, all the results presented in this work
have been obtained by the TB approach with the four-orbital
basis set and with the single π -orbital basis set. In order to
show the coincidences and differences between the results ob-
tained by both Hamiltonians, Fig. 13 depicts the four-orbital
band structures and the module squared weight distribution
per lattice site of the three first occupied states at the � point,
corresponding to the R9-R7 SL for the R1/R2 symmetric
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and R1/R1 asymmetric structures. The segment lengths are
of 6 u.c. for both constituent ribbons. These results are di-
rectly comparable to those represented in Fig. 7 corresponding
to the same SL obtained with the single pz-orbital basis.
In the R1/R2 SL, the in-gap states arise at the same en-
ergies and present the same character in both calculations.
The wave function distributions per C atom are the same.
The second occupied state, of σ character, is absent in Fig. 7,
but the third occupied state, of π character, appears at the
same energy and presents the same distribution per lattice
site as the second one in Fig. 7. In the R1/R1 coupling the
first and second bands are of π character and coincide with
those of Fig. 7 in energy and distribution. The third occupied
state is of σ character. The energy-gap values are the same
in both calculations. Considering finite-size SLs, the edge
states behave the same as those presented in Fig. 12. In the
experimentally bottom-up synthesized AGNRs and SLs the σ

orbitals of the carbon atoms at the borders are capped by hy-

drogen and therefore are not involved in the edge or junction
states [13].

Therefore, in the energy region of interest both
Hamiltonians give similar results. The band structure obtained
with the four-orbital basis set lacks electron-hole symmetry,
as can be observed in Fig. 14 where the band structures of
R7 are depicted in the same energy interval. The pz bands
appear at the same energies, presenting the same symmetry
and dispersion law. Although some σ bands lie at energies
close to the valence band and do not intervene in the junction
states. When considering finite-size ribbons, the end states are
the same as those obtained with the pz Hamiltonian for both
the R1 and R2 geometries. The inclusion of the 2s, 2px, and
2py orbitals in the Hamiltonian is of interest in calculations
of the intrinsic spin-orbit interaction (SOI) effects, in carbon
nanotube calculations or curvature effects in graphene since
both SOI and curvature induce hybridization of σ -π orbitals
[33,52,53].
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