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Approximate two-body generating Hamiltonian for the particle-hole Pfaffian wave function
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We present two two-body Hamiltonians that approximate the exact particle-hole Pfaffian wave function with
their ground states for all the system sizes where this wave function has been numerically constructed to
date. The approximate wave functions have high overlap with the original and reproduce well the low-lying
entanglement spectrum and structure factor. The approximate generating Hamiltonians are obtained by an
optimization procedure where three to four pseudopotentials are varied in the neighbourhood of second Landau
level Coulomb interaction or of a noninteracting model. They belong to a finite region in the variational space of
Hamiltonians where each point approximately generates the particle-hole Pfaffian. We diagonalize the identified
Hamiltonians for up to 20 electrons and find that for them the particle-hole Pfaffian shift appears energetically
more favorable. The possibility to interpret the data in terms of composite fermions is discussed.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) at the filling
factor ν = 5/2 [1] is an interesting topological [2] state of
matter that may potentially be used as a building block of a
topological quantum computer [3,4]. To a large extent, our
understanding of the phenomenon rests on the model wave
functions proposed to describe the state and their properties
tested in experiment or numerically in small systems. Until
recently, the two leading candidate wave functions were the
Moore-Read Pfaffian [5] and its particle-hole conjugate: anti-
Pfaffian [6,7]. The finite magnetic field used in the experiment
means finite energy difference between Landau levels [8] and
leads to “Landau level mixing” that generates the particle-hole
(ph) symmetry-breaking terms in the effective models that
could favor one of the two descriptions.

Although the two wave functions are topologically dis-
tinct, in the small systems the exact numerics is limited to,
the competition between them is quite close. For example,
including the first five ph symmetry-breaking terms, one finds
that Pfaffian is favored [9] (see also Refs. [10,11]) while a
more precise model including first six [12] terms determines
anti-Pfaffian (see also Refs. [13,14]).

Particle-hole symmetric Pfaffian (ph Pfaffian) [15] (also
see a related earlier work, Ref. [16]) is the third very recent
candidate that has received support from some experimen-
tal observations [17,18] but not from numerics [19–21] (in
contrast to Pfaffian and anti-Pfaffian: Refs. [22–27]). Under
the assumption that the signatures of the ph Pfaffian never
show up in the numerics and it thus cannot be stabilized by
any Hamiltonian relevant for ν = 5/2, a number of alternative
scenarios explaining the quantized thermal Hall conductance
κxy measurements [17] have been explored recently [28–41].

In this work, we report on a two-body Hamiltonian that
is a deformation of the second Landau level (SLL) Coulomb
interaction and whose ground state approximates well the ph
Pfaffian wave function as written down in Ref. [28] and in

all the finite-size systems where this model wave function
has been numerically constructed until now [42]. No such
Hamiltonian has been reported to date [43] and we hope that
it will be instrumental for further studies.

In particular, we are using the wave function translated [44]
into the spinor coordinates [45] in the spherical geometry,
where it reads

|�ph Pf({rk})〉 = PLLLPfk,l

{
1

ūk v̄l − ūl v̄k

} ∏
k>l

(ukvl − ulvk )2,

(1)

where PLLL stands for projection on the lowest Landau level.
Computing the actual weights of the wave function in the

fermion occupation basis is described in detail in Ref. [42]. It
is analogous to the calculation of Coulomb matrix elements
on the sphere (given in the Appendix of Ref. [44]) upon
substitution of the Coulomb potential 1/r with 1/r2.

Particle-hole symmetry requires that exactly half of the
available single-particle states are filled with electrons such
that N� + 1 = 2Ne, where N� is the number of flux quanta
through the spherical surface and Ne is number of (spin-
polarized) electrons. The shift X [46] is a quantum number
that distinguishes different topological phases on the sphere;
for ν = 5/2 states it is defined by the equation N� = 2Ne − X .
We observe that X = 1 for the ph Pfaffian while for Pfaf-
fian and anti-Pfaffian wave functions we have XPf = 3 and
XaPf = −1 respectively. A direct consequence of this is that
the finite-size calculations at ph Pfaffian and anti-Pfaffian
shifts are performed in different Hilbert spaces, which one
should keep in mind when comparing them.

II. OPTIMIZATION APPROACH

An optimization approach [47] is used to determine the
approximate two-body generating Hamiltonian. It varies the
pseudopotentials and searches the vicinity of a reference
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interaction for the points that are best according to a certain
criteria or target function that is a weighted sum of the relevant
properties. The highest contributions are given to the high
overlap with the ph Pfaffian wave function and small energy

variance of the reference state (σ rel
E )2 = 〈ψr |H2

O|ψr〉−〈ψr |HO|ψr〉2

〈ψr |HO|ψr〉2 ,

which quantifies how close it is to being an eigenstate of
the variational Hamiltonian. Further properties accounted
in the search are the total angular momentum of the ground
state, gap, deviation from the reference interaction, and
ground-state energy. All the system sizes where the model
wave function is available (plus Ne = 16) are used and con-
tribute to the target function being optimized proportionately
to the size of their Hilbert space. As we work on the sphere at
fixed Lz = 0, we need to remember that the subspace, relevant
for describing FQHE ground state, is given by the condition
L = 0. There are 3, 7, 24, and 127 L = 0 states for systems
with 6, 8, 10, and 12 electrons respectively. This ensures that
the problem of “fitting” four variational parameters (pseu-
dopotentials) is not trivial or overparameterized as long as
systems with at least 12 electrons are used (we use up to 16
electrons).

The Hamiltonian is parameterized by the two-body pseu-
dopotentials in spherical geometry [45]. The search is
performed following the nonlinear conjugate gradient descent
algorithm with the Hestenes update rule (see Ref. [47] for
details).

The method [47] can be viewed as mapping the variational
parameters (pseudopotentials) into the feature space (Hilbert
space) through diagonalizing the corresponding Hamiltonian
and taking its ground-state wave function. The overlap then
defines a kernel in the feature space and other kernel methods
of machine learning could potentially be used on top. Thus,
the method [47] may be considered a very simple example of
the kernel-based machine learning [48].

We also have attempted to find the exact two-body
generating Hamiltonian following the “covariance matrix”
methods [49–51] without success as zero eigenvalues required
by these methods were absent for the covariance matrices
constructed for the problem in question. This may be an indi-
cation that such an exact two-body Hamiltonian does not exist
and an approximate Hamiltonian such as the one presented in
this work and found using Ref. [47] is the best one can do if
restricted to two-body terms only.

III. THE APPROXIMATE GENERATING HAMILTONIAN

The approximate two-body generating Hamiltonian is de-
termined in the vicinity of the two reference interactions:
SLL Coulomb given by the pseudopotentials computed for 20
electrons (see Table III) and the noninteracting system H = 0.
The explicit formula for Coulomb pseudopotentials is given
by the Eq. (6) of Ref. [52]. It allows one to follow the slight
dependence of the pseudopotentials on the system size which
is not crucial for our purposes of finding an approximate
Hamiltonian in the neighborhood of these reference values.

In the case of Coulomb, we vary four pseudopotentials
V3 through V9 while “freezing” all others to their reference
values. In the case of the minimal model, we only vary
three pseudopotentials V3, V5, and V9, while freezing the rest.

TABLE I. The lowest pseudopotentials of the approximate ph
Pfaffian generating Hamiltonians and the reference SLL Coulomb
values. All higher pseudopotentials of CV7 are identical to the SLL
Coulomb (values are given in Table III) and are 0 for MV3.

CV7 MV3 SLL Coulomb

V1 1 1 1
V3 0.694456627311176 0.433617799341989 0.773278825612202
V5 0.665960300533016 0.370884676389928 0.576859542105588
V7 0.448785272954577 0 0.487302680505104
V9 0.52955224410569 0.164743667925535 0.433005097996708

Although one could achieve better fits varying more pseu-
dopotentials, it is commonly believed that usually only the
lowest Vm with m � 9 have physical significance. Another
reason for limiting the number of variational parameters is the
desired simplicity of the resulting model.

The optimization results depend on the significance
weights that we assign to various criteria contributing to
the target function. Furthermore, because the optimization
problem is nonconvex, different results might in general be
obtained for different initial conditions. Combined together
this leads to a certain freedom as to what results should be
identified as the best. In Table I we give two of the possible
solutions with labels CV7 (near SLL Coulomb) and MV3
(minimal model).

Figure 1 shows the learned pseudopotentials plotted to-
gether with the reference SLL and LLL Coulomb interactions.
Compared to the SLL Coulomb, V5 and V9 are the pseudopo-
tentials that differ the most and this deformation is in the
direction opposite to the LLL Coulomb (the named pseudopo-
tentials are increased but would need to be decreased to obtain
the LLL Coulomb). We also notice that in all the solutions
we have obtained V3 and V7 are decreased and V5 and V9 are
increased relative to the SLL Coulomb.
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FIG. 1. Coulomb interaction in first and second Landau levels
is shown with black triangles and crosses respectively. Red circles
and crosses are the learned Hamiltonians MV3 and CV7. Magenta
“+” data indicate the interaction closest to SLL Coulomb that is still
a reasonable approximation of ph Pfaffian: 0.3HSLL Coul + 0.7HCV7.
Blue crosses correspond to the CV7 interaction shifted down by a
constant −V SLL Coul

31 .
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TABLE II. Overlaps and energy variances for the two approxi-
mate generating Hamiltonians and the lowest Landau level Coulomb
interaction.

MV3 CV7 LLL Coulomb

〈ψo|ψr〉 (6) 0.99142087 0.99210070 0.98628980
〈ψo|ψr〉 (8) 0.98009459 0.96521979 0
〈ψo|ψr〉 (10) 0.97161429 0.96271627 0
〈ψo|ψr〉 (12) 0.95538874 0.98570050 0.92987018
〈ψo|ψr〉 (14) 0.95878369 0.97167128 0
(σ rel

E )2(6) 2.4646 ×10−4 1.4254 ×10−5 1.3853 ×10−4

(σ rel
E )2(8) 4.0823 ×10−4 5.2169 ×10−5 4.6648 ×10−5

(σ rel
E )2(10) 2.1047 ×10−4 1.4792 ×10−5 3.6334 ×10−5

(σ rel
E )2(12) 9.3918 ×10−5 4.5660 ×10−6 3.5453 ×10−5

(σ rel
E )2(14) 1.6555 ×10−4 8.4828 ×10−6 1.7261 ×10−5

Table II contains the information on how close the Hamil-
tonians found are to being exact generating Hamiltonians of
the ph Pfaffian wave function. It lists the overlaps between the
Hamiltonian ground state and the exact model wave function
as well as the relative energy variance in the exact ph Pfaffian
for individual system sizes. We also include the information
on the LLL Coulomb that was noticed [19,20] to provide
a relatively large overlap with the ph Pfaffian for six and
12 electrons. Relative energy variance quantifies how far a
Hamiltonian is from having a particular wave function as an
eigenstate. To put these numbers in perspective, we provide
the same data for the second Landau level Coulomb interac-
tion and the anti-Pfaffian model wave function in Table VII in
Appendix A. We observe that the precision with which CV7
approximates ph Pfaffian is not worse than the one for SLL
Coulomb and anti-Pfaffian.

The fact that the energy variance for the LLL Coulomb
interaction ground state for eight electrons is lower than
that for CV7 highlights the crucial importance of using the
multivariable target function when searching for an approxi-
mate generating Hamiltonian. Minimizing the energy variance
alone would not necessarily lead to a desired solution as
it, for example, carries no information about the position of
the model wave function in the Hamiltonian spectrum and
we might find a Hamiltonian that produces it as an exact
but highly excited state. On the other hand, we know that
energy variance is positive definite and assumes its minimal
possible value on the desired exact solution and it is therefore
advantageous to include it as a part of multivariable target
function in order to reduce the effective size of the variational
space and arrive at the Hamiltonian for which the model wave
function is (almost) an eigenstate. We should also note that
finite-size effects are commonplace in exact diagonalization
studies of the fractional quantum Hall effect and the relatively
small system with eight electrons may just as well be simply
deviating from the common trend because of its size.

Entanglement spectrum is a way of interpreting the
singular value decomposition (also known as Schmidt decom-
position) of a quantum system

|ψ〉 =
∑

i

si

∣∣ψ i
A

〉 ⊗ ∣∣ψ i
B

〉
, (2)

where the system is thought to be made of two parts A and B.
Working on a sphere, we will consider the separation along
the equator following Ref. [53].

Using si = e− ξi
2 , we can interpret ξi as energy levels [53]

and observe that the corresponding thermodynamic entropy
becomes identical to the entanglement entropy S = ∑

i ξie−ξi ,
which is a widely used measure of entanglement.

The total projection of the angular momentum in subsys-
tem A (Lz

A) is a good quantum number that could be used
to label each singular value. The level counting in the low-
energy part of entanglement spectrum is thought [53] to be a
characteristic signature of the underlying topological phase.

An approximate generating Hamiltonian might not repro-
duce the complete model wave function exactly, but it should
at least be reasonably reproducing its universal topological
fingerprint encoded in the lowest levels of the entanglement
spectrum. For example, it is known that the Coulomb inter-
action [53] and some of its deformations [9] do reproduce
the level counting of the model Pfaffian wave function at the
Pfaffian shift on the sphere.

In Fig. 2, we show the entanglement spectra calculated for
the ground state of CV7 and the exact ph Pfaffian for 12 and 14
electrons. We observe that the structure of the low-lying levels
is reproduced well. For comparison, the middle panel of Fig. 2
shows the data for the LLL Coulomb ground state. We observe
that the learned Hamiltonians (see Fig. 15 in Appendix F for
the MV3 data) are substantially better than the LLL Coulomb
in reproducing the structure of the ph Pfaffian entanglement
for 12 electrons (for 14 electrons, the ground state of LLL
Coulomb has L �= 0).

A central question related to the ph Pfaffian wave function
and universality class is whether it could be a valid descrip-
tion of uniform gapped FQHE state observed at ν = 5/2 in
experiment. To make a step toward answering this question,
we study the static structure factor of the model wave function
and the ground states of the learned Hamiltonians.

It has been argued [54–56] that the projected static struc-
ture factor

S̄(q) = 1

N
〈ρ̄†

q ρ̄q〉 (3)

(with N being the number of particles and ρ̄q being the Fourier
transform of the density operator projected onto the lowest
Landau level) must quite universally vanish as |q|4 or faster
in order for the state in which it is evaluated to be a gapped
FQHE state.

The corresponding quantity on the sphere with 2S + 1
single-particle basis states (for L �= 0) [57] is [58]

S0(L) = 1

2S + 1
〈ρ̄†

LM ρ̄LM〉 , (4)

where L is the total angular momentum and M is its projec-
tion.

For L �= 0, it can be evaluated [58] as [59]

S0(L) = 2L + 1

2S + 1

∑
m,m′

〈S, m|L, 0; S, m〉 〈S, m′|L, 0; S, m′〉

× 〈n(m)n(m′)〉 . (5)
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FIG. 2. Entanglement spectrum for 12 (top panel) and 14 (bot-
tom panel) electrons computed in the model wave function and the
ground state of the learned Hamiltonian near SLL Coulomb (CV7).
Middle panel is obtained for 12 electrons and LLL Coulomb ground
state. The cut is made at the “equator” of the sphere.

Here 〈J, M|J1, m1; J2, m2〉 is a Clebsch-Gordan coefficient
that couples two particles with total angular momentum (pro-
jections) of J1 and J2 (m1 and m2) into a state with total angular
momentum J and projection M. Operator n(m) is the number
operator in the “orbital” m.

Figure 3 shows the structure factor (5) as a function of Q =√
L2/S for 12 and 14 electrons computed in the model wave

function and in the ground states of relevant Hamiltonians.
We observe that the learned Hamiltonian CV7 is best at re-
producing the original structure factor while the data obtained
in the LLL Coulomb ground state shows more pronounced
oscillations and also grows more slowly at small Q than all
other data.
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FIG. 3. Structure factor S0(Q) for 12 (left panel) and 14 (right
panel) electrons computed in the model ph Pfaffian wave function
and the ground states of the learned Hamiltonians and the LLL
Coulomb interaction. The normalized deviation from the ph Pfaffian
data is ε = ∑Lmax

L=1 [|S0(Q) − Sph Pf
0 (Q)|]/Lmax.

Although the two Hamiltonians CV7 and MV3 are visually
quite different (Fig. 1), their ground states have relatively
high overlap above 0.98 up to 20 electrons (Table V in Ap-
pendix A).

If we interpolate between them H (α) = (1 − α)HMV3 +
αHCV7 (Fig. 9 in Appendix B), we do not observe any sign
of gap closing and the ph Pfaffian overlap stays above 0.955
for all system sizes at all interpolation points. This suggests
that the two Hamiltonians CV7 and MV3 actually belong to a
single continuously connected region in the parameter space
defining the Hamiltonians that approximately generate the ph
Pfaffian [60]. This conclusion is supported by the entangle-
ment spectrum data computed at every third interpolation step
(Fig. 8 in Appendix B) for Ne = 12, 14. The original level
counting of the ph Pfaffian (forming a “signature” of a topo-
logical phase [53]) is preserved for every interpolation step.
A further evidence is the good agreement between the low-
lying entanglement spectra of CV7 and MV3 for Ne = 18, 20
(Fig. 7 in Appendix B).

An interesting direction for the future studies would be
to use the presented data for mapping out the full sub-
space of Hamiltonians that approximate ph Pfaffian. Given
the observed distinction between CV7 and MV3 defined in
terms of pseudopotentials (Fig. 1), it is possible that this
is best done in terms of other variables. It would also be
interesting to understand the similarities between the two
learned Hamiltonians as real-space interactions with a certain
screening.

Blue crosses in Fig. 1 show the CV7 pseudopotentials
shifted downward by a constant equal to the largest pseudopo-
tential that was used in the optimization procedure V SLL Coul

31 =
V CV7

31 . Note how close the resulting V3 and V5 become to
the values in MV3. Together with V9 increased over V7, this
might be the underlying general feature that is required for
approximating the ph Pfaffian.

The available data indicate that the learned Hamiltonians
CV7 and MV3 represent a reasonable approximation of the
ph Pfaffian wave function for the system sizes with up to 14
electrons. We will now attempt to extract additional informa-
tion about the ph Pfaffian state from these Hamiltonians. Note,
however, that this program may only be successful if the small
system sizes we used for Hamiltonian learning already con-
tained enough information representative of the ph Pfaffian
phase [47], which cannot be verified before the ph Pfaffian
wave function for larger sizes is available.
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FIG. 4. Interpolation between the SLL Coulomb interaction
(α = 0) and the learned Hamiltonian CV7 (α = 1). <> stands for
averaging over the available system sizes. Overlap is averaged over
systems with 8–14 particles and gap is averaged over systems with
8–16 particles.

IV. PHYSICS OF THE APPROXIMATE GENERATING
HAMILTONIAN

First, we would like to understand how the learned Hamil-
tonians compare to the Coulomb interaction in the first and
second Landau levels, keeping in mind that the SLL Coulomb
interaction ground state was shown to be adiabatically con-
nected to the three-body interaction exactly generating the
MR Pfaffian state [61] at the Pfaffian shift on the sphere.

When interpolating between SLL Coulomb and CV7 [
H (α) = (1 − α)HCoul + αHCV7], we perform the diagonaliza-
tion at both the ph Pfaffian and anti-Pfaffian shifts. For each of
the system sizes, we keep track of the neutral gap (difference
between the lowest eigenvalues) and the overlap with the
relevant model wave function. Figure 4 shows the cumulative
averaged data for the system sizes with 8 to 16 electrons
(holes). If at a given α we find an L �= 0 ground state for any of
the available system sizes (up to Ne = 18), we mark the gap
with a red cross, indicating that no fractional quantum Hall
state is possible for that interaction at the corresponding shift.

Both ph Pfaffian and anti-Pfaffian appear to be stabilized in
the accessible finite systems in the vicinity of the CV7 or SLL
Coulomb interactions at the ph symmetric and anti-Pfaffian
shifts accordingly. As we interpolate between the two inter-
actions, the gap at both shifts appears to decrease and have a
minimum in the region of α ≈ 0.5–0.7. For most individual
system sizes (Fig. 12 in Appendix D), the gap actually closes,
accompanied by a sharp drop of the overlap (where available).
This, however, is not the case for the “closed shell” [42]
systems such as 12 particles.

At least some of the system sizes have nonuniform (L �= 0)
ground states in the same region α ≈ 0.5–0.7. Taken together,
these observations would be consistent with a phase transition
from ph Pfaffian to anti-Pfaffian universality classes as we
tune the interaction between CV7 and SLL Coulomb. Further,
there might be an intermediate phase with broken spatial
symmetry. The detailed characterization of the possible phase
transition, however, goes beyond the scope of this work and
due to the extremely small energy gaps would require access

to significantly larger system sizes. Such a study may also be
best performed in another geometry—on the sphere the two
universality classes appear at different shifts, which would
complicate their direct comparison.

If the learned Hamiltonian CV7 is deformed in the direc-
tion of the LLL Coulomb, the ph Pfaffian state is destroyed
much more quickly (Fig. 13 in Appendix D). For Ne = 18
(not shown), there is no single data point in that direction with
L = 0, meaning no valid FQHE state is possible if we move
toward LLL Coulomb. The system with 12 electrons again
does not seem to close the gap during the interpolation, while
the first excited state changes from L = 6 at LLL Coulomb to
L = 2 for CV7.

The SLL Coulomb-to-CV7 interpolation data (Fig. 4) al-
lows us to conclude that the found Hamiltonian CV7 is a
reasonable approximation for the ph Pfaffian in a finite region
in the parameter space rather than at a single special point.

The neutral energy gaps for the two learned Hamiltoni-
ans are shown in the top panel of Fig. 5. The analysis is
complicated by both the finite-size effects and the fact that
the closed-shell systems with 6, 12, and 20 electrons have
much higher gaps as if they stemmed from a different data
set. Therefore, the data does not seem to allow a reliable
extrapolation and a conclusion if the corresponding states are
gapped in the thermodynamic limit. For comparison, we also
show the more consistent data at anti-Pfaffian shift and SLL
Coulomb interaction.

For CV7, we also compare the ground-state energy at var-
ious shifts at fixed electron number (bottom panel of Fig. 5).
We observe that the energy at the ph Pfaffian shift is lower
than the average at nearby flux values. For 12 electrons,
energy at the ph Pf shift is E (24) = 36.2963 while the av-
erage of energies at the Pfaffian and anti-Pfaffian shifts is
[E (22) + E (26)]/2 = 36.3845. For 14 electrons, correspond-
ing energies are 47.5120 and 47.6207, again favoring ph
Pfaffian shift. The energies and angular momenta at various
fluxes and electron numbers for CV7 and MV3 are listed in
Table VI and support the discussed trend. The fact that L �= 0
at ±1 flux is consistent with the ph Pfaffian flux being most
energetically favorable and the nearby states corresponding to
quasiparticles.

The systems with Ne = 6, 12, 20 electrons stand out by
every possible measure. In Fig. 5, we observe that the neutral
gap for these system sizes is significantly higher and extrapo-
lates to a positive value, while a linear fit including all data
extrapolates to negative values. Note that the model wave
functions themselves are also substantially different as can be
seen from the structure factor plots (Fig. 11 in Appendix C).

The special properties of these systems are consistent with
them corresponding to closed-shell configurations of compos-
ite fermions [62] with the effective flux 1 where a system with
(ñ + 1)(ñ + 2) electrons completely fills all � levels up to
ñ so that maximum filled levels for Ne = 6, 12, and 20 are
ñ = 1, 2, and 3. Further numerical data consistent with this
assumption are assembled in Appendix F.

To discuss whether the state described by the model
wave function and approximated by the ground states of
the learned Hamiltonian is gapped, we perform the scal-
ing analysis of the structure factor S0(Q) (5). For a gapped
state, the structure factor should grow as Qα = LαS−α/2 with
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teraction at anti-Pfaffian shift computed for 8–16 holes. The constant
term of the linear fit is indicated in the legend. (Bottom panel) Lowest
energy at the ph Pfaffian and nearby shifts calculated for CV7 and
Ne = 12, 14. For each Ne, we subtract the energy at maximum flux
to make them comparable. The linear fit shown in red and magenta
is over the four points excluding the flux corresponding to the ph
Pfaffian shift.

α � 4 [54–56]. Consider the two smallest values L∗ = 2, 3
and plot ln(S0(L∗)) against ln(S). For sufficiently large system
sizes, we should be able to read off −α/2 from the slope of the
linear fit to the data. We do obtain α � 4 for such an analysis
performed for the anti-Pfaffian model wave function and large
enough (Nh � 12) systems (Fig. 10) in Appendix C. However,
as the linear fit using smaller system sizes shows (Fig. 10),
the answer would not have been so clear even for the anti-
Pfaffian had only the systems with Nh � 14 been available.
As the previous literature suggested [19,20,42], the gap of
the ph Pfaffian must be much smaller should it be gapped.
It is therefore to be expected that the “reliable” system size
threshold is higher for the ph Pfaffian.

Large finite-size effects in the CV7 and MV3 data for
ph Pfaffian case and the special behavior of the closed-shell
system sizes lead to several possible ways to linearly fit the
available data, some of which are shown [63] in Fig. 6. The
extracted α and the qualitative result would depend on which

1.8 2 2.2 2.4 2.6 2.8
ln(S)

-5

-4

-3

-2

-1

0

ln
(S

0(Q
(S

))
)

L=2
L=3
-1.7x+1, N

e
=6,12,20

-1.5x+1.4, N
e
=6,12,20

-2.1x+2.5, N
e
=8,10,14,16,18

-1.1x+0.74, N
e
=8,10,14,16,18

-2.7x+4.1, N
e
=14,16,18,20

-2.3x+3.9, N
e
=14,16,18,20

1.8 2 2.2 2.4 2.6 2.8
ln(S)

-5

-4

-3

-2

-1

0

ln
(S

0(Q
(S

))
)

L=2
L=3
-1.8x+1.2, N

e
=6,12,20

-1.5x+1.4, N
e
=6,12,20

-2.1x+2.4, N
e
=8,10,14,16,18

-1.4x+1.3, N
e
=8,10,14,16,18

-2.7x+4, N
e
=14,16,18,20

-2.5x+4.3, N
e
=14,16,18,20

1.6 1.8 2 2.2 2.4 2.6 2.8
ln(S)

-3.5

-3

-2.5

-2

-1.5

-1

ln
(S

0
(Q

(S
))

)

L=2
L=3
-1.5x+0.75, fit N

e
=6   8  10  12  14

-1.2x+0.87, fit N
e
=6   8  10  12  14

FIG. 6. Structure factor extrapolation over the ground states of
the CV7 (top panel) and MV3 (middle panel) learned Hamiltonians.
Several possible linear fits including subsets of the available system
sizes are displayed. Data for the ph Pfaffian model wave function are
shown in the bottom panel.

data is used for the fit. In particular, a fit for the closed-shell
sizes Ne = 6, 12, 20 gives α � 3.6, suggesting gapless state
while a fit using the four largest available system sizes Ne =
14, 16, 18, 20 leads to α � 4.6, which would be consistent
with a gapped state. Given this uncertainty, we are not able
to draw a solid conclusion and leave it (along with all the raw
data available in the Supplemental Material [64]) to the reader.

Analogous data for the ph Pfaffian wave function for Np �
14 is shown in the bottom panel of Fig. 6 but is likely to not
be representative of the thermodynamic limit behavior as the
data for anti-Pfaffian (dashed lines in Fig. 10 in Appendix D)
suggest.

A related issue are the oscillations of the structure factor
at large Q and the two-peak structure noted earlier [42] for
the model ph Pfaffian at some Ne. With the approximate wave
functions, we have access to larger system sizes and observe
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TABLE III. Pseudopotentials corresponding to the reference
Coulomb interaction in the second Landau level for 20 electrons and
for the two learned Hamiltonians CV7 and MV3.

SLL Coulomb CV7 MV3

V1 1 1 1
V3 0.773278825612203 0.694456627311176 0.433617799341989
V5 0.576859542105588 0.665960300533016 0.370884676389928
V7 0.487302680505104 0.448785272954577 0
V9 0.433005097996708 0.52955224410569 0.164743667925535
V11 0.395897298672305 0.395897298672305 0
V13 0.368758810329097 0.368758810329097 0
V15 0.348037679627816 0.348037679627816 0
V17 0.331753451882209 0.331753451882209 0
V19 0.318704133349498 0.318704133349498 0
V21 0.308114220905112 0.308114220905112 0
V23 0.299460095621806 0.299460095621806 0
V25 0.292375954106269 0.292375954106269 0
V27 0.286599807671959 0.286599807671959 0
V29 0.281940903418088 0.281940903418088 0
V31 0.278259296382938 0.278259296382938 0
V33 0.275452674381172 0.275452674381172 0
V35 0.273447719307893 0.273447719307893 0
V37 0.272194443356685 0.272194443356685 0
V39 0.271662583897594 0.271662583897594 0

in Fig. 11 in Appendix C that the oscillations decrease and the
two-peak structure becomes less pronounced for larger system
sizes. It is thus possible that these two artifacts would be gone
completely in larger systems. This assumption is substantiated
by the comparison to the anti-Pfaffian data (bottom left panel
of Fig. 11 in Appendix C), where the eight-hole structure
factor resembles the double-peak structure and the 12- and

TABLE IV. Pseudopotentials corresponding to the lowest Lan-
dau level Coulomb interaction and the closest to the SLL Coulomb
Hamiltonian that still approximates ph Pfaffian.

LLL Coulomb HSLLtoCV7(α = 0.7)

V1 1 1
V3 0.634091267132277 0.71934784782728967
V5 0.506828037378007 0.63782321892435445
V7 0.438070153616146 0.46094866481263819
V9 0.394056175977230 0.49906367165022203
V11 0.363219697006843 0.39589729867230494
V13 0.340394925412771 0.36875881032909702
V15 0.322888152268689 0.34803767962781601
V17 0.309143471292678 0.33175345188220901
V19 0.298194956815023 0.31870413334949799
V21 0.289410570149645 0.30811422090511198
V23 0.282360535479264 0.29946009562180598
V25 0.276744644896987 0.29237595410626899
V27 0.272349828383384 0.28659980767195897
V29 0.269024340615875 0.28194090341808797
V31 0.266661617786382 0.27825929638293800
V33 0.265190083071634 0.27545267438117199
V35 0.264566839059207 0.27344771930789302

TABLE V. Overlaps between the ground states of the learned
Hamiltonians CV7 and MV3.

CV7 and MV3

〈ψCV7|ψMV3〉 (6) 0.99998591277202543
〈ψCV7|ψMV3〉 (8) 0.99510909086629048
〈ψCV7|ψMV3〉 (10) 0.99786862142518831
〈ψCV7|ψMV3〉 (12) 0.98280787588118113
〈ψCV7|ψMV3〉 (14) 0.98474351735983609
〈ψCV7|ψMV3〉 (16) 0.98701364088021704
〈ψCV7|ψMV3〉 (18) 0.99005884851780076
〈ψCV7|ψMV3〉 (20) 0.98352526730226702

14-hole data exhibit remainder oscillations similar to the 20-
electron ph Pfaffian data.

V. CONCLUSIONS AND OUTLOOK

We presented two two-body Hamiltonians that reasonably
well approximate an implementation [42] of the ph Pfaffian
wave function on a sphere for all the system sizes where it
is available. One of the Hamiltonians is a deformation of the
second Landau level Coulomb interaction and the other is of
a noninteracting model. Both Hamiltonians belong to a finite
region of the four-dimensional Hamiltonian variational space
where each point approximately generates the ph Pfaffian. Ac-
cess to these microscopical models of ph Pfaffian will enable

TABLE VI. Learned Hamiltonians diagonalized at nearby shifts.
Following system sizes are aliased: 6, 12 with ν = 2/5; 12, 24 with
ν = 3/7; 16, 31 with ν = 4/9; 12, 22 with ν = 4/9; 18, 38 with
ν = 3/7; and 20, 40 with ν = 4/9. Extra stability of 16, 31 for MV3
is likely because the state there corresponds to the LLL ν = 4/9 state.
For all other sizes in the case of MV3 and for all available sizes
for CV7, the ph Pfaffian shift corresponds to the lowest ground-state
energy with regard to the nearby shifts at ±2 flux quanta.

Ne, Nφ+1 E , CV7 L E , MV3 L

12,22 37.75779031942652 0 17.56284812507863 0
12,23 37.0547351356873 2 16.65270506190967 2
12,24 36.29631579008422 0 15.62965756265555 0
12,25 35.66441319316203 2 14.83880981496597 2
12,26 35.0112559096271 2 14.02912633787132 2
14,26 49.16430588912498 2 20.88725047201897 2
14,27 48.33780059455478 1 19.83464758433945 1
14,28 47.51196100367208 0 18.8376266029838 0
14,29 46.77664603481952 3 17.93643762732407 3
14,30 46.07713591920228 4 17.12495015897343 4
16,30 61.65843181189761 4 24.11892235185186 4
16,31 60.71255531205486 0 22.96860300250802 0
16,32 59.88278337534194 0 22.03566015418639 0
16,33 59.0611893949843 4 21.07776538314662 4
16,34 58.28352775461818 0 20.19318847939453 0
18,34 75.22172551641899 0 27.29104448189041 0
18,35 74.26146141886335 1 26.22629910173576 1
18,36 73.35589800221878 0 25.19975494811957 0
18,37 72.48241065038177 3 24.25618648940761 3
18,38 71.5903121524222 0 23.25195072313593 0
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TABLE VII. Overlaps and energy variances for the second Lan-
dau level Coulomb interaction and anti-Pfaffian wave function. The
indicated system sizes from 8 to 14 is the number of holes in the
system.

SLL Coulomb

〈ψo|ψr〉 (8) 0.936407935222018
〈ψo|ψr〉 (10) 0.8910370857075266
〈ψo|ψr〉 (12) 0.8228169487809225
〈ψo|ψr〉 (14) 0.7060756836847729
(σ rel

E )2(8) 1.724761519337407 ×10−5

(σ rel
E )2(10) 1.0722752038401 ×10−5

(σ rel
E )2(12) 1.35787594338842 ×10−5

(σ rel
E )2(14) 7.215644779918406 ×10−6

multiple future studies of its relevance for the 5/2 fractional
quantum Hall effect. Diagonalizing the Hamiltonians for up
to 20 electrons, we find that the finite-size effects improve
but remain present, however, which is consistent with a gap
much smaller than the one for anti-Pfaffian. The available
data neither assert nor exclude the possibility that the ground
state of the approximate ph Pfaffian generating Hamiltonian is
gapped. Larger system sizes are more consistent with a valid
FQHE state by some measures. Access to several higher sizes
of the model wave function and exact learned Hamiltonian
eigenstates would be needed to gain certainty while we do not
expect more than one additional system size to become acces-
sible in the near future due to the computational complexity of
the problem. Approximate methods might therefore be worth
considering.

There are several interesting directions for the future in-
vestigation. Since there is no preferred way of constructing
a ph Pfaffian, it would be reasonable to study other im-
plementations than those used in this work [28] and all
prior literature. The presented Hamiltonian is a simple four-
parameter model, while adjusting further pseudopotentials
would improve the approximation precision. An important
open question is whether the required deformation of the
Coulomb interaction may be obtained within some effective
realistic model. For example, the pseudopotentials that per-
turbatively account for the Landau level mixing and finite
width [10,13,65] to lowest order do not to our knowledge pro-
duce the suitable two-body corrections. It has been argued that
three-body pseudopotentials may be required to stabilize ph
Pfaffian [66–68] and it would be interesting to include three-
body and higher order pseudopotentials into the variational
Hamiltonian ansatz. The two-body Hamiltonians presented
here will be a valuable starting point for such a study.

It is also possible to modify the optimization criteria that
could lead to a ph Pfaffian approximation with smaller over-
laps but larger gaps or include new terms that would enforce
the expected topological properties of the ph Pfaffian.

In case one is able to find a three- plus two-body Hamil-
tonian (breaking ph symmetry) of which the ph-symmetric
model wave function is an exact eigenstate, it may also be
possible to further deform this Hamiltonian [69,70] such that
the model wave function would not thermalize with the rest
of the Hilbert space and become an example of a many-body

scar state, the phenomenon also known as weak ergodicity
breaking [71,72].
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APPENDIX A: PSEUDOPOTENTIALS

Table III lists the pseudopotentials defining the learned
Hamiltonians (CV7 and MV3) along with the pseudopo-
tential corresponding to the second Landau level Coulomb
interaction. Coulomb pseudopotentials in the lowest Landau
level are given in Table IV together with the Hamiltonian
HSLLtoCV7(α = 0.7); it is the closest to the SLL Coulomb
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FIG. 7. Entanglement spectrum for 18 (top) and 20 (bottom)
electrons in the ground states of the two learned Hamiltonians.
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Hamiltonian that reasonably approximates the ph Pfaffian by
various measures.
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APPENDIX B: SIMILARITIES BETWEEN MV3 AND CV7

The learned Hamiltonians MV3 and CV7 appear to be-
long to the same continuous region of Hamiltonians in the
parameter space that approximate the ph Pfaffian. This is sup-
ported by the high overlaps between the corresponding ground
states (Table V) and similarities between their entanglement
spectra (Fig. 7). Furthermore, the structure of the low-lying
entanglement spectrum is preserved if we interpolate between
MV3 and CV7, as shown in Fig. 8. In the course of such
interpolation the gap does not appear to close in the systems
studied (Fig. 9).

APPENDIX C: STABILITY AND STRUCTURE FACTORS

Scaling of the structure factor and its form bear information
on the stability of the underlying state.
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FIG. 11. Top: Structure factor calculated for all available system
sizes in the ground state of the learned Hamiltonian CV7. (Left
panel) Ne = 6, 12, 20. (Right panel) Ne = 8, 10, 14, 16, 18. (Bottom
left) Structure factor calculated for anti-Pfaffian model wave func-
tion. (Bottom right) Structure factor calculated for Ne = 20 in the
ground states of learned Hamiltonians and of the LLL Coulomb
interaction.
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FIG. 12. Interpolation between the Coulomb interaction in sec-
ond Landau level (α = 0) and the learned Hamiltonian CV7 (α = 1).
Shown are model wave function overlap with the ground state and
the neutral gap for Ne = 12 (top left), Ne = 14 (top right), Ne = 16
(bottom left), and Ne = 18 (bottom right). Charge gap is shown addi-
tionally for 12 electrons. Red crosses indicate the data points where
the total angular momentum L �= 0 for the lowest energy eigenstate.
For 12 electrons, neither neutral nor charge gap appear to close.

Scaling analysis for the anti-Pfaffian model wave function
is presented in Fig. 10. The state would appear gapless if
only systems with less than 16 particles (as available for ph
Pfaffian) were considered.

In Fig. 11, we plot the structure factors for all available
ground states of the learned Hamiltonian CV7 and for the
model anti-Pfaffian wave function.

Different topological states correspond to different “shifts”
on the sphere that determine the number of fluxes corre-
sponding to a certain Ne in finite systems. Therefore, one
can extract information about the stability of the ph Pfaffian
state (for which 2Ne = Nφ + 1) under certain interaction by
comparing its ground-state energy to the lowest energy at the
nearby shifts where one flux quantum is added or subtracted.
The necessary data are given in Table VI and confirm the
stability of the ph Pfaffian state for the Hamiltonians CV7
and MV3.
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lowest Landau level (α = 0) and the learned Hamiltonian CV7 (α =
1). Shown are model wave function overlap with the ground state and
the neutral gap for Ne = 12 (left panel) and Ne = 14 (right panel).
Red crosses indicate the data points where the total angular momen-
tum L �= 0 for the lowest energy eigenstate. For 12 electrons, the
lowest excitation has L = 2 for the learned Hamiltonian and L = 6
for LLL Coulomb. Change of the lowest excitation coincides with
the point where the neutral gap changes the slope in the left panel.
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APPENDIX D: INTERPOLATION BETWEEN COULOMB
AND LEARNED HAMILTONIANS

In Figs. 12 and 13, we show the model wave function
overlap and gap as the Hamiltonian interpolates between
Coulomb interaction in the second and lowest Landau levels
and the learned CV7 interaction. Besides the neutral gap (dif-
ference between the lowest eigenvalues), for some systems we
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FIG. 15. Entanglement spectrum in the ground state of MV3.
(Top) 12 electrons. (Bottom) 14 electrons. In both plots, the data for
the model ph Pf wave function is shown with black + symbols.
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also show the charge gap estimated as �c = 0.5[E0(Nph Pf
φ +

1) + E0(Nph Pf
φ − 1)] − E0(NphPf

φ ) without any background
corrections.

APPENDIX E: OPTIMIZATION PARAMETERS

The following optimization parameters were used to obtain
CV7: step scheme, Hestenes; overlap weight, 1.5; (neutral)
gap weight, 0.725; weight for the deviation of the variational
parameters from the reference point (SLL Coulomb pseu-
dopotentials), 0.0001; weight for the term enforcing uniform
L = 0 ground state, 50000; and weight for energy variance, 4.

APPENDIX F: SPECTRA AND COMPOSITE FERMIONS
INTERPRETATION

Pairing of composite fermions and existence of closed shell
could also restrict the allowed total momentum L for the
low-energy excited many-body states for not closed shell Ne.
The problem reduces to finding possible fermionic many-body
states that can be formed from the particles in the valent
� level. The resulting numbers appear consistent with L of
the excited states that we obtain by diagonalizing the learned
Hamiltonians (see Fig. 14).

When diagonalizing systems with odd electron number for
both learned Hamiltonians, we get the following angular mo-
mentum of the ground state: (Ne; L): (7;2.5), (9;2.5), (11;2.5),
(13;3.5), (15;3.5), (17;3.5). This is consistent with any even
number of electrons pairing to form an L = 0 state and the

single remaining electron being in the state with highest L̃
available to it: L̃ = 2.5 for ñ = 2 and L̃ = 3.5 for ñ = 3.

In the composite fermions picture, the systems with 14 or
18 electrons have two electrons and holes in the eight-orbital
ñ = 3 � level with angular momentum projection from −7/2
to 7/2. It is natural to expect that the low-energy spectrum
of the two systems is similar as they may be approximately
related by the particle-hole transformation within the ñ = 3 �

level. Comparison of the data (bottom panel of Fig. 14) for 14
and 18 electrons for the same interaction, say CV7, confirms
this. The low-energy states are separated from the bulk of the
spectrum by a visible gap and only have even L = 2, 4, 6 (also
true for the not shown data with Ne = 16). The states with odd
L correspond to the symmetric (“bosonic”) two-body states
and are absent in the low-energy spectrum.

The systems with 12 and 20 electrons correspond to filled
� levels. Here (see Fig. 14), the low-lying excitations are one-
electron states in an excited � level. They have both odd and
even angular momenta and form a distinct dispersion curve
separated from higher excitations where the second electron
is placed in the excited � level.

Although the 20 electron ground states are similar between
the learned Hamiltonian CV7 and LLL Coulomb (overlap
between them is 0.8557), we observe the difference in the
spectrum (Fig. 14): Both odd and even L low-energy states
occur for the learned Hamiltonians while for LLL Coulomb
only even L states are present. Another striking difference is
in the structure factor (bottom panel of Fig. 11): The oscilla-
tions at larger Q are much more pronounced in case of LLL
Coulomb.
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Pfaffian paired states for half-integer fractional quantum Hall
effect, Mod. Phys. Lett. B 34, 2030004 (2020).

[69] K. Pakrouski, P. N. Pallegar, F. K. Popov, and I. R. Klebanov,
Many-Body Scars as a Group Invariant Sector of Hilbert Space,
Phys. Rev. Lett. 125, 230602 (2020).

[70] K. Pakrouski, P. N. Pallegar, F. K. Popov, and I. R.
Klebanov, Group theoretic approach to many-body scar states
in fermionic lattice models, Phys. Rev. Research 3, 043156
(2021).

[71] M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body
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