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Collective modes in an imbalanced nodal-line semimetal
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In this work, we investigate collective modes in a nodal line semimetal with two nodal lines that have opposite
spin polarization in the presence of spin population imbalance. We find the components of the polarization
operator, taking into account the electron-electron exchange interaction, and obtain the dispersion relations of
collective modes for the bulk and surface states. There exist four modes in the bulk, among which one is gapless
and other three are gapped. The gapless surface mode is sensitive to the boundary conditions.
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Introduction. Recently, three-dimensional Dirac materials
where conduction and valence bands merge along a line,
so-called nodal line (or ring) semimetals (NLSMs), have at-
tracted intense research interests due to their unique band
structure [1–3]. The nodal line can be associated with the
nontrivial Berry phase and the semimetal supports unusual
surface states; for a recent review, see Ref. [4]. The existence
of such band structure may be protected by time reversal,
spatial inversion, or mirror symmetries [5–7]. A variety of ma-
terials have been reported [8–14]. The presence of an almost
nondispersive Landau level was revealed in Ref. [15]. Angle-
resolved photoemission spectroscopy (ARPES) and quantum
oscillation measurements have revealed the signatures of the
nodal ring; see, for example, Refs. [9,16] and review [17].

The collective excitations are the fundamental optical prop-
erties of the fermionic systems. It was noted that the features
of plasmon modes in gapless Dirac material like graphene
[18] drastically differs from the electronic systems described
by quadratic band structure. A similar investigation was
also carried out in silicene [19], a two-dimensional puck-
ered spin-orbit coupled honeycomb lattice of silicon atoms,
exploring the spin- and valley-dependent plasmon modes. Re-
cently, much attention has been paid to Dirac-Weyl materials
in investigating plasmon modes, with a particular focus on
the chiral anomaly [20–22]. Very recently, such collective
modes have been studied in NLSMs as well [23,24]. It was
shown that the plasmon modes in three-dimensional Weyl and
NLSMs are gapped in the long-wavelength limit. The gap is
determined by the respective density of states, which in the
former case may be tuned by the parallel electric and mag-
netic field thanks to the chiral anomaly. However, the impact
of electron-electron exchange interaction in the presence of
population imbalance (either valley or spin, etc.) on collective
excitations in Dirac materials is far from being understood.

The importance of the exchange interaction in the situ-
ation with nonequilibrium distribution of electron spin on
spin-wave collective modes was first emphasized in Ref. [25].
Later, the spin waves in metals and semiconductors have
been extensively investigated theoretically in Refs. [25–29].

Several experimental works were reported on the detection of
spin waves in gaseous spin-polarized hydrogen, in the mixture
of 3He and 4He, polarized 3He (see Ref. [29]). Recently, with
analogy to spin, the exchange-interaction-induced valley wave
in the Dirac materials with valley population imbalance has
been discussed in Ref. [30]. Apart from graphene [31,32] and
Weyl semimetals [33], the NLSM plasmon modes have been
recently observed experimentally as reported in Ref. [34].

In this work, we consider a NLSM hosting two nodal rings
with opposite spin orientation in the presence of the spin im-
balance. The model of a semimetal with concentric loops that
come from different spin channels in its band structure was
introduced in Ref. [35]. We consider transverse spin waves
mediated by the electron-electron exchange interaction. In
this model, we find three gapped modes and a gapless mode.
These modes are anisotropic and disperse quadratically in all
direction in the long-wave limit. We also obtain a gapless
spin-wave mode corresponding to the surface states.

Collective modes. We start with the effective Hamiltonian
describing a model of semimetal with two nodal rings that
have opposite spin polarization [35],

Hη(k) = ε

(
k2
⊥

Q2
− 1

)
σ x + vzkzσ

z − η
λn

2
, (1)

where ε > 0 determines the top and bottom edges of the
conductance and valence bands, respectively, and serves as an
energy cutoff for the two-band model, Q defines the radius
of the nodal ring in the plane kz = 0, vz is the Fermi veloc-
ity along the z direction, and σ i, i = (x, y, z) are the Pauli
matrices acting on the orbital space. The last term describes
the antisymmetric part of the electron-electron exchange in-
teraction energy between two nodal rings, where the nodal
ring spin-index is denoted by η = ±1. Note that the exchange
interaction is taken to be momentum-independent within the
simplest approximation for the Fourier component of screened
Coulomb potential by λ > 0.
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The low energy band dispersion is given by

Eb,η = b
√

ε2(k2
⊥/Q2 − 1)2 + v2

z k2
z − η

λn

2
, (2)

where b = ± is the band index. The exchange-interaction-
induced term splits the position of nodal rings in energy by
|λn| with respect to each other. This is similar to the case of
Dirac semimetals [30].

The exchange energy in Eq. (1) can be evaluated self-
consistently from the difference of particle densities between
two nodal rings as

n =
∑
b=±

∫
d3k

(2π )3 { f [Eb,+] − f [Eb,−]}, (3)

where f [Eb,η] = [1 + e(Eb,η−μη )/T ]−1 is the Fermi-Dirac dis-
tribution function in the nodal ring η at temperature T .
Summation is performed over two bands. The spin imbal-
ance is described by the spin-dependent chemical potential as
μ± = μ ± δμ/2. As noted above, ε > μ is the largest energy
scale in the problem, so that the two-band approximation
in formula (1) may be valid. For our study, we keep zero
temperature T = 0 throughout the discussion.

At 0 < μ± ± λn/2 < ε, the particle density imbalance is
linearly proportional to δμ:

n = νδμ

1 − λν
, (4)

where ν = μQ2/4πεvz is the density of states at the Fermi
level.

To proceed, let us consider a transverse magnetic field
∝ei(ωt−q·r), which provides the electron transition between the
two nodal rings with spin imbalance. The dispersion of collec-
tive modes is given by the poles of transverse susceptibility.
The retarded and advanced Green’s functions are given by
GR/A

η (k, ω) = [ω − Hη(k) ± iδ]−1, i.e.,

GR/A
η (k, ω)= 1

2

∑
b=±

σ0 + 1
Eb,η

[
ε
(

k2
⊥

Q2 − 1
)
σ x + vzkzσ

z

]

ω − Eb,η ± iδ
, (5)

and that can be used to evaluate the Keldysh Green’s function
as

GK
η (k, ω) = [1 − 2 fη(ω)]

[
GR

η (k, ω) − GA
η (k, ω)

]
. (6)

To obtain the dispersion relation of the inter-ring collective
modes, we follow the standard random-phase approximation
and seek the poles of the transverse susceptibility as det(1 −
λ
) = 0, where the inter-ring polarization operator is a 4 × 4
matrix, which is given by


ab,cd = i

2

∫
d3k

(2π )3

d�

2π

[
GR

−,ab(k + q, ω + �)GK
+,cd (k,�)

+ GK
−,ab(k + q, ω + �)GA

+,cd (k,�)
]
. (7)

It is convenient to write the polarization operator in new
pseudospin representation 
αβ = Tr2σ

α
bc
ab,cdσ

β

da/2 where
indices α, β take the values (0, x, y, z), i.e., one singlet and
three triplets, and Tr2 denotes trace of Pauli matrices.

The polarization operator in the new representation can
be written through the sum of intraband and interband terms

FIG. 1. Dispersions of the collective modes shown for the case
qz = 0. The particle-hole continuum is depicted by the region con-
fined by two lines ω = λn ± v⊥q⊥.

as 
αβ = 

αβ
intra + 


αβ
inter . The diagonal components which

correspond to the interband contributions are obtained as

00

inter = 0, 
xx
inter = 2


yy
inter = 
zz

inter = ν ln(2ε/μ)/2. On the
other hand, the intraband components are obtained as


00
intra = −ν

δμ + λn

ω − λn
− ν

δμ + ω

(ω − λn)3

(
v2

⊥q2
⊥ + v2

z q2
z

2

)
,


xx
intra = −ν

2

δμ + λn

ω − λn
− ν

δμ + ω

(ω − λn)3

(
v2

⊥q2
⊥ + v2

z q2
z

2

)
, (8)



yy
intra = 0, and 
zz

intra = 
xx
intra, where v⊥ = |ε|/Q. The

off-diagonal intraband components are obtained up to linear-
in-q order as 
0x

intra = 

0y
intra = 0, 
0z

intra = 
xz
intra = 


yz
intra =


zz
intra = νvzqz/(ω − λn), and 


xy
intra = 0. The off-diagonal

components describe coupling between different modes.
Using the solution of the self-consistency equation (4) and

assuming λn > v⊥q⊥, vzqz and λn > |ω|, the dispersion of
collective modes can be obtained as

ω0 = −1 − λν

λn

(
v2

⊥q2
⊥ + 1 + γ

2
v2

z q2
z

)
, (9)

where γ = λ2ν2[(1 − λν)(1 − C)]−1 � 1 with C =
2λν ln(2ε/μ). The other modes are given by

ωx = λn

2
(1 − C) − 1 − λν

λn

(
v2

⊥q2
⊥ + 1 + γ

2
v2

z q2
z

)
,

ωy = λn
(

1 − C

2

)
− 2

(λν)2

λn

v2
z q2

z

1 − C
, (10)

and ωz = ωx. We note that three modes (ωx, ωy, ωz), corre-
sponding to the triplet components of the polarization operator
are gapped whereas the singlet component (ω0) is gapless.
The degree of gap is determined by the strength of electron-
electron exchange interaction. The dispersions of collective
modes are schematically shown in the Fig. 1. All these modes
become damped while crossing the boundary of the particle-
hole continuum region, which, for example for qz = 0, is
defined by λn − v⊥q⊥ � ω � λn + v⊥q⊥.
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Let us quickly comment on the zero-pumping case when
δμ = 0. First, at n = 0, the components of the polarization
operator reduce to


00
intra = − ν

ω2

(
v2

⊥q2
⊥ + v2

z q2
z

2

)
, (11)

and 
xx
intra = 


yy
intra = 
00

intra. The collective mode with dis-
persion

ω = √−λν

(
v2

⊥q2
⊥ + v2

z q2
z

2

)1/2

(12)

exists provided λ < 0. Indeed, without the particle imbalance,
the plasmon modes are expected, as shown in Ref. [24]. In this
work, contrary to our study, the interaction term was taken
to be λ ∼ 1/q2, which leads to the gapped spectrum of the
plasmon modes.

Surface states. One of the unique aspects of nodal-ring
semimetals is the existence of the so-called drum-head surface
states. Let us consider NLSM occupying a region z > 0 with
a boundary at z = 0. We seek a wave function at the bound-
ary as � = [A, B]T e−zα+ik⊥·r, where Re α > 0 and A, B are
coefficients. The eigenvalue equation reads

[ε(k2
⊥/Q2 − 1)σ x + iαvzσ

z]� =
(

Eη + η
λsns

2

)
�. (13)

Here the exchange energy at the surface is denoted by λs and
Eη is the energy eigenvalue for nodal ring η = ±1. Using the
Hermiticity of the Hamiltonian one determines the boundary
condition and obtains a wave function up to an arbitrary phase
ψ in the form

� ∝ [1, eiψ ]T e−zα+ik⊥·r. (14)

Generally ψ may be a function of position at the boundary.
Here we consider it to be coordinate-independent. Separating
the real and imaginary parts from the equation [ivzα − (Eη +
ηλsn/2)] + ε(k2

⊥/Q2 − 1)eiψ = 0, one gets the dispersion of
surface state in the form

Eη = ε(k2
⊥/Q2 − 1) cos ψ − η

λsns

2
, (15)

provided the condition

αvz ≡ −ε
(
k2
⊥/Q2 − 1

)
sin ψ > 0 (16)

holds. At ψ = ±π/2, the flat band surface state is strictly
localized at the surface, whereas the state is delocalized for
ψ = 0. Without loss of generality, we consider ψ ∈ [0, π/2).

Let us now discuss the collective modes for surface states
in the presence of population imbalance. We neglect the in-
terference between bulk and localized surface states because
we are looking at two limiting cases only. Following the
same approach as in the bulk we obtain the density imbal-
ance at the surface. The chemical potential for the surface
states with spin imbalance is taken to be μη = μ + ηδμ/2.
One obtains ns = νsδμ/(1 − λsνs) provided μ < 0 and |μ| <

ε cos ψ . Here νs = Q2/(4πε cos ψ ) is the two-dimensional
(2D) surface density of states. The polarization operator is

obtained as


s = −νs
δμ + λsns

ω − λsns

− νs

(
1 − |μ|

ε cos ψ

)
ω + δμ

(ω − λsns)3 (v⊥q⊥ cos ψ )2. (17)

Hence, the surface mode dispersion at λsνs > v⊥q⊥ and
λsνs > |ω| is given by

ω = −
(

1 − |μ|
ε cos ψ

)
(1 − λsνs) cos2 (ψ )

v2
⊥q2

⊥
λsns

, (18)

which is quadratic in wave vector and the slope is strongly
determined by the properties of the surface. Note that, similar
to ω0 in Eq. (9), the surface mode varies inversely with λsns.
However, the mode strongly depends on the properties of
the boundary, vanishing in the limit cos ψ → |μ|/ε. Now we
comment on the dispersion in the absence of imbalance, i.e.,
δμ = 0. In this case, the polarization operator reduces to


s = −νs

(
1 − |μ|

ε cos ψ

)(
v⊥q⊥ cos ψ

ω

)2

, (19)

which leads the spectrum as

ω =
√

−λsνs

(
1 − |μ|

ε cos ψ

)1/2

v⊥q⊥ cos ψ, (20)

indicating that surface mode exists only for λs < 0. It is
also interesting to note that the mode is linearly dispersive,
whereas in the presence of imbalance, it disperses quadrati-
cally.

Effects of tilt. Now we comment on the possible effects of
a time-reversal symmetry-breaking perturbation on the spec-
trum of the mode. The Hamiltonian can be written for a tilted
nodal ring as

Hη = ε

(
k2
⊥

Q2
− 1

)
(σ x + ηt⊥) + vzkz(σ z + ηtz ) − η

λn

2
.

(21)

The spin index η indicates that the two nodal rings are tilted in
opposite directions. We note that, for the weak tilting |t⊥| �
1, |tz| � 1, the intraband component of the polarization oper-
ator is slightly affected in terms of the coefficients at q⊥, qz.
Hence, the tilting modifies velocities v⊥ and vz of valley-wave
modes but not the wave-vector power-law dependence. It is
also noteworthy to mention that the weak tilting does not
affect the mode gap.

Finally, we draw a comparison with the valley wave in
gapless Dirac-Weyl systems, studied recently in Ref. [30].
We note that the gapless collective mode in the presence
of the population imbalance in NLSMs, graphene, or Weyl
semimetals exhibit almost similar behavior except the degree
of curvature, which depends on system parameters. However,
the degree of gap in the spectrum is strongly determined by
the dimension and exchange interaction. For example, we note
that the gapless mode exists in the NLSM case for any sign of
the relative Berry flux of the two nodal rings. This is not the
case for three-dimensional Dirac-Weyl materials, as discussed
in Ref. [30]. Another important difference with Dirac-Weyl
systems is the feature of collective modes which arise due to
surface states.
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Although collective charge dynamics of Fermi arc surface
states in Weyl semimetals has been studied [36,37], to the
best of our knowledge, the exchange interaction mediated
collective modes in Fermi arcs surface states have not been
discussed yet. To support the population-imbalance scenario
and resulting collective modes, the system has to possess
at least two orthogonal surface states. This criteria may be
satisfied, for example, in antiferromagnetic Dirac semimet-
als, where counterpropagating Fermi arc surface states are
expected [38].

Summary. To conclude, we investigate the electron-
electron exchange-interaction-generated collective modes in
nodal-line semimetals which arise due to the population im-

balance between two nodal rings. We evaluate the transverse
polarization function, which enables us to obtain the dis-
persion relations of internode collective modes. We find a
gapless mode with a quadratic dispersion relation for both the
bulk and surface states. Very recently, plasmon modes have
been observed in NLSMs [34] in an equilibrium situation,
which can be extended further to spin-nonequilibrium cases
with double or multiple nodal rings to realize our findings.
We also reveal that the plasmon dispersion for surface states
switches to linearly dispersive from quadratically dispersive
while turning off the imbalance between two rings.
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