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We investigate magnetic, charge, and transport properties of hexagonal graphene nanoflakes (GNFs) con-
nected to two metallic leads by using the functional renormalization group method. The interplay between the
on-site and long-range interactions leads to a competition of semimetal (SM), spin-density-wave (SDW), and
charge-density-wave (CDW) phases. The ground-state phase diagrams are presented for the GNF systems with
screened realistic long-range electron interaction [T. O. Wehling et al., Phys. Rev. Lett. 106, 236805 (2011)],
as well as uniformly screened long-range Coulomb potential ∝ 1/r. We demonstrate that the realistic screening
of Coulomb interaction by σ bands causes moderate (strong) enhancement of critical long-range interaction
strength, needed for the SDW (CDW) instability, compared to the results for the uniformly screened Coulomb
potential. This enhancement gives rise to a wide region of stability of the SM phase for realistic interaction,
such that freely suspended GNFs are far from both SM-SDW and SM-CDW phase-transition boundaries and
correspond to the SM phase. Close relation between the linear conductance and the magnetic or charge states of
the systems is discussed. A comparison of the results with those of other studies on GNF systems and infinite
graphene sheets is presented.
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I. INTRODUCTION

Recent progress in the fabrication of nanostructures has
allowed reducing the dimension of a graphene plane from
a two-dimensional to a zero-dimensional system — the
graphene nanoflake (GNF) [1–3]. In addition to being a
promising building block for nanoelectronics and spintronic
devices [4,5], GNFs are interesting in many aspects from
a fundamental point of view. On one hand, the electronic
structure of these finite graphene nanostructures can be qual-
itatively different from that of graphene [4,6]. In particular,
due to the appearance of edge states, which do not arise in
infinite graphene sheets, the electronic properties of GNFs
may depend significantly on the edge geometry [4,6–8]. On
the other hand, even small GNF systems with less than 100
atoms demonstrate the occurrence of charge and magnetic
instabilities, which are analogous to those of single-layer
graphene [9–12].

In an infinite graphene sheet, both short- and long-range
electron-electron interactions play an important role, favoring
spin-density-wave (SDW) [13–19] or charge-density-wave
(CDW) [19–28] correlations. One may expect the same types
of correlations to be relevant for GNFs. In particular, GNF
clusters of up to 96 sites with on-site U and nearest-neighbor
V interactions were investigated in Ref. [9] within the dy-
namical cluster approximation (DCA). It was found that the
competition between short- and long-range interactions gives
rise to a nontrivial phase diagram, which includes the tran-
sitions between semimetal (SM), SDW, and CDW phases.
An increase of U (for V = 0) induces a phase transition

from the SM to the SDW state, while a sufficiently large
nearest-neighbor interaction V leads to the CDW ground state.
At and close to half-filling the transition to the SDW state
was also investigated within the dynamic mean-field theory
(DMFT) approach for GNF system with 54 atoms coupled to
leads [10–12]. The emergence of magnetism in GNF clus-
ters, induced by electron-electron interaction, including the
formation of finite magnetic moments, was also predicted
within the mean-field [4,8,29,30] and density functional the-
ory (DFT) calculations [8,31,32]. The edge magnetization
was thoroughly studied, especially for GNFs with zigzag
edges [4,6,31,33–36].

To date, the vast majority of studies on magnetic prop-
erties of graphene nanosystems have considered only local
and nearest-neighbor electron-electron interactions [37–39].
However, it is well-known that the long-range part of the
electron-electron Coulomb interaction is not screened in
single-layer graphene. This suggests that the interactions be-
yond nearest-neighbor distance can also have a crucial impact
on the physics of graphene nanosystems, which is confirmed
by ab initio calculations [40]. Although there are several
papers focused on investigating the effects of long-range in-
teraction in graphene nanoflakes beyond the nearest-neighbor
interactions [9,34,41–43], most of them are limited to the
1/r [41,42] or 1/

√
r2 + a2 [34] dependence of nonlocal po-

tential on distance r, the parameter a accounts for the finite
radius of graphene π orbitals.

At the same time, realistic nonlocal interactions in
graphene have been determined by accurate first-principles
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calculations [44]. At intermediate distances, this realistic
potential differs significantly from the standard Coulomb po-
tential [13,44] due to screening of interaction by σ orbitals.
It has been predicted that this difference of the potentials
results in the shift of the critical value of the semimetal-
insulator phase transition in comparison to the previous
estimates [13]. The corresponding position of SDW instability
was obtained by the hybrid quantum Monte Carlo (QMC)
simulations [13,45,46] and was shown to correspond to the
dielectric permittivity ε < 1. These considerations show that
the magnetic properties of GNFs with the standard bare 1/r
form of the Coulomb potential may differ significantly from
the ones for the realistic model. Thus, it is highly desirable
to analyze the competition between different magnetic and
charge instabilities in GNFs with the realistic model of nonlo-
cal interactions.

Another important issue is the impact of electron-electron
interaction effects on the electron transport of GNF systems.
Most studies on this issue are based on either the (dynamic)
mean-field or DFT approaches, which do not fully include
electron correlation effects. Furthermore, despite the atten-
tion paid to the effects inherent to mesoscopic systems in
general (e.g., Coulomb blockade [47,48] and quantum inter-
ference [11,12,49]), little attention has been focused on the
relationship between the electron transport and charge (or
spin) correlations in GNF systems (see, e.g., Refs. [34,48]).
Understanding this relationship may be important for applica-
tion of the GNF systems in the development of spin filters and
other spintronic devices.

In the present paper, we study the magnetic, charge, and
transport properties of hexagonal GNFs of different sizes with
realistic nonlocal interaction. The effects of both short- and
long-range electron-electron interactions are studied at zero
temperature by using the functional renormalization group
method. Considering screening of the on-site and nonlo-
cal components of interaction independently we obtain the
phase diagrams of the GNFs. We obtain the SDW (CDW)
phases at sufficiently strong local (nonlocal) interactions as
has been discussed previously. We show that for uniformly
screened Coulomb interactions the positions of the obtained
instabilities are in agreement with previous studies, but for
realistic nonlocal interactions their positions in the phase
diagram are somewhat changed. In particular, in the latter
case phase diagrams show the presence of a wide region
with no instability. Although the position of spin instability
for realistic nonlocal interaction was studied previously in
Ref. [13] for a sufficiently large graphene sheet, this instability
in graphene nanoflakes and the parameters of charge insta-
bility for graphene nanoflakes and infinite graphene sheets
in the presence of both local and nonlocal interaction to our
knowledge were not determined previously. As we argue in
the present paper, the CDW instability is more strongly af-
fected by the screening of Coulomb interaction by σ bands
than the SDW instability. We also present results for the linear
conductance of the GNF systems and clarify features of the
conductance associated with the transitions between different
magnetic regimes.

The paper is organized as follows. In Sec. II, after pre-
senting the model Hamiltonian for GNF systems we describe
the functional renormalization group method. In Sec. III we

FIG. 1. Zigzag-edge GNF-N systems considered in the paper (re-
gions bounded by closed concentric lines, corresponding to N = 6,
24, 54, and 96 from inner to outer line). The left and right leads are
shown schematically by rectangles.

consider the results for a purely local interaction, present
phase diagrams with account of nonlocal interaction, discuss
stability of the CDW and SDW orders, and present results for
the linear conductance. Finally, Sec. IV summarizes our main
results and presents conclusions.

II. MODEL AND METHOD

We consider systems consisting of graphene nanoflake
(GNF-N) with N atoms connected to two metallic leads (see
Fig. 1 for zigzag edge geometry). The total Hamiltonian of the
GNF-N system can be written as

H = HGNF + Hleads + HT. (1)

The first term describes the isolated graphene nanoflake,

HGNF =
∑

σ

∑
i∈A

εA
σ ni,σ +

∑
σ

∑
i∈B

εB
σ ni,σ − t

∑
〈i j〉,σ

d†
i,σ d j,σ

+ 1

2

∑
i, j

Ui j (ni − 1)(n j − 1). (2)

Here, d†
i,σ (di,σ ) is a creation (annihilation) operator of an

electron at the lattice site i of A or B sublattice with a spin
index of σ = ±1/2 (or σ =↑,↓), n j,σ = d†

j,σ d j,σ , and n j =
n j,↑ + n j,↓. The on-site energy parameters are chosen to be
εA(B)
σ = ±(δ − hσ ), the parameter δ and the magnetic field

h are introduced in order to explicitly break the spin and
sublattice symmetry of the GNF-N , t = 2.7 eV is the nearest-
neighbor hopping parameter, and summation in the third term
of Eq. (2) is taken over nearest-neighbor sites. The last term
in Eq. (2) describes the electron-electron interactions with the
potential Ui j that includes both on-site U = Uii and nonlocal
Ui 	= j contributions.

In the following we mainly use the form Ui 	= j = U ∗
i j/εnl

of the nonlocal interaction, where U ∗
i j is the realistic nonlo-

cal potential of Ref. [44], which accounts for the screening
of Coulomb interaction by σ orbitals. At distances larger
than the distance between third-nearest-neighbor lattice sites
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ri j > r03 = 2a (a = 0.142 nm is graphene’s lattice constant),
the realistic potential is approximated by U ∗

i j = 1/(εeffri j )
with the effective dielectric permittivity εeff = 1/(U ∗

03r03) ≈
1.41, as in Ref. [13]. In this case, independent variation of
the parameters U and εnl allows us to study the interplay
between the on-site and the nonlocal parts of the interactions.
According to Ref. [44], U = Ur = 9.3 eV≈3.44t corresponds
to the realistic on-site interaction in graphene.

The second part Hleads of the Hamiltonian (1) describes the
two equivalent metallic leads,

Hleads =
∑
k,α,σ

εk c†
k,α,σ

ck,α,σ
. (3)

Here, c†
k,α,σ

(ck,α,σ ) is a creation (annihilation) operator of an
electron with the state k and spin σ in the left (α = L) or right
(α = R) lead, and εk represents the single-particle energy.

The last term in Eq. (1) describes the connection between
the GNF-N and the leads, following Ref. [11] we consider it
in the form

HT = −
∑

σ,k,α,iα

(Viα,k,α
c†

k,α,σ
diα,σ + H.c.), (4)

where Vi,k,α is the coupling matrix element between the ith
site of GFN-N and the kth state of the lead α, and summation
is performed over sites iα that are closest to the lead α.

To reveal the formation of SDW and CDW phases of GNF-
N we calculate the average relative staggered magnetization,

Sst = (〈NA,↑〉 + 〈NB,↓〉 − 〈NA,↓〉 − 〈NB,↑〉)/N, (5)

and the average relative difference between the occupation of
A and B sublattices,

�st = (〈NB,↑〉 + 〈NB,↓〉 − 〈NA,↑〉 − 〈NA,↓〉)/N, (6)

which have a maximal value of 1, 〈NA(B),σ 〉 = ∑
i∈A(B) 〈ni,σ 〉.

It is worth noting that due to the particle-hole symmetry of the
Hamiltonian (2) the total average occupation of the GNF-N is
automatically fixed to half-filling,

∑
σ (〈NA,σ 〉 + 〈NB,σ 〉) = N

even in presence of electron-electron interactions. The aver-
age occupation of a lattice site i for spin σ can be calculated
at temperature T = 0 as

〈n j,σ 〉 =
∫

dω

2π
eiω0+G j j,σ (iω). (7)

Here G(iω) is the Green’s function corresponding to the
Hamiltonian (1) projected onto the states of GNF-N .

To determine the Green’s function G(iω) we use the func-
tional renormalization group (fRG) technique [50–52]. This
technique introduces the cutoff parameter 	, specified below
in Eq. (19), such that the physical Green’s function is obtained
in the end of the fRG flow, i.e., for the corresponding cutoff
parameter 	 = 0, G(iω) = G	=0(iω). By using the Dyson
equation and the projection technique, the cutoff-dependent
Green’s function G	(iω) can be written as

G	(iω) = {[G	
0 (iω)]−1 − 
leads − 
	}−1, (8)

where G	
0 (iω) is the cutoff-dependent bare Green’s function,


leads describes the coupling between the GNF-N and the
leads, and 
	 is the self-energy of the interacting (Ui j 	= 0)

system. Following Ref. [11], for 
leads we take into account
only diagonal (with respect to site indices) hybridization pro-
cesses and use the wide band limit approximation [53]. This
leads to 
leads = −i�sign(ω) for each site of the GNF-N con-
nected to leads, where �∝ |V |2ρlead is an energy-independent
hybridization strength and ρlead is the density of states in the
leads.

The self-energy 
	 can be obtained from an infinite
hierarchy of differential flow equations for the cutoff-
parameter-	-dependent self-energy 
	 and the n-particle
vertices �	

2n, n � 2 [50,51]. Truncating the fRG flow equa-
tions by neglecting the flow of the vertex functions with n � 3
and discarding the frequency dependence of vertices leads
to a closed system of the flow equations for 
	 and the
two-particle vertex �	

4 [51,52].
In the present study, we use the coupled-ladder approx-

imation [54,55] to this closed set of fRG equations, which
makes numerical calculations feasible for the systems under
consideration. This approximation consists of decomposition
of the two-particle vertex �	

4 into the particle-particle (P	),
the exchange particle-hole (X 	), and the direct particle-hole
(D	) channels,

�	
4 ( j′1, j′2, j1, j2, σ ) = I ( j′1, j′2, j1, j2, σ )

+ P	( j′1, j1, σ )δ j′1 j′2δ j1 j2

+ X 	( j1, j2, σ )δ j′1 j1
δ j′2 j2

+ D	( j2, j1, σ )δ j′2 j1
δ j′1 j2

, (9)

and splitting the flow equation for the two-particle vertex
�	

4 into the equations for these individual channels. Term I
in Eq. (9) is the antisymmetrized bare interaction and σ =
(σ ′

1, σ
′
2, σ1, σ2) is a multi-index. The fRG equations for the

self-energy 
	 and for the vertices P	, X 	, and D	 can be
written in the following forms:

∂	
	 = −
∫

dω

2π
eiω0+S	(iω) ◦ �	

4 , (10)

∂	P	 =
∫

dω

2π
�	

p ◦ S	(iω) ◦ G	(−iω) ◦ �	
p , (11)

∂	X 	 = −
∫

dω

2π
�	

x ◦ [S	(iω) ◦ G	(iω)

+G	(iω) ◦ S	(iω)] ◦ �	
x , (12)

∂	D	 =
∫

dω

2π
�	

d ◦ [S	(iω) ◦ G	(iω)

+G	(iω) ◦ S	(iω)] ◦ �	
d , (13)

where

�	
p ( j1, j2, σ ) = P	( j1, j2, σ ) + I ( j1, j1, j2, j2, σ ), (14)

�	
x ( j1, j2, σ ) = X 	( j1, j2, σ ) + I ( j1, j2, j1, j2, σ ), (15)

�	
d ( j1, j2, σ ) = D	( j1, j2, σ ) + I ( j1, j2, j2, j1, σ ), (16)

for j1 	= j2, and

�	
f ( j1, j1, σ ) = P	( j1, j1, σ ) + X 	( j1, j1, σ )

+ D	( j1, j1, σ ) + I ( j1, j1, j1, j1, σ ) (17)
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0 5 10 15
U/t

0

0.5

1

  S s
t

fRG without the counterterm

fRG with the counterterm

DMFT data of Ref. [12]

FIG. 2. The average relative staggered magnetization Sst as a
function of U/t for the GNF-54 system with Ui 	= j = 0. The square
(circle) symbols correspond to the fRG results with (without) the
counterterm. The dashed line represents the DMFT data of Ref. [12].
The arrow indicates U = U 54

c ≈ 3.83t corresponding to Sst = 1/4.

for j1 = j2, f = p, x, and d . In Eqs. (10)–(13) S	 is the
single-scale propagator

S	 = G	∂	(G	
0 )−1G	, (18)

and “◦” denotes summations over intermediate site and spin
indexes, which perform according to the standard diagram-
matic rules.

To introduce the cutoff parameter 	 we use the reservoir
cutoff scheme [56] in the form

G	
0 (iω) = [

G−1
0 (iω) + iIN	sign(ω)

]−1
, (19)

where IN is the N × N identity matrix, and G0(iω) is the
bare Green’s function, corresponding to the single-particle
part of the Hamiltonian (2) (i.e., HGNF with Ui j = 0). The
value of 
	 obtained at the end of the fRG flow (for 	 → 0)
corresponds to the physical self-energy 
 of the interacting
system.

The linear conductance G = e2/h
∑

σ Tσ (ω → 0) at T =
0, where the transmission function Tσ (ω) in our case can be
written in the form [11,12]

Tσ (ω) = 4�2
∑
i, j

∣∣Gr
i j,σ (ω)

∣∣2
. (20)

Here Gr (ω) = G	=0(iω → ω + i0+) is the retarded Green’s
function of the GNF-N and summation over the site indexes i
( j) is restricted to sites of GNF-N connected to the left (right)
lead. Note that Eq. (20) assumes that only local hybridization
processes affect the transmission [11].

III. RESULTS

In the following calculations we set δ = 0.0185t , � =
0.02t , T = 0, and, unless otherwise stated, h = δ.

A. Zigzag-edge GNF-N with purely local interaction

Let us first consider the zigzag-edge GNF-N systems with
a purely local (on-site) interaction U , when Ui 	= j = 0. In
Fig. 2, the fRG results for the average relative staggered mag-
netization Sst are shown for the GNF-54 system. In the limit

FIG. 3. The average relative staggered magnetization Sst as a
function of U/t for the GNF-N systems with Ui 	= j = 0 and N = 6
(blue triangles), N = 24 (green diamonds), N = 54 (black circles),
and N = 96 (red squares). Inset: The linear conductance G as a
function of U/t for the GNF-54 system with Ui 	= j = 0; G0 = e2/h
is the conductance quantum per spin projection.

U � t , the magnetization of the GNF-N system is small but
nonzero due to the presence of the finite magnetic field. With
increasing U/t , the magnetization increases monotonously,
indicating the formation of the SDW order. For sufficiently
large U/t , the vertices obtained from fRG equations diverge.

Similarly to Ref. [57] we have found that the conver-
gence of the vertices obtained from fRG equations can be
achieved by applying the counterterm technique. The coun-
terterm (which corresponds in our case to introducing the
auxiliary magnetic field h̃ = 1.5t , switched off linearly with
	 starting from the scale 	c = 0.1t) allows us to continue
the Sst (U/t ) dependence beyond the point at which the fRG
approach without the counterterm breaks down (see Fig. 2).
However, for smaller U/t the fRG results with and without the
counterterm are different from each other. Apparently, this is
due to the unphysical spin-splitting of the self-energy in the
fRG approach with a counterterm, which does not allow us to
correctly reproduce the SM state of the system. In Fig. 2 we
also compare fRG results to the DMFT results of Ref. [12]
in the absence of a magnetic field. One can see that for
substantial (small) Sst the fRG approach with (without) the
counterterm provides a reasonable agreement with the DMFT
data of Ref. [12]. Since we are interested in the position of
phase transitions to SDW (CDW) phases, rather than in the
study of the regions deep inside these phases, in the follow-
ing we restrict ourselves to the fRG approach without the
counterterm.

Figure 3 shows the average relative staggered magnetiza-
tion Sst as a function of U/t for a series of GNF-N systems
of different sizes. In our case of a finite small magnetic field,
which is introduced to break explicitly the spin symmetry, the
transition from the SM (Sst→ 0) to the SDW (Sst ≈ 1) phase is
smoothed. To find the position of the phase transition between
the SM and SDW phases we define a characteristic local
interaction U N

c of the GNF-N by the value U corresponding to
a quarter of the maximum sublattice magnetization, Sst = 1/4.
We assume that in view of sharpness of the dependence Sst

on U near the magnetic phase transition for not very small
nanoflakes, the obtained values of interactions U N

c are close
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TABLE I. Estimates of characteristic local interaction U N
c /t , cor-

responding to Sst = 0.25.

N 6 24 54 96

U N
c /t 5.54 4.25 3.83 3.59

to the critical interaction for the magnetic transition in the
limit h → 0. The obtained characteristic interactions U N

c /t
are presented in Table I. The obtained value of U N

c agrees
well with the result of the DMFT approach for N = 54 [12],
Uc ≈ 3.6t (obtained from the condition Sst = 1/4), and the re-
sult of the DCA approach for N = 96, Uc � 3.6t [9] (obtained
from vanishing sublattice magnetization).

Finally, in the inset of Fig. 3, we show the linear conduc-
tance G as a function of U/t for the GNF-54 system. With
the increase of U/t (and hence Sst), the conductance gradually
decreases. When U � U 54

c , the SDW order is developed and
the conductance is suppressed. The other GNF-N systems
under consideration produce qualitatively similar behavior of
the conductance.

B. Zigzag-edge GNF-N with account of nonlocal interaction

We next study the zigzag-edge GNF-N systems with both
on-site (U ) and nonlocal (Ui 	= j = U ∗

i 	= j/εnl) electron-electron
interactions.

In Fig. 4, we plot Sst as a function of U/t for the GNF-54
system for various values of the screening parameter of the
nonlocal interaction εnl. In the case of εnl � 1, the magnetiza-
tion tends to that for the case when only on-site interaction is
present. With decreasing εnl, the region with nonzero magne-
tization shifts to the higher values of U/t . The example of spin
distribution at sufficiently large U in the symmetry-broken
phase is shown in Fig. 5. The spin distribution is qualitatively
analogous to the one presented for the purely local interaction
(ε−1

nl = 0) case in Ref. [12]. The other systems show similar
behavior of Sst with respect to both U/t and εnl.

Figure 6 shows the average relative difference between the
occupation of the sublattices �st and the average relative stag-

4 5 6 7

U/t

0.25

0.5

  S s
t

FIG. 4. The average relative staggered magnetization Sst of the
GNF-54 system as a function of U/t for various εnl. From right to
left: εnl = 0.5, 1, 2, 4, and 9.8, and ε−1

nl = 0 (Ui 	= j = 0 in the latter
case). The solid lines are fourth-order polynomial interpolation of
the fRG data.

FIG. 5. The distribution of the magnetization mj = |〈nj,↑ −
nj,↓〉| in the GNF-54 system with U = 11 eV ≈ 4.07t > U 54

c and
εnl = 7. The red (blue) dots correspond to A (B) sublattices; their
size is proportional to mj . The open circles indicate the sites cor-
responding to the max{mj} ≈ 0.36. The relative average staggered
magnetization Sst ≈ 0.28.

gered magnetization Sst as a function of εnl, for the GNF-54
system with U = 11 eV ≈ 4.07t . When the magnetization Sst

is almost suppressed, �st increases monotonously with de-
creasing εnl. In the limit εnl � 1 we have �st ≈ 1 and Sst ≈ 0,
which correspond to the CDW order of the system. The estab-
lishing of the CDW order for εnl � 1 is clearly seen from the
checkerboard distribution of 〈nj〉 = 〈n j,↑ + n j,↓〉 (see, e.g.,
Fig. 7). In particular, for εnl = 0.3 we have 〈n j∈B〉 ≈ 2 and
〈n j∈A〉 ≈ 0 for the GNF-54 system. Thus, the decrease of εnl,
which corresponds to the increase of the long-range interac-
tion, drives the phase transition from the SM state (Sst ≈ 0,
�st ≈ 0) to the CDW one (Sst ≈ 0, �st ≈ 1). We find that the
SM-CDW phase transition takes place for all GNF-N systems
and an arbitrary value of on-site interaction U parameter
(including U = 0 case), while the SM-SDW one occurs for
U > U N

c .
To obtain the SM-SDW phase boundaries, we again define

the characteristic U/t for fixed εnl as the value corresponding
to Sst = 1/4. The resulting dependence of the inverse critical

1 10 100

  nl

0

0.5

 S s
t, 

  s
t

  Sst

  st

FIG. 6. The average relative staggered magnetization Sst (black
circles) and the average relative difference in occupation of the
sublattices �st (red squares) as a function of εnl (in logarithmic scale)
for the GNF-54 system with U = 11 eV ≈ 4.07t .
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FIG. 7. The distribution of 〈nj〉 = 〈nj,↑ + nj,↓〉 for the GNF-54
system with U = 11 eV ≈ 4.07t and εnl = 0.3. The size of the black
dots is proportional to 〈nj〉. The open circles indicate the sites corre-
sponding to the max{〈nj〉} ≈ 1.92.

screening ε−1
nl and the corresponding graphene’s “fine struc-

ture” constant α0 = e2/(εnlεeffv
0
F ), where v0

F = 3at/2 is the
bare Fermi velocity, on the obtained values of U/t are shown
in Fig. 8. For εnl � 1 the long-range part of the nonlocal
potential is small and the on-site interaction U plays the main
role. In this limit, the on-site interaction U � U N

c (as for the
ε−1

nl = 0 case) leads to the SDW order of the systems. When
εnl is sufficiently small, the SDW state becomes unstable and
the SM state occurs for all GNF-N systems. With increase of
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FIG. 8. Phase diagram of the zigzag-edge GNF-N system in
the (U/t, ε−1

nl ) and (U/t, α0) coordinates for N = 6 (blue triangles),
N = 24 (green diamonds), N = 54 (black circles), and N = 96 (red
squares): SM-SDW phase transitions are denoted by solid lines with
solid symbols, and SM-CDW phase transitions are marked by solid
lines with open symbols. The dashed line U = Ur/εnl corresponds to
simultaneous rescaling of the on-site and long-range part, considered
in Ref. [13]. The point εnl = 1 and U = 9.3 eV ≈ 3.4t , correspond-
ing to freely suspended graphene, is marked by the plus symbol.

the size of the system N , the critical value of the parameter εnl

decreases.
Analogously to the case of the SM-SDW phase transition,

we define the SM-CDW phase boundary as the line ε−1
nl (U/t )

at which �st = 1/4. Our results for the SM-SDW and SM-
CDW phase-transition lines for different GNF-N systems are
also summarized in Fig. 8. For U < U N

c , the GNF-N system
undergoes the phase transition from the SM to the CDW
ground state induced by changing the εnl parameter. When
U > U N

c , the SDW phase occurs and with increasing εnl from
value εnl = 0 the system undergoes two phase transitions:
first, from the CDW to the SM phase and, second, from
the SM to the SDW phase. The calculated SM-CDW phase
transition lines ε−1

nl (U/t ) are very close to each other (ex-
cept the N = 6 case) and are well approximated by linear
dependencies.

The important feature of the phase diagram of Fig. 8 is
a strong increase of the critical α0 of charge instability with
an increase of U . As a result, in contrast to the case of on-
site and nearest-neighbor interaction [9,58], there is a wide
region of the phase diagram with no instability. The GNF-N
system with the realistic nonlocal interaction (for U = Ur and
εnl = 1) falls into this region and, therefore, corresponds to the
SM ground state of the system (marked with the plus symbol
in Fig. 8). Moreover, as can be seen from Fig. 8, all considered
GNF-N systems with εnl > 1 are far from both SM-SDW and
SM-CDW phase-transition lines.

To provide an insight into the importance of screening of
nearest- and next-nearest-neighbor Coulomb interactions by σ

bands, which yields the difference of the considered nonlocal
potential U ∗

i j of Refs. [13,44] from the bare Coulomb interac-
tion, in Fig. 9 we compare the above-discussed fRG results
to the results for the uniformly screened Coulomb interaction
Ui 	= j = e2/(εnlεeffri j ). One can see that realistic screening of
the Coulomb interaction, having smaller nearest- and next-
nearest-neighbor interaction, only moderately increases the
critical constant α0 for the SDW instability, but strongly
enhances critical nonlocal interaction for the charge insta-
bility. Without this enhancement, freely suspended graphene
nanoflakes (as well as an infinite graphene sheet) would be on
the verge of the charge instability. Although this effect was
qualitatively discussed previously in Ref. [13], the position of
only spin, and not charge instability, with account of screening
effects was analyzed in that study. The obtained critical non-
local interaction of the charge density wave at U = 0 for the
GNF-96 system corresponds to εnl ≈ 0.96, i.e., α0 ≈ 1.86 for
realistic nonlocal interaction and εnl ≈ 2.32, i.e., α0 ≈ 0.77
for uniformly screened interaction. The latter value is not
far from the critical α0 � (0.9–1.1) for charge instability in
an infinite plane, obtained by QMC in Ref. [24] and mean-
field approximation with dynamic renormalized Coulomb
interaction [25,26].

For realistic nonlocal interaction the SDW instability of the
GNF is reached along the line U = Ur/εnl, corresponding to
simultaneous rescaling of the on-site and nonlocal interaction,
Ui j = U ∗

i j/ε, and the parameter ε = εnl can be viewed as the
dielectric permittivity of the medium surrounding the GNF.
The crossing of the boundary of SDW instability with this
line corresponds for the GNF-96 system to the physically
unreachable value of ε = 0.46, which is very close to that
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FIG. 9. Critical ε−1
nl and corresponding fine-structure constant

α0 = e2/(εnlεeffv
0
F ) for SM-SDW (solid lines with solid symbols)

and SM-CDW (solid lines with open symbols) phase transitions as
functions of U/t for the GNF-96 system with the realistic screened
Ui 	= j = U ∗

i j/εnl (red squares) and the uniformly screened Ui 	= j =
e2/(εnlεeff ri j ) (black circles) form of nonlocal interaction. The blue
crosses are data obtained from scaling analysis of QMC results in
Ref. [14]. The dashed line U = Ur/εnl corresponds to simultaneous
screening of local and nonlocal interaction. The point εnl = 1 and
U = 9.3 eV ≈ 3.4t , corresponding to freely suspended graphene, is
marked by the plus symbol.

for the infinite sheet, obtained in Ref. [13] (see Ref. [59]).
At the same time, for uniformly screened interaction the
SDW instability is not obtained at all along the same path.
The result for the critical interaction constant α0(U/t ) for
the GNF-96 system, corresponding to SDW instability for
uniformly screened Coulomb interaction, is also compared in
Fig. 9 to that from QMC analysis in large systems [14,60].
The obtained fRG result provides quantitative agreement with
the scaling analysis of QMC data.

In Fig. 10 the linear conductance G of the GNF-54 system
at T = 0 is plotted as a function of εnl. For strong nonlocal
interaction (εnl � 1) the conductance is suppressed due to
formation of the CDW. For U > U 54

c ≈ 3.8t (see for, e.g.,
the plot G(εnl ) for U = 11 eV ≈ 4.07t), the conductance is
suppressed also for weak (εnl � 1) nonlocal interaction due
to the development of the SDW order. In the latter case
at some intermediate εnl at which Sst,�st ≈ 0 (see Fig. 6),
the conductance has a maximum. When U � U 54

c the SDW
phase does not occur and the peak in the conductance grad-
ually disappears with decreasing U , such that G becomes a
monotonous function of εnl. In the latter case, opposite to
the U > U 54

c case, the conductance tends to a nonzero value
in the limit εnl � 1. We have found that the above behavior
of the conductance is generic for all GNF-N systems under
consideration.

Finally, in Fig. 11 we show the magnetic field depen-
dence of the average relative staggered magnetization Sst and
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FIG. 10. The linear conductance G as a function of εnl (in log-
arithmic scale) for the GNF-54 system with U = 5 eV ≈ 1.85t
(blue triangles), U = 7 eV ≈ 2.6t (dark green open circles), U =
9.3 eV ≈ 3.44t (red solid circles), and U = 11 eV ≈ 4.07t (black
squares).

the linear conductance G of the GNF-54 and GNF-96 sys-
tems with the realistic nonlocal potential (U = Ur , εnl = 1).
For both systems and small magnetic fields h � 0.02t , the
sublattice magnetization is well fitted by the linear function
Sst (h) = χN h, which confirms the SM nature of the GNFs for

0

0.1

 S s
t,

   m
j
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   mj, j=jc     for GNF-54

   mj, j=je   

   Sst for GNF-96

0 0.05
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FIG. 11. Upper part: The average relative staggered magnetiza-
tion Sst for the GNF-54 (black circles) and GNF-96 (red squares)
systems, together with the magnetization of the GNF-54 system
mj = |〈nj,↑ − nj,↓〉| at the center site jc (blue triangles) and at the
center of edge je (green crosses) as a function of h/t . Lower part:
The linear conductance G as a function of h/t for the GNF-54 (black
circles) and GNF-96 (red squares) systems. The realistic nonlocal
potential (U = Ur , εnl = 1) is considered.
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FIG. 12. Armchair-edge GNF system with N = 114. The left and
right leads are shown schematically by rectangles.

the realistic parameters. The parameter χN can be considered
as the paramagnetic susceptibility. We find χ54 ≈ 1.13/t and
χ96 ≈ 1.32/t for the GNF-54 system and the GNF-96 sys-
tem, respectively, which corresponds to a paramagnetic state,
albeit with pronounced spin correlations. To characterize the
distribution of spin order in a finite magnetic field, we also
present the results for the absolute value of the magnetization
mj = |〈n j,↑ − n j,↓〉| at the center site jc and at the center of
edge je of the GNF-54 system. One can see that the magneti-
zation at the edge is substantially larger than that in the center
and also substantially different from the staggered relative
magnetization Sst, due to formation of the edge states. The
linear conductance G depends monotonously on the magnetic
field and becomes almost constant for relatively small mag-
netic fields (h/t � 0.02).

C. Comparison to armchair GNFs

In the following we compare the obtained results to those
for the armchair-edge GNFs with N = 42 and N = 114 atoms
(see Fig. 12). To define the SM-CDW and SM-SDW phase-
transition lines for armchair-edge GNFs we use the same
procedure as in Sec. III B. The corresponding lines of phase
transitions for these systems are presented and compared to
the zigzag-edge GNF-54 system in Fig. 13. The position of
the SM, CDW, and SDW phases in the (U/t, ε−1

nl ) coordinates
remains qualitatively the same as in the case of zigzag-edge
GNFs. Furthermore, as for the zigzag-edge GNFs with N > 6
(see Fig. 8) the SM-SDW (SM-CDW) phase-transition lines
for GNFs with armchair edges are (very) close to each other
even if the N values are substantially different. However, for
fixed U both SDW and CDW phase transitions for armchair
GNFs take place at somewhat smaller values of nonlocal
interaction (higher εnl) than the corresponding transitions in
zigzag-edge GNFs with close N . For example, the SM-SDW
phase-transition line for the armchair-edge N = 114 system is
quantitatively closer to the one for the zigzag-edge GNF-54
system rather than to the one obtained for the zigzag-edge
GNF-96 system.
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FIG. 13. Phase diagrams for the armchair-edge GNF-42 (blue
triangles) and armchair-edge GNF-114 (red squares) systems, com-
pared to the zigzag-edge GNF system with N = 54 (black circles):
SM-SDW phase transitions are denoted by solid lines with solid sym-
bols, and SM-CDW phase transitions are marked by solid lines with
open symbols. The dashed line U = Ur/εnl corresponds to simul-
taneous rescaling of the on-site and long-range part, considered in
Ref. [13]. The point εnl = 1 and U = 9.3 eV ≈ 3.4t , corresponding
to freely suspended graphene, is marked by the plus symbol.

The conductance for the armchair-edge geometry (not
shown) is reduced by about an order of magnitude com-
pared to the conductance of zigzag-edge systems with close
size. This stresses importance of interference effects for GNF
conductance. However, the general relations between the con-
ductance and the magnetic states of the GNF systems revealed
in the present study are preserved also for an armchair-edge
geometry.

IV. CONCLUSION

In this paper, we have investigated magnetic, charge,
and transport properties of hexagonal graphene nanoflakes
(GNFs) connected to two metallic leads. Both on-site U and
long-range interaction effects in GNFs are taken into account.
Using the functional renormalization group method we have
calculated the average relative staggered magnetization, the
average relative difference between the occupation of sub-
lattices, and the linear conductance. The ground-state phase
diagrams at half-filling are obtained for the GNF systems
with realistic screened as well as the uniformly screened long-
range Coulomb interactions. The obtained phase diagram in
(U/t, ε−1

nl ) coordinates, where the parameter εnl rescales the
strength of the nonlocal interaction, is shared by three phases:
the semimetal (SM), the spin-density-wave (SDW), and the
charge-density-wave (CDW) phase.

First, we have analyzed the zigzag-edge GNFs with
screened realistic Coulomb interaction of Refs. [13,44]. We
showed that with increasing size of the GNF, the phase bound-
ary between the SM and SDW phases shifts to higher (lower)
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values of critical long-range (on-site) interaction strength. The
transition line between the SM and CDW phases is almost
linear in (U/t, ε−1

nl ) coordinates and weakly depends on the
GNF size. We have found that for the realistic long-range in-
teraction parameters freely suspended GNFs are far from both
SM-SDW and SM-CDW phase-transition boundaries and be-
long to the SM phase. The estimated critical values of the
on-site interaction U N

c , corresponding to the SDW instability
for purely local interaction, agree well with the result of the
DMFT approach for N = 54 [12] and the result of the DCA
approach for N = 96 [9].

Then, for comparison, we have presented the ground-state
phase diagram for the zigzag-edge GNF system with N = 96
and the uniformly screened Coulomb potential. For the SM-
SDW phase transition, we have found moderate suppression
of the critical long-range interaction strength in comparison
to the one obtained for the realistically screened Coulomb
interactions. In contrast, the transition line between the SM
and CDW phases is rather different for the realistic and
uniformly screened long-range Coulomb interactions. The re-
alistic screening of the Coulomb interaction by σ bands causes
a strong enhancement of the critical value of the long-range
interaction needed to stabilize the CDW state. This results
in a substantially wider region of stability of the SM phase
for the case of the realistic nonlocal potential. In particular,
the critical nonlocal interaction of the CDW phase at U = 0
is sufficiently larger for the realistic potential than the cor-
responding value for the uniformly screened potential. The
latter value is consistent with the results of QMC in Ref. [24]
and the mean-field approximation with dynamic renormalized
Coulomb interaction [25,26]. The result on the SM-SDW
transition line agrees well with the scaling analysis of QMC
data [14].

Finally, we have shown that the behavior of the linear con-
ductance G of the GNF system has a close connection with its
magnetic or charge order. In particular, the linear conductance
is strongly suppressed in both the SDW and CDW phases.
The linear conductance as a function of εnl exhibits a peak
for U > U N

c , corresponding to the SM phase of the system.
At the same time for U < U N

c , when the SDW phase does not
occur, the peak is absent and the conductance G(εnl ) shows a
monotonous behavior.

Analysis of GNFs with armchair edges shows that for fixed
local interaction U both SDW and CDW phase transitions
for these systems take place at values of nonlocal interaction
(higher εnl) somewhat smaller than those of the corresponding
transitions in zigzag-edge GNFs with close N .

We emphasize that the present fRG study is limited to
the case of an ideal (nondistorted) graphene lattice, and the
Kekulé bond order phases [61,62] do not appear in the phase
diagrams of GNFs. The possibility of these phases in GNFs
can be also considered within the fRG approach when an ini-
tial small distortion of the hopping matrix elements between
A and B sublattices, playing the role of symmetry-breaking
perturbation, is introduced. Another important issue is the
consideration of disorder effects, which may play a significant
role in GNFs, as is the case for graphene [63–67]. The ef-
fects of disorder are expected to reduce the tendency towards
charge and spin ordering in GNFs. A detailed analysis of these
issues is beyond the scope of the present investigation but
would be an interesting subject for future studies.

We also note that the results of the present paper are
obtained at half-filling and for an equilibrium state of the
GNF systems. However, the functional renormalization group
method used in our study can be straightforwardly applied be-
yond both these limitations. In this perspective, investigation
of magnetic and charge properties of GNFs for finite gate and
bias voltages has to be performed. Apart from that, study of
other carbon nano-objects, e.g., carbon nanotubes, is of certain
interest.
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