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Subgap states at ferromagnetic and spiral-ordered magnetic chains in two-dimensional
superconductors. II. Topological classification
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We investigate the topological classification of the subgap bands induced in a two-dimensional superconductor
by a densely packed chain of magnetic moments with ferromagnetic or spiral alignments. The wave functions
for these bands are composites of Yu-Shiba-Rusinov-type states and magnetic scattering states and have a
significant spatial extension away from the magnetic moments. We show that this spatial structure prohibits
a straightforward extraction of a Hamiltonian useful for the topological classification. To address the latter
correctly, we construct a family of spatially varying topological Hamiltonians for the subgap bands adapted
for the broken translational symmetry caused by the chain. The spatial dependence in particular captures the
transition to the topologically trivial bulk phase when moving away from the chain by showing how this,
necessarily discontinuous, transition can be understood from an alignment of zeros with poles of Green’s
functions. Through the latter, the topological Hamiltonians reflect a characteristic found otherwise primarily

in strongly interacting systems.
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I. INTRODUCTION

Until comparatively recently, the classification of physical
phases relied primarily on the paradigm of spontaneously bro-
ken symmetries introduced by Landau. Over the last decades
though, this scheme was complemented by the concept of
topological phases. In the latter, the symmetries are preserved
but locally similar states can have different global properties,
associated for quantum systems typically with some twists
in the wave functions that manifest themselves only when
considering the full ensemble of eigenstates. The preservation
of symmetries remains indeed a key feature of the topological
phase classification as it is on the basis of the existence of
symmetry protected, gapped states appearing on entrance to
such phases [1]. Such protected states have resulted in a sig-
nificant body of continually evolving research with broad and
novel potential applications, including facilitating the possi-
bility of topological quantum computing [2].

The universality of the symmetry concept allows quite
broadly a characterization of the topological properties to
be made in terms of effective Hamiltonians capturing the
generic physics in the vicinity of points in the Brillouin zone
that remain invariant under the specific symmetry operations.
Topological phase transitions are characterized there by gap
closures and reopenings, for instance by band inversion upon
tuning of some control parameter. Most prominent is the in-
variance under time-reversal symmetry, and in combination
with chiral and parity symmetry this has led to the topological
classification table known as the tenfold way [3-6].

This type of classification is limited to no or weak interac-
tions though, and strong interactions may lead to additional
phases with intriguing properties. It is a matter of ongo-
ing research to identify and classify such phases where a
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broader toolkit is required beyond the symmetry classifica-
tion of weakly interacting Hamiltonians [7-9]. One such tool
is the classification based upon Green’s functions [10-16],
which is able to replicate the success of weakly interacting
classifications, while allowing the possibility of more readily
incorporating strongly interacting phases.

An interesting characteristic arising in a clear way from
the Green’s function based classification is that topological
phase transitions can arise not only through gap closures at
high symmetry points. A topological phase transition is bound
to the generation of topological defects in some global prop-
erty of the wave functions or the Hamiltonian when probed
over the support of the system’s spectrum. The appearance
or vanishing of defects requires a singular behavior. This
is conventionally expressed through the gap closing of the
Hamiltonian, corresponding for the Green’s functions to a
merger of poles. But it is also possible in the absence of a
gap closure by the merging of zeros of the Green’s function
[10,11], or the merging of a zero and a pole. As the latter is
unlikely to occur in the absence of strong interactions, it is not
ordinarily considered. Examples of this phenomenon are thus
of significant fundamental interest to better understand the na-
ture of topological phases broadly. One aspect of this paper is
to reveal how such an example can be extracted from a weakly
interacting system with a partially broken spatial translation
symmetry. This results from the necessity of reconsidering
how to obtain the topological classification in such a system,
which comprises the other results of this paper.

Within this work, we build on the model and on key re-
sults developed in Ref. [17], henceforth called Part I, for
the system shown in Fig. 1, i.e., a chain of densely packed
magnetic scatterers embedded in a two-dimensional (2D) su-
perconducting substrate. We show that the importance of the
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FIG. 1. Schematic representation of the continuous, spiral or-
dered line of magnetic moments at y = 0, periodic in 7 /k,, along the
x direction. The yellow tape represents the modification of the local
density of states and thus reflects the spatial extent of the subgap
wave functions.

spatial structure of the subgap states over all wavelengths
emphasized in Part I has a direct impact on the topological
properties too, and we develop a transparent topological clas-
sification which accounts for the lack of translation symmetry.
We indeed demonstrate that although the subgap states are
confined near the interface and form one-dimensional (1D)
bands, it is not straightforward to eliminate the transverse
spatial degree of freedom to be able to use the established
1D topological classification methods. We, in fact, provide a
rigorous proof based on Choi’s theorem [18,19] that the often
used convenient method of tracing out the transverse spatial
degrees of freedom to obtain an effective 1D Hamiltonian is
valid only for fully separable wave functions. This condition
is met, for instance, for confined edge states of quantum Hall
systems or topological insulators for which this elimination
is thus applicable. It is, however, not met in the present case,
and an uncritical application of such a method would lead to
an incorrect topological classification.

To cure this problem, we make use of the full spatial
information of the exact Green’s function provided through
Part 1. The latter comprises, in particular, the long spatial
extent of the wave functions created from scattering on the
magnetic impurities, emphasized earlier for the long range of
Yu-Shiba-Rusinov (YSR) states [20,21]. We introduce a fam-
ily of spatially varying topological Hamiltonians that through
the standard 1D classification methods provide at the impurity
chain the correct topological invariants, but also incorporate
the transition to the topologically trivial regions of the su-
perconductor at large distances to the chain. By smoothly
varying the distance from the chain, the thus obtained family
of topological invariants displays novel exit and reentrance
into a topologically nontrivial phase due to the interplay be-
tween poles and zeros of the underlying Green’s function.
This phenomenon occurs in a weakly interacting system and
appears to be entirely due to geometric, interference-based
considerations. This adds a property to the densely packed
magnetic scatterers that is different to dilute chains of YSR
states that can receive a more conventional 1D topological
classification, which has been amply investigated in the lit-
erature [22-45], starting from the basic phenomenology of
YSR states [46—48]. The importance put forward in Part I
to determine the exact form of the Green’s function of the
superconductor with the magnetic impurity chain becomes
essential here. Indeed, we show that only in the domains

where the often used long wavelength approximation (LWA)
is applicable, the use of the conventional 1D classification
methods followed from tracing out the spatial degrees of
freedom remains valid. As the LWA is the extrapolation of
tightly packed YSR states, this confirms the applicability of
the used topological classification. But it also tells that another
approach such as used here is necessary when the LWA no
longer applies, which, as discussed in Part I, is in a topologi-
cally most interesting range of spiral magnetic order. Densely
packed chains have been realized in experiment and show
indeed a more complex band structure than expected from
a simple YSR picture. For such systems, the proposed aug-
mented classification method should be directly applicable.

The further structure of the paper is the following. In
Sec. II, we summarize the model and the main result for the
Green’s function obtained in Part I. In Sec. III, we introduce
the concept of topological Hamiltonians that will form the
basis for the further discussion. In Sec. IV, we recall the es-
sentials of the topological classification of the corresponding
1D system. Section V contains the core of this work, with the
topological classification tailored to account for the 2D struc-
ture of the system. We conclude in Sec. VI. The analytical
results are complemented by a numerical verification based
on the tight-binding model already described in Part I. In the
Appendix, we discuss the extension to the numerics for the
topological classification.

II. MODEL AND GREEN’S FUNCTIONS

The model and its properties have been laid out in detail
in Part I, and we therefore provide here only a high-level
summary of its main features. We set /i = 1 throughout. The
2D superconductor is described by the Hamiltonian

Hy =Y exc} ,cuo + (Acoi ar +He). (D)
k,o

Here, ¢y, are the electron operators for momenta k = (k,, k)
and spins o =1, |= +, —. The dispersion ¢, = (k? + ky2 —
k%)/ 2m has effective mass m and Fermi momentum kz, and
A is the s-wave bulk gap. Spatial coordinates are denoted
by (x, y). The dense chain of classical moments is placed at
position y = 0 and runs along x. It scatters electrons through
the Hamiltonian

H,=V, f dxM(x)-S(x,y =0), 2)

with scattering strength V,,, electron spin operator S(x,y),
and the planar magnetic spiral formed by the classical
spins, M(x) = cos(2k,,x)€; + sin(2k,,x)€,. In the latter ex-
pression, the parameter k,, expresses the spiral’s periodicity
of wavelength n /k,,, and &, , are arbitrary orthogonal vectors.
Although self-ordering mechanisms can lead to specific spiral
periods [36,37,41-44,49-51], here we keep k,, as a free tuning
parameter.

The k, momentum transfer of 2k,, by scattering on H,, can
be compensated by choosing the spin quantization axis per-
pendicular to €, , and considering the gauge transformation,
Cko = Ck,o = Clky—ckn,ky)o [I2]. In this new basis, M(x) =
€, so that H,, corresponds to a ferromagnetic chain of scatter-
ing strength V,, applied perpendicular to the spin quantization
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axis. As the transformation also shifts the dispersions €x , —
€(k,+oky,.k,)> the dispersions of the subgap bands created from
scattering on H,, also depend sensitively on k,,, and indeed the
spin-dependent shifts are equivalent to a uniaxial spin-orbit
interaction [52].

In the gauge-transformed basis, translational symmetry
along x is restored, and the problem is solved in a mixed
momentum and real-space description in the variables (k,, y).
Since H,, induces spin-flip scattering, an extended Nambu-
spin basis is required, which we choose as

(EIZ,T’ El:i’ Ck,|>Ck1) 3)

with the restriction k, > 0 to avoid double counting of states.
Notice that this basis is expressed in the gauge-transformed
operators and does not have the minus sign that is used, e.g.,
in front of é_ 4 in parts of the literature. The Pauli matrices
acting in Nambu space will be denoted by 7, and those acting
in spin space by oy, for @ = x, y, z. We include, furthermore,
with 7 and oy, the corresponding unit matrices.

The system properties are characterized through the re-
tarded Green’s function in Nambu-spin space, which, for the
full system, takes the form

G(wv kxv Y5 y/) = g(wv kxv y = y/)
+ g(wv kxv y)T(a)’ kx)g(wv kxv _y/)v (4)
where the 7 matrix is given by the (w,, k. )-dependent matrix,
T(w, ko) = [(VaT.00) " = glw, ke, 0)]7, Q)

and g(w, k., y) is the bulk Green’s function in the absence of
H,,. For the present model, the latter has the exact solution

—imp B -
(w, ke, y) = = () UTUJ,_OA GT;T
§ Y XG:ZkF\/&)Z—A2+in{ +ho %o :
+[(k2 = 1)& + %o |77} (6)

where p = m/m is the 2D density of states at the Fermi en-
ergy, ® = w/Er and A = A/Ep are dimensionless frequency
and gap, for Er = k7 /2m, t+ = 1,(09 £ 0,)/2, n > 0 is an
infinitesimal shift, and @, = ® + in. Furthermore, we have
defined

Ko = (kx + Ukm)/kF’ (7)
£, = p—lJreib’lkFPa,+ _;’_p—l e~ IVIkp po,— ®)
o, o,— )
Xo = Do +ei\y|krpo,+ + po _e*ib‘lkz-'pm-’ 9)
with

1/2

Pot = [l — k2 £ (@ — A* +in)'/?] (10)

In Part I, we provided a detailed analysis of the importance of
using the Green’s function of Eq. (6) and not any commonly
used approximations. Equation (6) remains of fundamental
importance in this paper, as any such approximation would
lead to an incorrect topological classification.

The direct computation of G and T consists of a number
of matrix multiplications and inversions and this last step is
generally done numerically, though the relatively simple form
allows for a number of analytic results, which we summarize
in the following.

The poles of the Green’s function provide the spectrum,
and all subgap states arise from the poles of the T matrix;
hence, det 7~! = 0 at some |w| < A provides the criterion for
the existence of a subgap state. The solution of det T~!(w =
0, k, = 0) = 0 is of particular interest because it provides the
condition for the interaction strength V,,, at which the subgap
states close the gap at the high symmetry point. One can
analytically solve this equation for any spiral wave vector. If
we define, with

Cm=7T)OVm/kF’ 11

the dimensionless amplitude of the magnetic scattering
strength, then the critical amplitude for the gap closure is
given by

cn=[(1-12/i2) + A" (12)

As discussed in Part I, the exact result of Eq. (12) bears a
number of interesting features. The exponent of 1/4 rather
than 1/2 as expected by comparison to a purely 1D model (see
Sec. IV) occurs due to the dimensional mismatch between the
substrate and the impurity chain. At a ferromagnetic interface
with k,, = 0, the gap closing has only a weak dependence on
A and can be interpreted as the result from the hybridization
between the YSR states forming the Shiba bands. On the other
hand, at k,, = kr, one has C,, = A'/2, and thus a gap closure
caused by the direct competition between magnetic scattering
and pairing. This resembles a dimensionally renormalized
Zeeman interaction, and as shown in Part I, indeed, YSR states
and their hybridization are of no importance in this limit. We
additionally point out that Eq. (12) is in excellent agreement
with the self-consistent numerical solution of the lattice ver-
sion of this problem, showing that Eq. (12) is indeed a general
result and not specific to the chosen continuum model.

III. TOPOLOGICAL HAMILTONIANS

The topological classification of a material is based on the
calculation of topological indices. Two types of approaches
are common for bulk superconductors, based on either char-
acteristics of the Hamiltonian at special points or integrals
of Berry-type connections over the Brillouin zone. In the
former category falls the common Z, characterization de-
termined from the sign of Pfaffians of matrices proportional
to the Hamiltonian at time-reversal symmetric points in the
Brillouin zone [53-56]. With such an approach, the classi-
fication of the purely 1D system of Sec. IV is immediate.
The latter category refers to topological indices expressed,
for example, through TKNN invariants, Chern numbers, and
Zak phases [57,58]. These cases require the knowledge of
the Bloch wave functions. Equivalent indices can be obtained
through Green’s functions [10,59] which has the advantage
that interactions can be included as well [11-13,16]. Yet
in their original formulations, these indices involve multiple
products of Green’s functions, their derivatives, and frequency
integrals, in addition to momentum integrals. A large effort
was therefore made to derive simpler equivalent expressions
[12—15]. Notable is the replacement of the frequency w inte-
gral by w = 0 and use of the Green’s function then to define
an effective topological Hamiltonian that correctly captures
the topological classification [11,14,15,59-62]. The latter is
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indeed rather intuitive since any Green’s function is obtained
through matrix elements of the resolvent Gw)=(w—H)"!
such that H = —G~1(0). Subtleties arise since Green’s func-
tions are projections of the resolvent and their inversion does
not reproduce the original (possibly interacting) Hamiltonian.
But, notwithstanding the subtleties, they correctly capture the
topological classification [14,15].

For a bulk system, the topological Hamiltonian can be
defined through

Hyh (k) = =Gy (0 = 0, k), (13)

where Gpyx 1s the Green’s function of the fully translationally
symmetric system.

In the following, we will show that a similar approach
can be adopted for our situation, although we have neither
translational symmetry nor a periodic structure along the y
situation. Despite this, we will demonstrate that a suitably
adapted variant of Eq. (13) produces the correct topological
classification if subtleties with the y dependence are appropri-
ately taken into account.

IV. COMPARISON TO 1D SYSTEM

To obtain a baseline for the expected topological clas-
sification, we start by providing a brief account of the
straightforward topological classification of a purely 1D
model, along with the expected dimensional renormalization
due to the embedding in a 2D system.

The 1D equivalent of Hamiltonian H = Hy + H,, [Egs. (1)
and (2)] is in the gauge-transformed basis

Hke) = €ton, ™ + VuTeox + Aoz, (14)

written here not in second quantized form, but as a 4 x 4
matrix in Nambu-spin space at fixed k,. We identify &; with
the spin-x direction and rzi = 1,(0p £ 0;)/2, and denote the
magnetic potential V,, to avoid confusion with its counterpart
in the 2D system. Since the V,, act on the entire system and
not only on a line across the 2D system, they take the role of
a uniform magnetic field whose original spiral was unwound
through the gauge transformation. Equation (14) corresponds
to the Hamiltonian of a “Majorana wire” [63—66], which has
a known Z, topological classification that can be obtained
from the Pfaffians of the Hamiltonian at the time-reversal
symmetric momenta [53].

Using this Hamiltonian, we calculate the topological in-
variant in the usual way by transforming H(0) to a skew
symmetric matrix UH (0), where U = o, t, [taking this form
because of the chosen Nambu-spin basis given by Eq. (3)],
and by determining the sign of the Pfaffian pfaff[UH (0)].
The resulting phase diagram is plotted in Fig. 2 and shows
the two distinct topological phases with the transition con-
trolled by V,,. We should remark that for the continuum model,
there is only one time-reversal symmetric momentum, k, = 0,
whereas in a lattice system, there would also be the momen-
tum at the boundary of the Brillouin zone. In the latter, this
second momentum is responsible for a reentrance to the topo-
logically trivial phase at large magnetic interaction strength,
which is absent in the present continuum model.

151 nontrivial

051  trivial

0.0 T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

km/kF

FIG. 2. Topological phase diagram for a pure 1D system with
a spiral magnetic field, shown as a function of field winding mo-
mentum k,, vs field strength V.. for A = 0.1Er. The white area is
topologically trivial and the shaded area is nontrivial. The separating
curve is described by Eq. (15). In this pure 1D case, the minimum at
k,, = kp is reached at V,, = A.

The boundary between two topologically distinct phases
is characterized by a gap closure at a time-reversal invariant
momentum. If we set C,, = V,,/EF in analogy to Eq. (11) and
A = A/Ep, the gap closure at k, = 0 for the 1D Hamiltonian
requires an interaction strength C,,, = C';,, with

=1 — 2 /i2) +A2]" (15)

This critical amplitude has the same functional form as its 2D
counterpart C* given in Eq. (12), but with the exponent 1/2
instead of 1/4. This change is a dimensional renormalization,
as mentioned above and explained further in Part I, due to
the fact that in contrast to the 2D case, \7m acts on the full
transverse extension of the wave functions. Besides this di-
mensional renormalization, the subgap states remain confined
to the vicinity of the magnetic chain. We may thus expect that
they retain a 1D character so that up to a renormalization of the
phase boundaries, the phase diagram itself remains unchanged
from the 1D case. As a motivational argument, we may indeed
consider a procedure that continuously provides an increasing
confinement transforming the 2D system into the pure 1D
system. If this is done in each gapped phase in a manner such
that the gap never closes, then the topological class of the
subgap states should not change.

Such an argument alone, however, is naive as it neglects
that in the 1D case, an extra confining potential is required,
whereas in 2D, the confinement of the subgap states is con-
trolled by A. In the transition between 1D and 2D, there is
therefore a length scale at which the boundary condition for
the confinement changes its physical origin. Since topology
depends on global properties of the wave functions, a change
of boundary condition must always be considered carefully,
and we will see that indeed, the extension of wave functions
across this scale is of importance. We therefore must consider
in more detail the subtleties arising from the loss of transla-
tional symmetry or periodicity in the y direction.

V. LOCALIZED CLASSIFICATION
A. Absence of an effective 1D Hamiltonian

Due to the exponential confinement of the subgap
wave functions to the region near the magnetic chain, the
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electron motion is one dimensional. One may thus consider a
description in terms of an effective 1D Hamiltonian, similar to
those used for the 1D states appearing through confinement in
heterostructures or to the edge bands in topological systems.

A complication arises here from the fact that the Nambu-
spin and y degrees of freedom are highly mixed in the wave
functions, as visible in Egs. (6)—(10), whereas the conven-
tional topological classification tools for 1D systems rely on
the Nambu-spin structure alone. In the following sections, we
provide a systematic discussion that in such a case, the topol-
ogy of the subgap states can be reliably extracted by pinning
y to the special value y = 0, followed by an exploration of the
changes for y # 0.

In this section, however, we analyze the conditions un-
der which the y coordinate can be traced out entirely, while
maintaining the validity and convenience of the Nambu-spin
based classification scheme. We formulate two conditions, (a)
and (b) below, that a reduced Hamiltonian H)? should fulfill
and show that these conditions have a close connection with
Choi’s theorem on completely positive trace-preserving maps
[18,19]. Based on this, we demonstrate that fulfillment of
the conditions necessarily imposes a complete separability of
the Nambu-spin and y degrees of freedom. This separability
is generally not fulfilled in the present case and thus such
an effective Hamiltonian cannot be constructed. A notable
exception though is the regime in which the LWA is valid. For
the latter, the necessary separability is approximately true, ex-
plaining why, for such a situation, a topological classification
based on a simple tracing out of y provides correct results.

A dimensional reduction is an often tacitly used procedure
in the study of low-dimensional systems. A quantum dot, for
instance, is addressed commonly by operators creating and
annihilating its different levels as entities without addressing
the specific spatial structure. Interactions such as the Coulomb
repulsion or spin orbit are effective integral quantities cou-
pling the different levels. Such a description results from first
analyzing the confinement of some noninteracting Hamilto-
nian, providing the set of basis functions for the confined
geometry, and then expanding the full Hamiltonian in this
basis. The eigenstates and the spectrum are then obtained by
the diagonalization of the resulting Hamiltonian matrix, with
the eigenstates given by an appropriate decomposition of the
basis functions.

Our situation is distinct in that we already fully know the
confined eigenstates. We have thus a different goal with the
extraction of a lower-dimensional Hamiltonian. As explained
above, our goal is to be able to work with the Nambu-
spin based symmetries and topological classification methods
without having to maintain the y dependence and, especially,
without having to modify the methods.

The following proof when this is possible is not specific for
the considered situation, but general for any type of Hamilto-
nian with a finite subset of discrete, localized states that are
split off from the continuum.

For a fixed k,, any full 2D Hamiltonian can formally be

written as
N,

Hke) =) on(ko)lky, 1) (ke, 1l

n=1

+/mmmmmmm, (16)

where n labels the N, discrete subgap bands and « the con-
tinuum states. In our case with two subgap bands, we have
N, = 2, but we keep this number general, yet finite, for the
following discussion.

The extraction of a 1D Hamiltonian requires two steps:
the rather easy projection on subgap energies to remove the
continuum states, and the elimination of the y coordinate.

In the following, we keep k. as a fixed parameter and omit
it from the notation, for simplicity, without loss of generality.
The energy projection results in the Hamiltonian

Ny
H' =" w,ln)(nl. a17)
n=1

The states |n) span an N,-dimensional subspace H' of the
Hilbert space Hy; ® H,, where Hy; is the Nambu-spin space
and H, is the space of square integrable functions of y.

We then seek a mapping 2 between operators on H’ and
operators on Hy, such that HY = Q(H’). We impose the
following two conditions such a mapping needs to fulfill:

(a) The expectation values of any operator A on Hyy, acting
with the identity on #,, must remain invariant. This means we
impose

(n|A|n") = Tr{|n)(n|A} = Tr{Q(In') (nDA}.  (18)

Notice that A is kept outside the 2 mapping, which is not a
physical requirement but the choice of convenience mentioned
above.

(b) For each orthogonal projector |n)(n|, the mapping pro-
duces again an orthogonal projector, Q2(|n)(n|) = |u,)(u,l,
with |u,) in Hy, such that (u,|u,) = &, -

Condition (a) is the more stringent one, but condition (b)
is the physical requirement as it ensures that H'? remains a
Hamiltonian on Hy, with a spectral decomposition and the
same spectrum. An immediate necessary condition for (b) is
that N, < dim(Hy,) = 4.

To evaluate the consequences of condition (a), let us choose
a set of states |¢,) € H,, for p=1,...,N,, representing
functions ¢,(y) such that

Nﬂ
) =" [vh) & I¢p). (19)
p=1

with |v?) in Hy,. We assume that N, is finite, and we see
from Eqgs. (6)-(10) that the ¢,(y) indeed are expressed by
the small set of functions exp(=i|y|kr ps +). Through an or-
thogonalization procedure such as the Gram-Schmidt method,
we can choose the |¢,) to be orthonormal, (¢,|¢,) =5, .
The normalization imposes, furthermore, that (v |vf) = 1, but
otherwise there is no requirement for orthogonality on the
[vF). Equation (18) is then equal to

Np Ny
Ay = Z(uf;|A|v,’;) - Tr{z |u{;,)(v;;|A}. (20)
p=1 p=1

This relation must hold for any A and, consequently,

Ny Np
Q) = [vh)vr| = DV, In) nlv,. Q1)
p=1 p=1
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The mapping €2 therefore takes the form of a Kraus decom-
position [18,67], with the Kraus operators V, = 1y, ® (¢,
where 1y, is the identity on Nambu-spin space. Noting that
Zp V; V,, produces the identity on H', we find that Q falls in
the remit of Choi’s theorem [18], which states that any linear
mapping from bounded operators acting on H’ to operators
acting on Hy; that is completely positive and trace preserving
is necessarily of the form of Eq. (21).

The minimum number N,, of necessary Kraus operators is
known as the Choi rank, but otherwise the V,, can be freely
chosen as long as they fulfill Eq. (21) and the identity condi-
tion on H'.

We turn then to condition (b) and ask which choice of
Kraus operators can guarantee the correct mapping of projec-
tors, which thus has to take the form

ZV |n)(n|V, =

Since dim(Hy;) = 4, we can represent |v}) asa4 x N, matrix
V., and |u,) as a length 4 column vector U, such that the latter
equation becomes V,V/ = U, . This means V), needs to be
of rank 1, and therefore all its columns are directly linearly
dependent. In this case, we have |[v]) = AL|u,), where the A
are numbers such that Z i [A%]> = 1. This, however, also
imposes that

Z|v” vp| [t} {1ty | (22)

p=1

= [uy) ® Zw’w)p

This result shows that conditions (a) and (b) are only com-
patible if the states |n) are separable in the sense of Eq. (23)
in that for each n, the y dependence is in a single function
¥.(y) = (y|¥,,) multiplying the Nambu-spin states |u,). The
|i,) must be orthogonal, but there is no orthogonality con-
dition on the |v,), only normalization as (y,|y,) = 1. Note
that Eq. (23) does not imply that the Choi rank is N, = 1 as
the |v,,) can be different for different n.

For separable |n), the mapping 2 becomes then particu-
larly simple and results in just tracing out of the y degrees of
freedom,

litn) ® [Yn). (23)

HY =Tr,{H'} = / dy (y|H'ly)

= anmn un|/dy|<y|wn

This result is remarkable in the sense that it confirms that
for separable wave functions, the elimination of the confining
degree of freedom by the intuitive simple integration is indeed
the only way that does not change the physics of the other
degrees of freedom. Separability is also encountered often for
wave functions confined by some potential such as created
by a heterostructure, or of edge states in quantum Hall sys-
tems, topological insulators, or topological superconductors,
in which the envelope does not depend on spin, and in which
further spatially dependent interactions that can hybridize the
states are absent or negligible. In such a case, it is straight-
forward to integrate out the spatial dependence and obtain an

anmn) . (24)

effective lower-dimensional Hamiltonian for the bound states
only.

On the other hand, if the states are not separable, a Hamil-
tonian H)P satisfying both conditions (a) and (b) cannot be
constructed. This is indeed the general case for the subgap
states at the magnetic chain. As mentioned before, this is
seen from Eqs. (6)-(10) through the amplitudes &, and y,,
and their dependence on p, 1. For |@| < 0, the latter satisfy
Po.+ = Py If we thus let p, 1+ = p, exp(Lip) for p, =
|ps.+| and ¢ = farg(ps +), we see that

& = 2p," coslykpp, cos(p) — pleMrresin@ o (25)

Xo = 2Po cos[ykp ps cos(g) + gle”Mrresin@ o (26)

As long as p, 1 is complex, the division and multiplication
by po.+ adds opposite phase offsets ¢ to the y-dependent
oscillations of &, and x,, so that the y dependence is not
globally factorizable from the different terms of the wave
function, thus violating the separability of the wave function.
The imaginary part of p, 1 is furthermore required for the
exponential confinement and exists whenever || < A.

To substantiate that indeed these factors of the Green’s
functions provide the relevant amplitudes of the wave func-
tion, let us note that we can write

dw
<y|kx,n><kx,n|y/>=y§ LG koY) @D
Ci, Tl

where Cy_ is a positively oriented closed contour encircling
only the isolated pole w,(k,) of the Green’s function. Since at
|w| < A the pole arises from the 7 matrix, we have

(vlky, n)(ky, n|y,> = glw,(ky), ky, yIResT [w, (ky), ky]
X g[wn(kx)v ka —)/]s (28)

with ResT the residue of the 7 matrix. Any y dependence
is thus due to glw,(k,), ky, y] and any y dependence to
glw,(ky), k., —y']. Hence, the Green’s functions g directly
define the y dependence of the wave function, containing the
exponential envelopes and the oscillations. As they are not
separable in the sense above, the subgap states do not allow
the reduction to an effective 1D Hamiltonian.

We should stress, however, that the lack of separability
requires that the effect of the difference between the p, 1 is
notable, and situations can exist in which approximate separa-
bility and thus an approximately valid 1D Hamiltonian can be
obtained. Such a situation occurs when the exponential decay
is fast compared with the oscillation period, expressed by the
condition Imp, 1 > Rep, . From Eq. (10), we see though
that in the topologically most interesting limit of @ — 0, this
condition does not hold. We then instead must consider the
situation in which the phase shift ¢ making the oscillations
of &, and x, distinct is negligible. Since the characteristic
range over which y is evaluated is set by the decay length
1/kr p, sin(g), we see from Eqs. (25) and (26) that the phase
difference +¢ can be neglected when cot(¢) £ ¢ = cot(g),
which is the case when cot(¢) > 1. This represents thus
the limit Imp, + < Rep, 4+, which is precisely the limit in
which the long wavelength approximation (LWA) is applica-
ble (see Part I). Full separability is then still not guaranteed
as long as p, 1+ have different spin o dependence. But at the

245134-6



SUBGAP STATES AT FERROMAGNETIC AND SPIRAL- ...

PHYSICAL REVIEW B 104, 245134 (2021)

topologically most significant k, = 0, this spin dependence
drops out and an approximate 1D Hamiltonian can be obtained
by integrating out the y dependence. This property confirms
why this method of obtaining such a Hamiltonian produces
valid results in the LWA limit.

On the other hand, as discussed in depth in Part I, the range
of applicability of the LWA becomes more and more restricted
for increasing k,, and breaks down entirely at k,, = kr, at
which indeed Imp, = Rep, + for k, = 0. For the topolog-
ical classification of the subgap states, we therefore need a
different approach, which we will describe next.

B. Dimensional embedding

Although it is not possible to obtain an effective 1D Hamil-
tonian, the wave functions remain 1D and we can expect
that still some adjustment of the 1D topological classifica-
tion schemes remains applicable. We thus aim to extract a
1D Hamiltonian solely for the purpose of the topological
classification at the expense of removing any other physical
significance. To this end, it is useful to examine the analogy
of how 1D topological invariants arise as weak 2D topological
indices in particular directions. For comparison, we consider
the example provided in Ref. [68] through a generalized
model of a p + ip superconductor on a 2D square lattice. In-
stead of performing a full 2D analysis, in this paper, one of the
momentum components k, or k, is treated as a fixed parameter
and tuned to a time-reversal invariant point. In terms of the
other momentum, the Hamiltonian describes an effective 1D
system, which in this case is equivalent to the Kitaev chain of a
topological triplet superconductor. For the latter, the topolog-
ical classification is determined in the standard 1D way, and
the obtained topological indices are identified with the weak
topological 1D indices of the 2D system. The combination
of the weak indices provides the characterization of the full
2D system. The effective 1D Hamiltonians do not necessarily
have any direct physical significance, but capture the topology
at the significant time-reversal symmetric points. Since the
system is translationally invariant, these points are labeled by
the momenta k, and k,,.

We are aiming for a similar extraction of an effective
topological Hamiltonian. But due to the lack of translational
symmetry along y, such a momentum space extraction of 1D
Hamiltonians is not possible. To obtain the correct modifica-
tion, let us recall the role of time-reversal symmetric points. In
a fermionic system with time-reversal symmetry, each eigen-
state has an orthogonal Kramers partner, i.e., its time-reversed
counterpart of opposite momentum and equal energy. At a
time-reversal symmetric point, the momenta of the Kramers
partners coincide, but their orthogonality prevents them from
hybridizing and lifting the energy degeneracy. Only if more
than one Kramers pair is present is a hybridization possible
between states not belonging to the same pair, and only in
the presence of an even number of Kramers pairs can the
degeneracy be lifted entirely. The parity of the number of
Kramers pairs is expressed through the Z, index associated
with the time-reversal symmetric point, and the impossibility
to hybridize defines a topologically nontrivial state. Although
most of the considered 1D topological systems involve some
magnetic elements breaking time reversal, there is throughout

either an emergent or an effective time-reversal symmetry [69]
for the relevant states so that the Z, classification remains a
valid standard tool. A similar choice, yet without any justifi-
cation of the used topological Hamiltonian, was applied for a
tight-binding model at y = 0 in Ref. [70].

For the present case and in the limit of a large bulk gap A,
the wave functions are in the y direction confined essentially to
the magnetic chain position. The time invariant point is then
given by k, = 0 and, through the confinement, by y = 0. A
classification through a topological Hamiltonian has to focus
on this point. For a smaller A, the wave functions widen
around y = 0, but any motion is still possible only in the x
direction. The relevant time-reversal points remain &, and y
dependent. We notice that the operation of time reversal on the
y dependence of the Green’s function is to transform the latter
as G(y,y) — G(¥,y), and time-reversal invariance requires
thus y’ = y. This includes the chain center y = y’ = 0, which
will provide the primary criterion for the topological classifi-
cation. But it further allows the characterization aty = y" # 0.
As discussed in Sec. VA, we must not integrate out the y
dependence, and instead below we will explore it further.

Consequently, we define the y-dependent family of topo-
logical Hamiltonians through [71]

HY() = —[Go=0k=0yy =" (29

where w =0, k, =0, and y =y’ are chosen to fulfill the
necessary symmetry conditions of particle-hole symmetry at
time-reversal invariant points in configuration space. The in-
verse is taken of the 4 x 4 matrix G(0, 0, y, y).

The Hamiltonians Hll‘l))p(y) represent a class of Hamilto-
nians obtained by slicing the 2D system into effective 1D
segments at a distance y from the impurity chain. In this sense,
they are similar to the effective 1D Kitaev-chain-type Hamil-
tonians used for the determination of the weak 1D indices
in the bulk system, with y replacing the use of a momentum
as parameter. But the y parameters are not limited to special
values as time-reversal symmetry is built in through y =y
in the Green’s function, and y is tunable through all values.
We will show that these Hamiltonians correctly produce the
topological behavior of the subgap states in the vicinity of
y = 0, reproducing the topological phase diagram of the pure
1D chain when taking into account the renormalized critical
coupling strengths. The correctness of the Green’s function at
all wavelengths emphasized in Part I is of crucial importance
here for the validity of the phase diagram, as could already
be deduced from its significance on the nonseparability of the
y-dependent wave function discussed in Sec. V A.

As the subgap bands are exponentially localized at the
chain, the topology at large y must become trivial. Since
the topological indices are integers, the passage to a trivial
topology has to be abrupt and there must exist an effective
boundary between the region near the chain and the rest of the

superconductor. Through Hlt(]))P (v), we can capture this behav-

ior, but we should emphasize that H, llg’ () is only to be taken
as an archetypical representative of y-dependent topological
Hamiltonians. The pure topological and not physical interpre-
tation is furthermore underlined by noting that in addition to
the symmetry considerations, the classification depends on the
change of the sign of eigenvalues about the Fermi level and not
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FIG. 3. Topological phase diagram obtained from the topological
Hamiltonians H]“S’ (y = 0) as a function of spiral wave number k,, and
magnetic scattering strength C,,, for A = 0.1. This diagram corre-
sponds to the phase diagram of the pure 1D model of Fig. 2, with the
same color coding, upon the discussed dimensional renormalization,
with values C; [Eq. (12)] marking the transition by the solid line,
instead of the values Cv‘,; [Eq. (15)]. Notably the transition at k,, = kr
is now at the larger C,, = A'/? instead of C,, oc A.

necessarily on the eigenvalues passing through the Fermi level
[11-15,60,61]. Since the states do not change, the transition
to the trivial phase with increasing y indeed cannot rely on
Fermi level crossings and, as further investigated below, is
instead bound to divergences in the spectrum of H lt(]’)p (v) due to
zeros in the defining Green’s function, which themselves are
the expressions of nodes in the subgap wave functions.

Before continuing, we should mention that alternative clas-
sification methods for spatially inhomogeneous systems were
put forward several years ago in the form of local Chern
markers [72], the Bott index [73], and noncommutative Chern
numbers or Chern number densities [74—77]. Such quantities
allow spatial variations in the topological classification. These
approaches replace the derivatives in momentum space for
the usual Chern numbers by traces over local coordinates in
real space together with projections onto occupied states. We
found though that for our current purpose, the method we
propose is more readily accessible and provides the correct
topological classification.

C. Topological classification near the chain

Since Hlt%p (v) are matrices in Nambu-spin space, their
topological classification is most easily done through the
Pfaffians at time-reversal symmetric points, which for the
continuum model is reduced to the behavior at k, = 0 in the k,,,
shifted basis. The relevant topological index is then as in the
1D case above determined by the sign of pfaff[U Hlt(g’ ()] [56],
where the matrix U = o, 1, again transforms the Hamiltonian
to a skew symmetric matrix. In Fig. 3, we plot the resulting
topological phase diagram for the topological Hamiltonian at
the position y = 0 of the impurity chain as a function of spiral
winding k,, and dimensionless magnetic interaction strength
C, [see Eq. (11)]. The shaded areas are the topologically
nontrivial range. In comparison with Fig. 2, we see that the
results perfectly reflect the phase diagram of the pure 1D sys-
tem under the aforementioned dimensional renormalization.
The phase transition occurs when the subgap bands touch

+~>

trivial

0.0 0.2 0.4 0.6 08
ak,,

FIG. 4. Topological phase diagram obtained from the self-
consistent numerical solution of the matching tight-binding model
described in the Appendix, as a function of spiral wave number k,,
and magnetic scattering strength V,,. Scales are given in units of the
hopping integral 7 and the lattice constant a. The pairing interaction
and chemical potential are chosen to produce A = 0.1t and krpa =~
0.65. All the features of the analytic model are perfectly reproduced;
only the numerical values of V,, are not directly comparable with C,,
because of the involved different density of states and effective mass.

at the Fermi level at k, = 0. This is exactly at the critical
interaction strength C;, given in Eq. (12), which replaces the
CV‘;, of the pure 1D system of Eq. (15). As there is no other
gap closing at k, = 0 and for the continuum model there is
no finite momentum at the edge of the Brillouin zone, there is
no mechanism for a phase transition at any other interaction
strength.

To corroborate the validity of these results by an indepen-
dent method, we compare them with the numerical solution
of the tight-binding model that has already provided excellent
quantitative verification in Part I. We perform two validations,
the first by comparing the matching topological invariants and
the second by demonstrating the appearance of zero modes
localized at the edges of a finite chain.

For the first verification, we also use the Pfaffians of the
topological Hamiltonians for which we compute the Green’s
functions through their Lehmann representation from the
eigenvalues and eigenvectors of the full 2D Hamiltonian. The
Appendix contains a further description of the numerical eval-
uation. The numerical results are shown in Fig. 4, in which
we again plot the diagram as function of k,, and the magnetic
scattering strength, which we denote for the tight-binding
model by V,,. The agreement is excellent as the phases and
the shape of the phase transition line are perfectly matched.
However, we should note that the numerical values of V,, for
the transition are not the same because the densities of state
of the two models are different. We remark furthermore that
for the tight-binding model, we have only considered k, = 0
and not its second time-reversal symmetric point k, = 7 /a at
the edge of the Brillouin zone, as the latter is absent in the
continuum model. We thus exclude in the tight-binding model
the possibility to leave the topological phase at large C,, due
to a gap closing at k, = 7 /a.

The second verification of the validity of the topological
classification through H,¥(y = 0) is shown in Fig. 5. In this
figure, we display, for spiral wave vector k,, = kr, how the
wave functions of the eigenvalues £F closest to the Fermi
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FIG. 5. Real-space map of the absolute square of the wave func-
tion for the smallest eigenvalues of a real-space system of 600 x 70
sites with a spiral magnetic chain extending between sites x = —224
to x = 225 at y = 0, with spiral wave vector k,, = kr. Darker pixels
show a larger amplitude; the eigenenergies are +F as shown in the
panels. The shown amplitudes are summed over spin and particle-
hole components and, for better visualization of the end states, we
have summed furthermore over both the +F and —E amplitudes.
The magnetic impurity potentials V,, are chosen to lie (a) below,
(b) at, and (c) above the gap closing strength V,, = V* = (4tA)"/2,
with ¢ the hopping integral and A = 0.1z the gap function. Panel
(c) demonstrates the topological nature of the transition through the
appearance of the Majorana end states with energy E & 0 within the
accuracy of the remaining finite-size wave-function overlap.

level change from an extended 1D state to localized end states
when V,, changes across the gap closing interaction strength
V* corresponding to C in the continuum model. For better
visualization, we plot the sum of the amplitudes of the two
wave functions for £E. Due to particle-hole symmetry, the
amplitudes are the same for the extended states, and for the
localized end states, we assure in this way that the states at
both ends are visible. We verify furthermore that the values
of E (shown as labels in the figure) decrease to E = 0 within
the numerical accuracy. Only these states are localized and we
verified that the other eigenstates remain extended. These end
states are thus indeed the particle-hole symmetric Majorana
bound states expected from a transition to the topologically
nontrivial phase. Through these verifications, we can thus
confirm that the topological Hamiltonian Hl“l’)p(y = 0) indeed
produces the correct topological classification.

D. Topology aty # 0

With the physical significance of the y = 0 Hamiltonian
verified, we inspect the further y dependence. Since the
H:‘S’(y) are a choice, this analysis is principally only qual-
itative. Nevertheless, we find that the properties underlying
the transition from the topology near the chain to the trivial

topology in the bulk are governed by physical and plausible
mechanisms. For this reason, we provide a detailed analysis
of the y dependence, in particular as it reveals an interesting
picture of the extension of the topological regions into space.
Furthermore, as we show below, a leading role will be played
by the zeros of the Green’s function (meaning detG =0
here), which is otherwise found only for interacting systems
[10,11]. Thus the family of 1D Hamiltonians H]“]’)p(y) can also
be viewed as a simulator of features that otherwise occur
only in strongly correlated systems. Here we exhibit these
features through the means of H 1“3’ (), but it could similarly be
achieved by directly analyzing G(w, k., y, y) as a class of 1D
Green’s functions with an effective strong correlation physics
whose interaction strength is controlled by y.

We display the topological classification as a function of y
in Fig. 6, with y = 0 in Fig. 6(a) repeating Fig. 3 for complete-
ness, and with increasing values of y > 0 in Figs. 6(b)-6(e).
The insets show the corresponding data from the numerical
solution of the tight-binding model, repeating Fig. 4 in the
inset of Fig. 6(a). At large values of y, the subgap states
are all exponentially suppressed and we expect that Hf(g(y)
exhibits only a topologically trivial phase. This is confirmed
by Fig. 6(e), which shows that the topological nontrivial
region collapses far from the impurity chain. It is interest-
ing to analyze how this collapse occurs, and we observe in
Figs. 6(b)-6(e) that it is indeed far from being simple. Most
significant is, in Fig. 6(b), the appearance of a second transi-
tion line at which for increasing C,, the system again becomes
trivial. To understand this behavior, we should notice that the
phase diagram of Fig. 6(a) results from the usual crossing of
the Fermi level of an eigenvalue of the Hamiltonian.

In terms of the Green’s function, a pole then crosses the
Fermi level, which coincides with the pole of the T matrix.
Since this pole is set by the interaction, it is the same for all y.
This is shown by the solid line in all panels in Fig. 6. The only
way the sign of the Pfaffian can then change is when a zero
of the Green’s function instead of a pole crosses the Fermi
level, and the zeros of the Green’s functions then mark the
transitions to the trivial region at large y. In Fig. 6, we have
marked the crossing of a zero of the Green’s function by a
dashed line to distinguish it from the y-independent crossing
of the pole shown by the solid line. As y increases, the poles
and zeros increasingly coincide, causing the topologically
nontrivial region eventually to vanish.

To substantiate these statements, let us look first at the
condition pfaff[UH, (y)] = 0. Since det(A) = pfaff>(A) for
any skew symmetric matrix A, this condition is indeed set by
the divergence of det[G(0, 0, y, y)]. Such a divergence occurs
through the divergence of det[T (v = 0, k, = 0)], which is
precisely the condition for the existence of a subgap state at
frequency @ = 0 and momentum k, = 0 used in Part I for
the characterization of the subgap spectrum. Since w = 0, this
is the same condition as the gap closure condition at k, = 0,
for which we have determined the critical interaction strength
C; in Eq. (12). Thus, very close to the interface, the phase
transition is governed entirely by the poles of the Green’s
function.

As y moves away from the interface, the amplitude of
the 7T-matrix term in the Green’s function at w =0 de-
cays exponentially and Hlt(l))p(y) — —[g(0,0,0)]"!, which is
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FIG. 6. Topological phase diagrams obtained from the topological Hamiltonians HIIOD"(y) as a function of spiral wave number k,, and

magnetic scattering strength C,,, for various y and A = 0.1. Panel (a) is identical to Fig. 3 and displays the principal phase diagram at y = 0.
The solid line shows the primary transition at C, [Eq. (12)] between the topologically trivial (white) and nontrivial (blue) regions. Panels
(b)—(e) show, with the dashed line, the appearance at y 7 0 of the second transition at strength C;* [Eq. (30)], determined by the zeros of
the Green’s function. At large y, the region spanned between both lines shrinks to zero such that the system becomes trivial throughout. At
intermediate distances, oscillations of the dashed line about the solid line show that at the same interaction strength, a region can change
topology several times with y, and some trivial regions at y = 0 can become nontrivial at some nonzero y. The insets display the corresponding
diagrams for the numerical solution of the tight-binding model and show a remarkable correspondence with the continuum model. Differences
appear only in the magnitude of regions or are due to limitations of the discrete y values on the lattice as in (b), where there is no lattice site

close enough to the interface to directly match ykr = 0.5. The inset of (a) reproduces Fig. 4.

topologically trivial. Since the denominators of G are y in-

dependent, the necessary change of sign of the Pfaffian of
top .

H5(y) can no longer come from the crossing of a pole

of det[G(0, 0, y,y)]. Instead, it has to appear from a pole

of Hlt‘]’)p(y) itself, when one of the eigenvalues diverges, for

instance, to 400 and reappears at —oo. Since Hlul))p(y) is
given by the inverse Green’s function, the location of this
pole corresponds to a zero of det[G(0,0,y,y)]. In Fig. 7,
we visualize this effect by plotting the value of the Pfaffian
against magnetic interaction strength C,, for a range of y for
k., = kr. The position of the pole of the Green’s function is
shown by the circle and the position of the zero of the Green’s
function (at y # 0) by the square. For increasing y, the pole
and zero converge until they overlap and the system remains
topologically trivial for all interactions strengths.

The condition det[G(0, O, y, y)] = 0 actually admits an ex-
act solution for the location of this pole in the Pfaffian. From
the exact, full Green’s function defined in Eq. (4), we obtain

Ct
C;l* m (30)

- V1 + e 2Dkes 26015 cos ([ylkpdy )

ykr =0 ykp =1

000 \\ o

-0.15
0.0

plaff[lUH'P (y)]
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where 8. = \/i[(C;l)2 +( - k,zn/k,%)]l/2 and C;, is the mag-
netic interaction strength at which the Green’s function admits
a pole, as defined in Eq. (12). The value C,* completely
determines the additional, dashed phase boundary in Fig. 6
and is marked by the square in Fig. 7. In Fig. 8, we show C;*
in comparison with C;, as a function of y for a selection of
spiral wave vectors k.

Equation (30) shows that the topological phase diagram is
governed by two dimensionless parameters. One set by ykgé_
providing how C,* approaches C;, away from the interface as
a function of k,, and y, and one set by ykr§, /m describing the
oscillations of C;* about C,, . These length scales arise from
the natural scales of the Green’s function given by Eq. (6).
Indeed, we have 6, = Re(py.+) and §_ = +Im(p, 1), where
Do+ 1s taken at w = 0 and k, = 0 at which it is independent of
o and p, + = pi _. Therefore, 8, sets naturally the oscillatory
behavior in C* and §_ the exponential convergence at longer
distances.

The oscillations of C,* about C,, lead to the interesting
consequence observed in Figs. 6 and 7 that when moving
away from the impurity chain, the topological Hamiltonian
HI‘]JDP(y) changes its topological classification several times

(© ()

ykp =5 ykp =20

2.5 0.0 0.5 1.0 15 2.0 2.5 0.0 0.5 1.0 15 2.0 25

Cm/Al/z Cm/Al/Z

FIG. 7. Pfaffian of the 1D Hamiltonian as a function of magnetic interaction strength C,, for increasing distances y similar to Fig. 6, but for
fixed spiral wave number k,, = k. The interaction strengths are normalized to the critical C,, = C?, = A/ at which the gap closes at k, = 0.
The Pfaffian changes its sign at both the zero at C,, = C,, (indicated by the red circle) and the pole at C,, = C;* (blue square) of Hl“]))p(y).
The circle corresponds to the cut through the solid line and the square to the cut through the dashed line in Fig. 6 at k,, = kr. While C}, is
independent of y, the value of C;* strongly varies with increasing y. At the large y in (d), the overlap of zero and pole is well seen and the
zero eliminates the divergence such that the curve is continuous throughout. This indicates the absence of any topological transition at large

distances even at C,, values at which (a)—(c) show the existence of a topologically nontrivial phase nearer the impurity chain.
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FIG. 8. Plot of the interaction strengths for the zeros C;*(y) (col-
ored, thick curve) and poles C;, (black dashed curve, y independent)
of the Green’s function as a function of y for a range of spiral
wave vectors k,. The C,, axis is normalized to C;,, which depends
on k,. The inset displays the same functions with y normalized to
the dimensionless oscillating scale ykz§, /7 in Eq. (30). The plots
illustrate the generality of the topological strips and the possibility
to enter a nontopological phase remotely from the impurity chain
(within enclosed regions between the colored, thick curves and black
dashed curve).

before settling in the topologically trivial phase. This means
that there are strips near the chain that can be considered as
alternatively trivial and nontrivial, with a width of the strips
set by half of the oscillation scale Ay ~ 7 /kgé,. The univer-
sality of the latter scale is shown by the inset in Fig. 8. We
notice, in particular, that in Fig. 6(c), at k,, < 0.8k, entrance
to the topological phase is triggered by a zero of the Green’s
function rather than a pole. This highlights the fact that it is
possible for strips at particular y # 0 to become nontrivial
before the interface at y = 0 itself does as C,, is tuned and
without any requirements at all on subgap states. This can
be clearly seen in Fig. 8, where there are large regions of
space where C;* < C;;, and which are thus nontrivial at only
a fraction of the magnetic interaction strength required at the
interface. Additionally, there can be multiple k,, points [for
example, around Fig. 6(d) for k,, ~ 0.65kr and ~0.87kp]
where the pole and zero coincide and hence the system is
topologically trivial for any magnetic interaction strength C,,.

We should recall here that the topological Hamiltonians
H l“]’)p (v) are only representative for the topological aspects and
do not allow a one-to-one matching with physical properties.
Nevertheless, they incorporate the natural scales and proper-
ties of the system as they are built from the physical Green’s
function, and as a function of y they have a clear prediction of
alternating strips of topologically trivial and nontrivial regions
of widths set by the natural scales of the system. Taken as real
objects, there would be interfaces between strips of different
topological classification and thus suggest the existence of in-
terface states at these interfaces. Since the interfaces are very
close together, these interface states all overlap and produce a
single wave function with spatial modulation corresponding to
the strip widths that is captured by the Green’s function. Sim-
ilar oscillating patterns appear in many other systems from

scattering at any interface or impurity in the form of Friedel-
type oscillations. Some examples of oscillating densities and
currents in superconductors are found in Refs. [78-83]. Al-
though speculative, it may thus be interesting to see if there
could indeed be an interpretation of such oscillating patterns
that are found through conventional calculations in terms of
the concept of patterns of topologically distinct regions. Such
a study is beyond the scope of the present paper.

On the other hand, the Green’s function is a physical
object that is principally measurable, allowing thus a direct
determination of the topological Hamiltonians. The spatial
dependence of the subgap states near the magnetic chain
can then be used to continuously tune the Hamiltonians and
their topology. Each Hamiltonian is then taken as a real
object that is simulated by the underlying superconducting
system, and the principal topological properties are deter-
mined by the zeros of the Green’s function as a function of
y. As the Green’s function at fixed y =y’ is a slice out of
a higher-dimensional system, it is renormalized by the non-
trivial higher-dimensional structure and thus can incorporate
structural changes that in a bulk system, would require strong
interactions, notably the appearance of its zeros. Through such
an interpretation, the discussion of the topological properties
given above becomes a reality within the simulated model
Hamiltonians.

VI. CONCLUSIONS

In this paper, we investigated the topological properties
of the subgap states appearing in a superconductor through
scattering on a chain of densely packed magnetic impurities
for ferromagnetic or spiral magnetizations. We demonstrated
that it is necessary to go beyond a straightforward topological
classification attempt. To provide such a classification, the
precise form of the Green’s function as derived in Part I of
this work becomes fundamentally important as it allows one
to set up a correct classification method that remains valid for
all scattering strengths V), (or the dimensionless C,,) and all
magnetic spiral wave numbers k.

We showed how the Green’s function provides a precise
prescription of the gap closures at k, =0 and we set up a
family of topological Hamiltonians Hllg’(y) that captures, at
the position y = 0 of the impurity chain, the associated topo-
logical phase transitions at any k,. Through this approach,
we circumvented the difficulties we showed to arise from the
attempt to extract an effective physical Hamiltonian for the
confined subgap states by conventional elimination of the y
degree of freedom. It gave us the additional benefit of obtain-
ing a qualitative prescription of how a topologically nontrivial
physics near the chain transitions to the topologically trivial
regions far from the chain, y — oo, where subgap states are
absent. This transition is necessarily driven by the zeros of the
Green’s function, which at large distances align with the sin-
gularities and, in this way, neutralize any possible topological
phase transition. The oscillations created by the y dependence
of the Green’s function therefore cause a behavior mimicking
the reduction and vanishing of density of states of strongly
correlated bulk systems that can also produce a topological
phase transition. The y dependence simulates such a behavior
and the analysis that is provided shows that it indeed has to
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appear in systems of topologically nontrivial states that are
confined in some topologically trivial background to guar-
antee that the bulk topological phase is recovered at large
distances.

It should be emphasized though that in this case, the ze-
ros in the Green’s function are not a consequence of the
spectral function or wave functions becoming zero. One can
plot spectral functions through the transition and observe no
obvious, sharp change, in contrast to the case of poles of the
Green’s function where there is a discontinuity. Instead, the
zeros are due to a loss of linear dependence in the Green’s
function caused by competition between the magnetic interac-
tion strength and the background superconductor. This results
in an emergent symmetry between states, expressed by the
alignment of a zero with a pole with increasing y, which can be
compared to transitions governed by poles where states move
in frequency space and, by careful tuning, can coincide with
high symmetry points in configuration space. This property
thus assures the fitness of these Hamiltonians for the spatially
dependent topological classification.

Interestingly, the spatial oscillations of the subgap wave
functions can lead to the appearance of multiple strips of
different topological index in the vicinity of the chain. This
may be compared with layers of different materials, but due
to the constructed nature of the topological Hamiltonians, any
physical implications would remain speculative. In addition,
these layers are very narrow, below the superconducting co-
herence length and Fermi wavelength, so that any features
that could arise from interfacing different materials would
be washed out broadly through many layers. Yet there are
situations in which the topology near the impurity chain is
trivial and a nontrivial strip appears only at a distance. This
raises the general question as to whether it could be possible
to design spatial patterns of regions with different topological
properties by interference of such wave functions arising from
an astute placement of magnetic scatterers.

The work presented in this paper is theoretical. No data
were produced, and supporting research data are not required.
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APPENDIX: SUBGAP BANDS FROM SELF-CONSISTENT
NUMERICS

We employ the tight-binding model introduced in Part I for
comparison with the analytical model and validation of the
results. This model is defined through the Hamiltonian

— il il
H=— Z 1¢; 5 Cjo — Z/Lcmcm
(i), io

+ Z[Aici,icm +HC] (A])

The indices i, j run over the sites of a 2D square lattice of size
N, x N, with periodic boundary conditions, and (i, j) denotes
the restriction to nearest neighbors. We write i = (iy, iy) to
access the 2D coordinates of site i. The hopping integral is 7,
the pairing amplitude A, and the chemical potential p. The
operators ¢;, annihilate an electron of spin ¢ on site i, and
czq are the corresponding creation operators.

The interactions with the magnetic impurities have ampli-
tudes V,, (denoted differently from the V,, of the continuum

model) and are expressed through the Hamiltonian

Hy=V Y M-S, (A2)

i=(i,0)

Here, S; = ZU o ag,arc:fgc,-,[,/ are the electron spin operator,
for o the vector of Pauli i‘natrices, and M; are unit vectors that
are either aligned ferromagnetically or wind in a planar spiral
with wave number k,, in the spin (x, y) plane.

For the finite chain in Fig. 5, we consider a system of
size Ny = 600, N, =70 and restrict H,, to values —224 <
iy <225 ati, = 0. The parameters are chosen such that A =
0.1¢, u = —3.6¢, and akp = arccos[(—u — 2t)/(2t)] =~ 0.64.

For the chains with infinite x extension, we partially diag-
onalize the Hamiltonian by performing the Fourier transform
iy — k. For a ferromagnetic alignment (k,, = 0), this is done
directly. For spiral magnetizations with k,,, we choose the spin
axes such that M; rotates in the spin-(x, y) plane so that the
same gauge transformation k, — k, &+ k,, as for the contin-
uum model maps the spiral back to a ferromagnetic alignment.
The periodic boundary conditions along the x directions are
always applied in the gauge-transformed basis. Solutions are
carried out as described further in Part I.

Green’s functions are obtained through the Lehmann rep-
resentation in terms of the eigenfunctions and eigenvalues of
the Hamiltonian, as a function of k,, iy, i;, and . Topologi-
cal invariants are calculated by self-consistent determination
of the full Hamiltonian, followed by the calculation of the
Pfaffian invariant of the 1D topological Hamiltonians obtained
from the inverse of the Green’s function at i, = i, k,=0,and
o = 0 in the same way as for the analytic model described
in Sec. V. We include only the single time-reversal invariant
momentum k, = 0 rather than adding the influence of the
k, = m /a point for better comparison to the continuum model.

In Fig. 4 as well as in the insets of Fig. 6, the system
size is Ny = 51 and N, = 100, and the gap is self-consistently
tuned to A = 0.1¢ for V,, = 0. The self-consistent parameters
so determined are then used as input to the diagonalization of
the Hamiltonian with added magnetic impurity chain with a
variety of V,, and k,, values to determine the phase diagrams.
The insets correspond to phase diagrams at sites (a) i, = 50
(i.e., the center), (b) i, =51, (¢) i, =52, (d) iy =58, and
(e) i, = 81. As akp ~ 0.64, these roughly correspond to the
values for ykr displayed for the continuum phase diagrams.
Note that due to the numerics being on a lattice, (b) is as
close to the interface as possible but is not sufficiently close to
exactly match the behavior seen in the continuum model.
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