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Schwinger boson approach for the dynamical mean-field theory of the Kondo lattice
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We apply the dynamical large-N Schwinger boson technique as an impurity solver for the dynamical mean-
field theory (DMFT) calculations of the Kondo lattice model. Our approach captures the hybridization physics
through the DMFT self-consistency that is missing in the pure Schwinger boson calculations with independent
electron baths. The resulting thermodynamic and transport properties are in qualitative agreement with more
rigorous calculations and give the correct crossover behavior over a wide temperature range from the local
moment regime to the Fermi liquid. Our method may be further extended to combine with the density functional
theory for efficient material calculations.
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I. INTRODUCTION

Heavy fermion systems are typically described by the
Kondo lattice model (KLM), which consists of an array of
localized f moments coupled with background conduction
electrons [1,2]. The localized-to-itinerant transition of the f
electrons underlies many anomalous low-temperature behav-
iors. Various approaches have been exploited to investigate
the mechanism of the transition. Among them, the dynami-
cal mean-field theory (DMFT) [3–5], which maps the lattice
model onto an effective impurity model, provides a simple
yet powerful way to study the Kondo lattice physics [6–10].
In practice, the DMFT impurity solver plays a major role
for its implementation. Each impurity solver has its own
pros and cons. The continuous-time quantum Monte Carlo
(CT-QMC) [11] requires analytic continuation to obtain the
real-frequency information; the numerical renormalization
group (NRG) [12,13] gives the real-frequency spectral func-
tion but is computationally more expensive and difficult to
apply for multiple orbitals. Compared to these exact numerical
approaches, the slave boson representation has high compu-
tational efficiency, but its application with the noncrossing
approximation (NCA) may give unphysical results at low
temperatures [14,15].

Recently, a Schwinger boson representation [16] for the
Kondo model has been developed to describe the local mo-
ment magnetism, but it has not been implemented within the
DMFT framework. Parcollet and Georges first applied it to
analyze the multichannel Kondo impurity model and found
that it preserves the Fermi-liquid nature of the model in the
exactly screened case [17]. Later, Rech et al. applied it to
the two-impurity model and obtained the “Varma-Jones” fixed
point [18]. It has also been extended to the KLM [19–22] and
the Hund’s metal [23] and used to describe the strange metal in
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CeRh6Ge4 [24] and the metallic spin liquid phase in CePdAl
[25]. These successes motivate us to explore the possibility of
its implementation as an impurity solver of DMFT for future
combination with realistic material calculations [26].

In this work we make an attempt to combine the Schwinger
boson impurity solver into the DMFT framework to study the
paramagnetic normal phase of the KLM. Compared with the
Abrikosov fermion representation [27,28], which yields an ar-
tificial phase transition on the mean-field level, the Schwinger
boson approach describes the Kondo physics through an auxil-
iary fermionic holon field and correctly captures the crossover
between the local moment and Fermi-liquid states. Within the
DMFT framework, we find that the self-consistent equations
bring in the lattice influence on the conduction electron bath,
causing a pseudogap structure of the t matrix that is lacking
in the direct treatment of the KLM with independent bath
approximation [21]. Our calculations of the thermodynamic
and transport properties also reproduce the desired properties
qualitatively. Our method may be further extended to clusters
[29] to investigate the magnetic transition and quantum criti-
cality for the KLM.

II. METHOD

We start with the Kondo lattice model,

H =
∑
kαν

εkc†
kανckαν + JK

∑
i

Si · si, (1)

where c†
kαν is the creation operator of a conduction electron

with momentum k, channel index ν ∈ [1, K], and spin in-
dex α ∈ [1, N], si is its spin operator, Si is that of the local
spins, and JK is their Kondo coupling. Our Schwinger boson
approach enlarges the SU(2) group to the SU(N) group and
represents the local spins as Si,αα′ = b†

iαbiα′ − δαα′ 2S
N , in which

b†
iα creates a bosonic spinon at site i with spin index α. A

constraint is then imposed to ensure the physical subspace
on the local sites, nb(i) ≡ ∑

α b†
iαbiα = 2S, which may be
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implemented by introducing a Lagrange multiplier on each
site,

∑
i λi(nb(i) − 2S). There are three distinct regimes de-

pending on the ratio of 2S/K : the underscreened (2S/K > 1),
overscreened (2S/K < 1), and exactly screened (2S/K = 1)
[17]. In this work we focus only on the exactly screened case,
2S = K , and fix the ratio κ = 2S/N that measures the quan-
tum zero-point fluctuations [30] and may become important if
nonlocal spatial correlations are considered [22].

Under the DMFT framework, the SU(N) KLM is mapped
to an effective Kondo impurity model with the action

Seff = −
∫ β

0
dτdτ ′ ∑

αν

ψ†
αν (τ )G−1

0 (τ − τ ′)ψαν (τ ′)

+
∫ β

0
dτ

[∑
α

b†
α (τ )(∂τ + λ)bα (τ ) − 2Sλ

]

+ JK

N

∑
αα′ν

∫ β

0
dτψ

†
α′ν (τ )ψαν (τ )b†

α (τ )bα′ (τ ), (2)

where G−1
0 (τ − τ ′) plays the role of the effective Weiss field,

and ψ†
αν ≡ 1√

Ns

∑
k c†

kαν . Ns is the number of the lattice sites.
The local Green’s function and self-energy of conduction
electrons satisfy the self-consistent equations:

Gαν
c (z) =

∫
D(ε)dε

z + μ − ε − �αν
c (z)

, (3)

�αν
c (z) = G−1

0 (z) − Gαν
c (z)−1, (4)

where Gαν
c (z) is the full local Green’s function of conduc-

tion electrons on the lattice but also equal to that of the
effective impurity model within the DMFT approximation,
μ is the chemical potential, and D(ε) is the bare density of
states (DOS). For the square lattice, we use the dispersion
εk = −t (cos kx + cos ky) with t set to unity.

To apply the dynamical large-N Schwinger boson approach
as the impurity solver, we decouple the Kondo term using the
Hubbard-Stratonovich transformation:

JK

N

∑
ναα′

ψ
†
α′νψανb†

αbα′ →
∑
να

[
1√
N

(b†
αψαν )χν

+ 1√
N

χ†
ν (ψ†

ανbα )

]
+

∑
ν

χ†
ν χν

JK
, (5)

where χν is an auxiliary Grassmann field representing a
charged and spinless holon. The vertex (b†

αψαν )χν then yields
an interaction between spinons, holons, and conduction elec-
trons, causing their nontrivial dynamics. A set of self-energy
equations can be derived using the generalized Luttinger-
Ward functional �[Gc, Gχ , Gb]: �αν

c (τ ) = δ�
δGαν

c (−τ ) , �
ν
χ (τ ) =

δ�
δGν

χ (−τ ) , and �α
b (τ ) = − δ�

δGα
b (−τ ) , where the plus (minus) sign

before the differential indicates fermionic (bosonic) fields. In
principle, � is the sum of all closed-loop two-particle irre-
ducible skeleton Feynman diagrams [31]. But in the large-N
limit, only the leading-order diagram is retained, giving

�[Gc, Gχ , Gb] = 1

N

∑
αν

∫ β

0
Gαν

c (τ )Gα
b (−τ )Gν

χ (τ )dτ. (6)

We have immediately

�αν
c (τ ) = 1

N
Gα

b (τ )Gν
χ (−τ ), (7)

�ν
χ (τ ) = 1

N

∑
α

Gαν
c (−τ )Gα

b (τ ), (8)

�α
b (τ ) = − 1

N

∑
ν

Gαν
c (τ )Gν

χ (τ ). (9)

The spinon and holon Green’s functions (in frequency) are

Gα
b (z) = 1

z − λ − �α
b (z)

, (10)

Gν
χ (z) = 1

−1/JK − �ν
χ (z)

, (11)

where λ is a real constant in the saddle-point approximation
and will be tuned to satisfy the Schwinger boson constraint
〈nb〉 = 2S.

The whole DMFT self-consistent procedures involve:
(1) Setting initial self-energies �αν

c , �α
b , �ν

χ to zero,
(2) Calculating Gαν

c via Eq. (3),
(3) Solving the effective impurity model:

(a) Using Eq. (11) to calculate Gν
χ ,

(b) Using Eq. (10) and the Schwinger boson constraint
〈nb〉 = 2S to calculate λ and Gα

b ,
(c) Using Eqs. (8) and (9) to update �ν

χ and �α
b ,

(d) Repeating (a–c) until convergence,
(4) Using Eq. (7) to update �αν

c ,
(5) Repeating (2–4) until convergence.
The above equations can also be written in real frequency

and solved self-consistently (z → ω + i0+). In the following
we drop all the spin/channel indices for simplicity due to the
symmetry.

III. RESULTS AND DISCUSSION

Figure 1(a) shows the color plot of the conduction elec-
trons’ spectral function on a square lattice, ρc(k, ω) =
−Im[1/(ω − εk + μ − �c(ω))]/π , at the Fermi energy for
three typical temperatures corresponding to the high-
temperature limit, the Kondo temperature, and the Fermi-
liquid temperature, respectively. The white regions give the
maximum of the spectral function and thus reflect the elec-
tron Fermi surface enclosing the area of negative Ek = εk +
Re�c(0) [31]. Interestingly, although there is no explicit hy-
bridization field and f electron bands, we still see a gradual
increase of the electron Fermi surface as the temperature
decreases. Indeed, as shown in Fig. 1(b), a hybridization gap
opens on the electron dispersion. It already emerges above the
Kondo temperature but only becomes fully opened at lower
temperatures, in agreement with the angle-resolved photoelec-
tron spectroscopy (ARPES) measurement on CeCoIn5 [32,33]
and the suggested two-stage process by exact determinant
quantum Monte Carlo simulations [34] and the pump-probe
experiment in CeCoIn5 [35]. Correspondingly, a pseudogap
structure is seen in Fig. 1(c) to develop in the local density of
states ρc(ω) = −ImGc(ω)/π , slightly above the Fermi level,
as also obtained by NRG [6,36]. More results on the influence
of other parameters are given in Appendix A.
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FIG. 1. Temperature evolution of (a) the Fermi surface, (b) the
spectral function along the high symmetry path, and (c) the local
density of states of conduction electrons. The inset highlights the
pseudogap structure around the Fermi energy. The temperatures are
chosen to be T/t = 1.0, 0.0624, 0.01, corresponding to the high
temperature limit, the Kondo temperature, and the Fermi-liquid tem-
perature, respectively. Other parameters are JK = 1, μ = 0, K = 2
and N = 8.

The hybridization physics is associated with a “Kondo
resonance peak” in the electron’s self-energy �c, as plotted in
Fig. 2(a). Although �c is of the order of 1/N and thus disap-
pears in the infinite-N limit, it is essential for the appearance
of the hybridization gap in the dispersion. At lower tempera-
tures, a gap emerges in Im�c at the Fermi energy, signifying
that the system enters the Fermi-liquid state [18]. The gap
is, however, artificial. Within the Landau Fermi-liquid theory,
the imaginary part of �c is supposed to have a quadratic
frequency dependence rather than a gap near the Fermi energy.
How one can recover the quadratic frequency dependence is
an open question in the Schwinger boson approach.

Our DMFT results are somewhat different from pure
Schwinger boson calculations for the KLM. This is seen
in the t matrix of conduction electrons, which reflects the
electron scattering off Kondo impurities and may be viewed
as a correspondence of the f -electron spectral function in
the Anderson lattice/impurity model [6,7]. By definition,
we have Gc(k, ω) = Gc0(k, ω) + Gc0(k, ω)t (k, ω)Gc0(k, ω),
where Gc0(k, ω) is the bare Green’s function of conduc-
tion electrons on the lattice and Gc(k, ω) = [Gc0(k, ω)−1 −
�c(ω)]−1 is the k-dependent full Green’s function. The t
matrix is then associated with the local self-energy, t (k, ω) ≡
�c(ω) + Gc(k, ω)�2

c (ω), so that the k-averaged local t matrix
is given by

t (ω) ≡ 1

Ns

∑
k

t (k, ω) = �c(ω) + Gc(ω)�2
c (ω). (12)

FIG. 2. Temperature dependence of (a) the electron’s self-
energies, (b) the local t-matrix, (c) the holon phase shift, and (d) the
spinon’s spectral function. The Kondo temperature and the Fermi-
liquid temperature marked in (c) and (d) are determined from the
holon phase shift. The parameters are the same as in Fig. 1.

Thus within the Schwinger boson approach the local t matrix
can only be obtained at finite N [37,38]. Figure 2(b) plots
its temperature dependence, where we find a double-peak
structure that is missing in the pure Schwinger boson calcu-
lations for the KLM with independent electron baths [21].
This structure is the fingerprint of the hybridization physics
[39,40] and differs from the single resonance peak in the
impurity model (Appendix B) [37]. It arises from the sec-
ond term of Eq. (12) and thus contains information from the
lattice through DMFT self-consistency. At high temperatures
(T 	 TK), the hybridization is weak so that the first term
dominates and gives a single peak in the t matrix. Below TK,
the lattice effect becomes pronounced and the second term
gradually increases, causing the pseudogap above the Fermi
level in Fig. 2(b).

It should be noted that the particle-hole symmetry is miss-
ing in the SU(N) Schwinger boson formalism of the Kondo
lattice model even for μ = 0 [41–43]. Rather, a pseudogap
emerges above the Fermi level, reflecting the hybridization
physics at low temperatures. In the large-N model with
N > 2 spin flavors, the particle-hole transformation of con-
duction electrons, ψiα → ηiψ

†
iα , where ηi = 1(−1) on the

A(B) sublattice, requires a simultaneous transformation of
local spins, Si → −Si, to keep the Kondo Hamiltonian un-
changed. For fermionic representation, this can be achieved
by the particle-hole transformation of pseudofermions, but for
the SU(N) Schwinger boson representation, one cannot find
such a transformation under the Schwinger boson constraint
for N > 2.

Two basic temperature scales, the Kondo temperature TK

and the Fermi-liquid temperature TFL, can be identified from
the holon phase shift calculated for the effective impurity
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FIG. 3. Temperature evolution of (a) the static local magnetic
susceptibility and (b) its inverse, (c) the specific heat coefficients
C/NT , and (d) the resistivity ρ(T ), for κ = 0.25 and N = 4, 8, 12.
The arrows indicate the Kondo temperature and the Fermi-liquid
temperature. The dashed line in (b) is a fit to the Curie-Weiss law. The
inset of (c) shows the entropy and its three components for N = 8.
The inset of (d) gives the log-plot of the resistivity vs t/T for N = 8,
showing artificial activation behavior (dashed line) due to spinon and
holon gaps below the Fermi-liquid temperature.

model using

δχ = −Im ln[1/J∗
K + i�′′

χ (0)], (13)

where we have defined an effective Kondo coupling through
1/J∗

K ≡ 1/JK + Re�χ (0) [31]. At TK, J∗
K changes sign and,

correspondingly, the holon phase shift is equal to π/2. At TFL,
J∗

K < 0 and the imaginary part of �χ is gapped, so the holon
phase shift saturates to π . Figure 2(c) plots the holon phase
shift as a function of temperature, where the two tempera-
tures are indicated. The temperature-dependent evolution of
spinon density of states ρb(ω) = − 1

π
ImGb(ω) is also shown

in Fig. 2(d) for comparison. We see also the formation of a gap
below TFL, indicating the spinon confinement and full Kondo
screening.

Within the DMFT and Schwinger boson framework, we
may also calculate the temperature dependence of thermo-
dynamic and transport properties. To avoid the influence of
van Hove singularities, we assume in the following the hy-
percubic D(ε) = exp(−ε2/2t2)/

√
2πt2 with t = 1. The static

local magnetic susceptibility χloc(T ) of the effective impurity
model is given by

χloc(T )

N
=

∫
dω

π
nb(ω)Im

[
G2

b(ω)
]
. (14)

The results are plotted in Fig. 3(a) and their inverse in
Fig. 3(b). We see the typical Curie-Weiss behavior above TK

followed by a broad peak at lower temperatures. The deviation

reflects the effect of the Kondo screening. Below TFL, χloc(T )
exhibits the typical Pauli susceptibility in the Fermi-liquid
state.

The entropy S contains three components, S/N = Sc +
Sb + Sχ , with

Sc = − K

Ns

∑
k

∫
dω

π

∂n f

∂T

[
Im ln

(Gc0

Gc

)
+ G′

c�
′′
c

]
,

Sb = −
∫

dω

π

∂nb

∂T

[
Im ln(−G−1

b ) + G′
b�

′′
b

]
,

Sχ = −κ

∫
dω

π

∂n f

∂T

[
Im ln(−G−1

χ ) + G′
χ�′′

χ

]
, (15)

where n f /b is the Fermi/Bose distribution function. The spe-
cific heat coefficient is given by C/T = dS/dT and plotted
in Fig. 3(c). Above TK, the local moments are free and
the entropy (inset) approaches its high-temperature value
Shigh-T/N = (1 + κ ) ln(1 + κ ) − κ ln(κ ) = 0.625. Below TK,
the local moments are gradually screened; C/NT increases
rapidly with lowering temperature and then exhibits a broad
“Schottky” peak. In the Fermi-liquid state, spinons and holons
are both confined and we find a constant specific heat coeffi-
cient as is expected for a Landau Fermi liquid.

The resistivity ρ(T ) may also be calculated using the linear
response theory,

ρ(T ) = 1

NK

[
π

∫
dεdωD(ε)ρ2

c (ε, ω)

(
−dn f

dω

)]−1

. (16)

A logarithmic temperature dependence is also seen for the
resistivity in Fig. 3(d), reflecting incoherence Kondo scat-
tering above TK. Below TK, the resistivity starts to exhibit
metallic behavior. The broad maximum thus corresponds to
the coherence peak as seen in typical heavy fermion metals
[33]. It should be noted that the Schwinger boson approach
cannot produce the correct Fermi-liquid behavior with T 2

dependence. As shown in the inset of Fig. 3(d), an artificial
activation behavior appears due to finite spinon and holon
gaps below the Fermi-liquid temperature. Hence, higher-order
diagrams of �c are needed in order to recover the correct
T 2 scaling in the resistivity [21,37]. Other than that, our re-
sults are in qualitative agreement with the expectation from
more rigorous calculations, establishing the validity of the
Schwinger boson approach as a potentially useful impurity
solver for DMFT.

IV. CONCLUSION

To summarize, we have applied the large-N Schwinger bo-
son approach as an impurity solver for the DMFT calculations
of the KLM. Our method can work on the real-frequency axis
and give qualitatively correct results over a wide range of
temperature. It yields the hybridization physics from nonva-
nishing conduction electron self-energies and the pesudogap
structure in the t matrix from DMFT self-consistency. The
resulting thermodynamic and transport properties provide a
good description of the crossover from the local moment to
Fermi-liquid regimes. Take together, we expect that it may be
further extended to cluster DMFT or multiorbital models and
eventually combine with the density functional theory as an
alternative efficient method for real material calculations.
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FIG. 4. The Fermi surface and spectral function along the high-symmetry path for (a) μ = −0.2 and (b) μ = 0.2. The temperatures are
T/t = 0.035, 0.007 for (a) and T/t = 0.07, 0.011 for (b), corresponding to their respective Kondo and the Fermi-liquid temperatures. Other
parameters are JK = 1, K = 2, and N = 8.
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APPENDIX A: INFLUENCE OF OTHER PARAMETERS

We provide here more data on the influence of the values
of N , μ, and 2S. Figure 4 compares the results for different
chemical potentials, μ = ±0.2, at their respective Kondo and
Fermi-liquid temperatures. We find both TK and TFL decrease

with lowering μ or nc, in agreement with previous calculations
based on the slave boson approach [44] and NRG [36].

Figure 5 compares the Fermi surface and spectral function
for N = 4 and 12 at their respective Kondo and Fermi-
liquid temperatures. Both the hybridization gap and the Fermi
surface expansion at low temperatures are qualitatively un-
changed. However, the volume of the Fermi surface vFs

shrinks as N increases because of the Luttinger sum rule [31]:

vFs

(2π )d
=

∑
kαν c†

kανckαν

NK
+ 1

N
= nc + 1

N
, (A1)

where nc is the density of conduction electrons. In the Fermi-
liquid state, the volume is expanded by the size of 1/N for
each of the NK-fold degenerate bands to incorporate a local
spin of the size 2S = K .

FIG. 5. The Fermi surface and spectral function along the high-symmetry path for (a) N = 4 and T/t = 0.052, 0.009; (b) N = 12 and
T/t = 0.066, 0.011. The temperatures are chosen according to their respective Kondo and Fermi-liquid temperatures. Other parameters are
κ = 0.25, JK = 1, and μ = 0.
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FIG. 6. Comparison of (a) the local density of states of conduc-
tion electrons and (b) the inverse local magnetic susceptibility for
2S = 2, 4, 6. The arrows in (b) mark the respective Kondo tempera-
ture. Other parameters are JK = 1, μ = 0, and N = 8.

Figure 6(a) shows the influence of 2S on the conduction
electrons’ local density of states. The pseudogap always exists
but its location, which is primarily associated with the Kondo
temperature TK [21], moves slightly towards the Fermi energy
with increasing 2S. This reflects the reduction of TK for large
spin size, where the local spin behaves more like a classical
spin, as also marked in Fig. 6(b) by the deviation of the in-
verse local magnetic susceptibility from the high-temperature
Curie-Weiss law.

APPENDIX B: COMPARISON OF KONDO LATTICE
AND KONDO IMPURITY MODELS

Here we provide a detailed comparison between the Kondo
impurity model and our results on the Kondo lattice model.
Figures 7(a) and 7(b) compare their local susceptibility and
specific heat, where conduction electron contributions have
been subtracted. No significant differences are seen since
both are governed by local properties. This may explain
why the single-impurity model has often been used in ex-
perimental literatures for fitting the data on a Kondo lattice
compound.

FIG. 7. Comparison of (a) the local magnetic susceptibility,
(b) the specific heat, (c) the local t matrix, and (d) the resistivity for
the Kondo lattice model (solid line) and the Kondo impurity model
(dashed line). The parameters are JK = 1, K = 2, and N = 8 for both
models.

On the other hand, qualitative distinctions can be clearly
seen in Fig. 7(c) for the local t matrix and Fig. 7(d) for the
resistivity. The t matrix may be tentatively associated with the
f -electron spectral function in the Anderson model. We see
that it develops a single peak for the Kondo impurity model
but a double-peak structure for the Kondo lattice model. The
former manifests the Kondo resonance in the impurity model,
while the latter reflects the hybridization physics in the lattice.
At low temperatures, the resistivity saturates for the impurity
model but decreases to nearly zero for the lattice, implying a
fundamental distinction between two models, namely, unitary
scattering for fully screened Kondo impurity and the develop-
ment of a coherent heavy electron state in the Kondo lattice.
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