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The optical conductivity contains information about energy absorption and the underlying physical processes.
In finite-dimensional systems, vertex corrections to the bare bubble need to be considered, which is a compu-
tationally challenging task. Recent numerical studies showed that in the weak-coupling limit, near an ordering
instability with wave-vector π , the vertical ladder describing particle-hole pairs interacting via the exchange of
this wave vector becomes the dominant vertex correction. The corresponding Maki-Thompson-like diagram has
been dubbed π -ton. Here we add the π -ton ladder vertex correction to dynamical mean-field theory estimates of
the optical conductivity. By performing calculations on the Kadanoff-Baym contour, we reveal the characteristic
spectral signatures of the π -tons and their evolution under nonequilibrium conditions. We consider interaction
quenches of the weakly correlated Hubbard model near the antiferromagnetic phase boundary and analyze the
evolution of the Drude and π -ton features. While the bubble contribution to the optical conductivity is found
to thermalize rapidly, after some oscillations with frequencies related to the local spectral function, the π -ton
contribution exhibits a slower evolution. We link this observation to the prethermalization phenomenon which
has been previously studied in weakly interacting, quenched Hubbard models.
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I. INTRODUCTION

Computing the electronic structure and transport properties
of nonequilibrium correlated electron systems is a challenging
task. In low-dimensional lattice systems, one-particle quanti-
ties such as the spectral function or self-energy are influenced
by two-particle correlation functions. This is especially the
case close to ordering instabilities where irreducible vertices
depend strongly on momentum, and nonlocal correlations
need to be taken into account [1,2]. For example, low-energy
spin and charge correlations can leave clear signatures in the
electronic quasiparticle spectra [1,3,4], and the optical con-
ductivity and related susceptibilities are strongly modified by
vertex corrections to the leading particle-hole contribution.

Recent investigations [5–7] in Hubbard-type models have
shown that in the vicinity of a charge-density wave or
antiferromagnetic (AFM) instability, the dominant vertex
corrections in transport quantities, such as the longitudinal op-
tical conductivity, stem from a vertical ladder that exchanges
momentum k − k′ � (π, π, · · · ) ≡ kπ [8]. This vertical lad-
der vertex correction, dubbed π -ton [5], describes physical
processes in which a particle-hole pair creates another
particle-hole pair at wave-vector kπ , and these interact with
each other until recombination occurs. Since π -tons are spec-
tral features that grow significantly as the system approaches
the ordering instability [5–7], they allow to track the relevant
correlations in the precursor state to the ordered phase, and
it is thus interesting to also study these features in out-of-
equilibrium situations. Nonthermal transient enhancements
of the spin susceptibility [9] or pairing susceptibility [10]

have been previously discussed in theoretical works that
considered interaction quenches starting from the disordered
phase. In the weak-coupling regime, such quench dynamics
can be influenced by trapping phenomena [11,12] related to
prethermalization [13] or nonthermal fixed points [14,15].
Experimentally, interaction quenches can be realized in cold-
atom systems, where the AFM phase of the Fermi-Hubbard
model has recently been accessed [16]. In these systems, spin
correlations can be detected directly by means of quantum gas
microscopy [16,17].

In Ref. [7], it was demonstrated that the π -ton type vertex
corrections to the spin susceptibility and optical conductivity
of the half-filled Hubbard model can be qualitatively captured
by a postprocessing analysis of dynamical mean-field theory
(DMFT) [18] data. This random-phase-approximation (RPA)
π -ton approach is expected to work at weak coupling and
near the ordering instability, where the single-ladder vertex
correction is dominant [7]. The latter study, however, only
considered systems in equilibrium using a Matsubara formal-
ism. To more clearly reveal the π -ton signatures in the optical
conductivity and in related susceptibilities and to study the
evolution of these spectral features under nonequilibrium con-
ditions, we evaluate here the correlation functions and spectra
using real-time simulations based on the NESSi library [19].

We will use the real-time formalism to analyze the π -ton
and Drude response during and after interaction ramps and in-
teraction quenches in the vicinity of the antiferromagnetically
ordered phase of the half-filled, weakly interacting Hubbard
model. This investigation reveals significantly different time
scales for the relaxation, prethermalization and thermalization
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FIG. 1. Illustration of the Kadanoff-Baym contour. This contour
starts off at time t0 and goes to some time tmax, returns to t0, and
then extends along the imaginary-time axis to t0 − iβ, where β is
the inverse temperature of the initial equilibrium state. The arrows
indicate the contour ordering.

of the Drude peak and the spectral feature associated with the
π -ton.

The paper is structured as follows. The Hubbard model
and method employed to solve the nonequilibrium DMFT
equations are presented in Sec. II. In Sec. II C we present the
formulas for the RPA ladder-type π -ton vertex corrections.
The nonequilibrium diagrammatic results for the half-filled
Hubbard model are presented in Sec. III. The discussion and
conclusions can be found in Secs. IV and V, respectively.

II. MODEL AND METHOD

A. Hubbard model

We consider a single-band Hubbard model on a D-
dimensional hypercubic lattice with a time-dependent inter-
action parameter

Ĥ(t ) = − thop

∑
〈i, j〉,σ

(ĉ†
i,σ ĉ j,σ + H.c.) + U (t )

∑
i

n̂i,↑n̂i,↓

− μ
∑

i

(n̂i,↑ + n̂i,↓). (1)

Here thop is the nearest-neighbor hopping amplitude, 〈i, j〉
denotes nearest-neighbor pairs, σ ∈ {↑,↓} denotes the spin,
and ĉ(†)

i,σ the annihilation (creation) operators for site i. Fur-

thermore, n̂iσ = ĉ†
i,σ ĉi,σ is the number operator, U (t ) is the

time-dependent local Hubbard repulsion, and μ is the chem-
ical potential. We use thop as the unit of energy and h̄/thop as
the unit of time. We set h̄, kB, the electric charge e, and the
lattice spacings a equal to unity. All calculations will be for
half-filled systems with μ = U/2.

B. Nonequilibrium DMFT

1. General formalism

Nonequilibrium DMFT is an implementation of the DMFT
equations on the Kadanoff-Baym contour C (see Fig. 1)
[20,21]. DMFT is based on the assumption of a local self-
energy, which becomes exact in infinite-dimensional lattices
[22–24]. Even in low dimensions (including the D = 1 case
considered below) DMFT yields a solution that is character-
istic of high-dimensional lattices. In particular, it produces an
equilibrium phase diagram with a nonzero Néel temperature
for U > 0 and half filling. We will study the nonequilibrium

properties of π -ton type vertex corrections for interaction
ramps and quenches in the vicinity of this ordering transition
by adapting the formalism introduced in Ref. [7].

In DMFT, the lattice model is self-consistently mapped
onto a single-site impurity model, where upon convergence
the time-dependent hybridization function represents the ef-
fects of the lattice environment [18]. The action of the
nonequilibrium impurity problem can be written as

S[�] = −
∫
C

dz Ĥloc(z)

−
∫
C

dz
∫
C

dz′ ∑
σ

ĉ†
σ (z)�σ (z, z′)ĉσ (z′), (2)

where Ĥloc is the same local term as in the lattice model,
ĉ(†)
σ annihilates (creates) an electron with spin σ on the

impurity, and z ∈ C ≡ C1 ⊕ C2 ⊕ C3. The hybridization func-
tion is denoted by �σ (z, z′), and the integral is over the
Kadanoff-Baym contour C, which is represented in Fig. 1
with the forward real-time branch C1, the backward real-time
branch C2, and the vertical imaginary-time branch C3. With the
nonequilibrium action (2), one can define the nonequilibrium
impurity Green’s function

Gσ (z, z′) = −iTr[TCeiS[�]ĉσ (z)ĉ†
σ (z′)]/Z, (3)

where TC is the time-ordering operator defined on the
Kadanoff-Baym contour (following the arrows in Fig. 1) and
Z is the partition function Z = Tr[TCeiS[�]]. The Green’s
function (3) and all objects defined on the Kadanoff-Baym
contour can be represented in a matrix form consisting of a
3 × 3 matrix holding all the combinations of the three compo-
nents composing C:

Gσ (z, z′) =

⎛
⎜⎝
Gσ

11(z, z′) Gσ
12(z, z′) Gσ

13(z, z′)

Gσ
21(z, z′) Gσ

22(z, z′) Gσ
23(z, z′)

Gσ
31(z, z′) Gσ

32(z, z′) Gσ
33(z, z′)

⎞
⎟⎠. (4)

Here Gσ
αβ means that the annihilation operator is on branch

Cα and the creation operator is on Cβ . To represent the matrix
objects, we make use of the underline bar as on the left-hand
side of Eq. (4). However, not all elements of Eq. (4) are
independent and four elements are sufficient to reconstruct
the matrix. We choose the retarded, lesser, left-mixing, and
Matsubara components [20,25],

GR,σ (t, t ′) = 1
2

(
Gσ

11 + Gσ
21 − Gσ

12 − Gσ
22

)
= −i�(t − t ′)

〈{
ĉσ (t ), ĉ†

σ (t ′)
}〉

,

G<,σ (t, t ′) = Gσ
12 = i〈ĉ†

σ (t ′)ĉσ (t )〉,
G�,σ (τ, t ′) = 1

2

(
Gσ

31 + Gσ
32

) = −i〈ĉσ (τ )ĉ†
σ (t ′)〉,

GM,σ (τ, τ ′) = −iGσ
33 = −〈Tτ ĉσ (τ )ĉ†

σ (τ ′)〉. (5)

Real times will be denoted by latin letters t ∈ C1 ∪ C2, and
imaginary time by Greek letters τ ∈ C3 (see Fig. 1).

Similarly as in Ref. [7], the impurity Green’s function will
be computed using the iterated perturbation theory [15,26]
(IPT) method adapted to the nonequilibrium formalism (see
Sec. II B 3). The longitudinal optical conductivity and its
vertex corrections are computed using the RPA postprocessing
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method described in Ref. [7]. The corresponding nonequilib-
rium equations are presented in Sec. II C.

2. Paramagnetic self-consistency

The self-consistency condition demands that the impurity
Green’s function Gσ (z, z′) is identical to the local lattice
Green’s function Gσ

loc(z, z′). This self-consistency condition
implicitly fixes the hybridization function �σ (z, z′) which is
needed in the impurity action Eq. (2). This hybridization func-
tion plays the role of a dynamical mean field. Alternatively,
one can define a so-called Weiss Green’s function Gσ

0 , which
is related to the hybridization function by [18]

[i∂z + μ]Gσ
0 (z, z′) −

∫
C

dz̄ �σ (z, z̄)Gσ
0 (z̄, z′) = δC (z, z′),

(6)

where δC (z, z′) represents the delta function on the Kadanoff-
Baym contour. The impurity Dyson equation links the Weiss
Green’s function Gσ

0 , the impurity Green’s function Gσ , and
the impurity self-energy �σ :

Gσ (z, z′)=Gσ
0 (z, z′)+

∫
C

dz̄
∫
C

dz̄′Gσ
0 (z, z̄)�σ (z̄, z̄′)Gσ (z̄′, z′).

(7)

In nonequilibrium DMFT, the lattice self-energy is set equal
to the local impurity self-energy, �σ

i j (z, z′) = �σ (z, z′)δi j ,
which is an approximation in finite-dimensional systems [24].
Both �σ [Gσ

0 ] and �σ [Gσ ] will be computed using the impu-
rity solvers described in Sec. II B 3.

With the DMFT approximation on the self-energy, the
Dyson equation for the lattice Green’s function Gσ

k can be
written as

[i∂z + μ − ε(k)]Gσ
k (z, z′) −

∫
C

dz̄ �σ (z, z̄)Gσ
k (z̄, z′)

= δC (z, z′), (8)

where ε(k) is the bare electronic dispersion. Reshuffling
Eq. (7) and substituting the impurity Gσ by the k-averaged
lattice Green’s function Gσ

loc, one can obtain the following
Volterra integral equation,∫

C
dz̄ Gσ

0 (z, z̄)[δC (z̄, z′) + F σ (z̄, z′)] = Gσ
loc(z, z′), (9)

where F σ (z̄, z′) ≡ ∫
C dz̄′ �σ (z̄, z̄′)Gσ

loc(z̄′, z′). Equations (8)
and (9) form, along with the IPT expression for the impu-
rity self-energy, a closed set of equations that determine Gσ

0
[15,27]. We can directly insert the IPT self-energy into Eq. (8)
and the impurity Dyson equation and iterate the solution until
convergence. To solve the Dyson equations (7), (8) and the
Volterra integral equation (9), the NESSi package is used [19].
For the paramagnetic (PM) solution, we impose �↑ = �↓ and
similarly for Gσ and �σ .

3. IPT solver

Since we work in the weak-coupling regime (U �
bandwidth/2), we use IPT as an impurity solver. IPT is a
second-order perturbation theory for the Anderson impurity

FIG. 2. Illustration of the single-ladder vertex correction to the
susceptibilities. All diagrams sharing this topology are summed up
in Eq. (11). To obtain the conductivity χ ji ji , the vertices A and B are
both set equal to the velocity vi.

model [15,26,28]. In the “bare IPT” formalism, the self-
energy is approximated as

�σ
[
Gσ

0

]
(z, z′) = U (z)U (z′)Gσ

0 (z, z′)G−σ
0 (z, z′)G−σ

0 (z′, z),
(10)

and hence is a functional of the Weiss Green’s function de-
fined in Eq. (6). The interaction U (z) is a function on the
contour C that relates to U (t ) in Eq. (1) in the following way:
On C3 its value is U (z ∈ C3) = U (t = 0−), namely, the inter-
action of the initial equilibrium state, whereas on the real-time
branches C1 and C2, it corresponds to U (z ∈ C1 ⊕ C2) = U (t ),
where t � 0 is the time associated with z. Note that at half
filling, by choosing μ = U/2, the Hartree term vanishes in
the PM state.

Alternatively, one can define a “bold IPT,” where Gσ
0 is

replaced by the dressed impurity Green’s function Gσ in
Eq. (10). This replacement does not severely affect the results
for U � bandwith/2, but it yields a conserving approxima-
tion, which means that the total energy after a perturbation is
conserved under time evolution [27].

C. Susceptibilities

On the Kadanoff-Baym contour, the general expression for
the single-ladder vertex corrections to the longitudinal optical
conductivity, illustrated in Fig. 2, can be computed from

χσ,−σ

sl, ji ji
(q; z, z′)

= −
∫ π

−π

dDk̃

(2π )D

∫ π

−π

dDk̄

(2π )D

∫
C

dz̄
∫
C

dz̄′vi(k̃)vi(k̄)

× Gσ

k̃ (z, z̄)Gσ

k̃−q(z̄′, z)�σ,−σ

k̃−k̄
(z̄, z̄′)G−σ

k̄
(z̄, z′)G−σ

k̄−q
(z′, z̄′),

(11)

by multiplying at times z and z′ with the velocities vi(k) =
∂kiε(k) [7]. Here the subscript i specifies a Cartesian axis of
the D-dimensional real space. The box “�” represents the
vertical ladder vertex corrections and will be detailed below.
Using Eqs. (4) and (5), as well as the Langreth rules [25],
the nine components of the χ

sl
matrix can be written down

and numerically evaluated. In the following, we only consider
the case where q = 0 (optical excitations with low-energy
photons), and we only need the lesser and greater components
denoted as χ<

sl and χ>
sl , respectively. Therefore we calculate

the solution for variables z and z′ on the real-time branches C1

and C2 (for details, see Appendix A).
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The vertical ladder denoted by “�” is the solution of
a singular Volterra integral equation that needs to be ob-
tained before attaching the four outer Green’s functions as in
Eq. (11). It can be decomposed into the terms �δ (z)δC (z, z′) +
�<(z, z′)θC (z′, z) + �>(z, z′)θC (z, z′), where �δ (z) = U (z)
and θC (z, z′) is the Heaviside function on C.

The integral equation for the ladder reads

�σ,−σ

k̃−k̄
(z, z′) = U (z)δC (z, z′) − U (z)

∫ π

−π

dDk

(2π )D

∫
C

dz̄

× Gσ
k (z, z̄)G−σ

k−k̃+k̄
(z̄, z)�σ,−σ

k̃−k̄
(z̄, z′), (12)

or, after some reshuffling,∫
C

dz̄

[
δC (z, z̄) + U (z)

∫ π

−π

dDk

(2π )D
Gσ

k (z, z̄)G−σ

k−k̃+k̄
(z̄, z)

]

× �σ,−σ

k̃−k̄
(z̄, z′) = U (z)δC (z, z′). (13)

The total longitudinal optical conductivity χ
ji jiq

(z, z′) is
obtained by adding the single-ladder correction (11) (with
velocity factors) to the bare bubble

χ0
ji jiq

(z, z′)=−2
∫ π

−π

dDk

(2π )D
vi(k)vi(k+q)Gk(z, z′)Gk+q(z′, z),

(14)

namely, χ
ji jiq

= χ0
ji jiq

+ χ
sl, ji jiq

. In Eq. (14), the factor of 2
comes from the trace over the spin degrees of freedom. In the
rest of the paper, we do not explicitly write the spin index.

III. RESULTS

A. General remarks

We compute the longitudinal optical conductivity for
the weakly interacting half-filled one-band Hubbard model
Eq. (1) in dimension D = 1 using the DMFT Green’s func-
tions obtained with nonequilibrium IPT. Since we are limited
in memory, we approximate the k integrals in Eqs. (11)–(13)
by a Riemann sum over 34 k points. With this number of
k points, measured quantities are converged in the param-
eter regime considered. We restrict the calculations to U �
bandwidth/2, since this is the regime of parameters where
our postprocessing method can be expected to give sensi-
ble results [7]. As discussed in Sec. II B 3, there are two
alternative schemes based on the self-energy �[G0] (bare
IPT) or �[G] (bold IPT). If the self-energy is expressed as
a product of dressed Green’s functions, energy is conserved
after a U quench or U ramp, while the implementation with
the bare Green’s function G0 does not conserve energy at
longer times, as illustrated in Fig. 3 for a ramp from U = 1.5
to U = 2.0 with initial temperature T = 0.05. Here we plot
the change in the kinetic energy Ek(t ) = −i

Nk

∑
k εkG<

k (t, t ),

the potential energy Ep(t ) = −i
2

∫
C dz [�(t, z)G(z, t )]<(t, t ),

and the total energy Etot(t ) = Ek(t ) + Ep(t ). Although bare
IPT is more accurate than bold IPT for short times [27],
the deviations in the parameter regime considered are rather
small, so that we will use the conserving bold IPT scheme
in the following calculations. It is important to note that
the conductivity results obtained for early times using the
bare IPT differ from those obtained with bold IPT only in the

FIG. 3. Energies as a function of time for an interaction ramp
from U = 1.5 to 2.0 and initial T = 0.05. Upper panel: Change in
the kinetic energy Ēk (t ) = Ek (t ) − Ek (0). Middle panel: Change in
the potential energy Ēp(t ) = Ep(t ) − Ep(0). Lower panel: Change in
the total energy Ētot(t ) = Ēk (t ) + Ēp(t ). The black curves show the
results for bold IPT, which conserves energy after the ramp, and the
red curves show the results for bare IPT. A time step dt = 0.015
is used on the real axis and 1200 imaginary time points on the
Matsubara axis to ensure the stability of the solution at longer times.
The shaded area indicates the duration of the interaction ramp.

amplitude of the peaks: Their energy positions and trend in
time remain the same. Bold IPT is used mainly because it al-
lows us to uniquely define the temperature of the thermalized
state after the ramp/quench.

For consistency between the DMFT and the postprocessing
calculations, one needs to use renormalized interactions in the
latter. For a given U , the renormalized interaction Uren in the
π -ton ladder is defined such that the divergence of the ladder
contribution is shifted to the Neél temperature TN . We use here
the renormalized Uren determined in Ref. [7], which are Uren =
1.33 for U = 2, Uren = 1.10 for U = 1.5, and Uren = U for
U = 1. Up to some rescaling, the shape of the ramp profile
used for the renormalized interaction is the same as that used
for the bare interaction.

We restrict ourselves to U ∈ [1, 2], where the Néel tem-
perature is not too low, because this allows us to stay in
proximity to the AFM phase boundary and still have a stable
time propagation with a reasonably large time step. The latter
is important to access long enough times for a meaningful
Fourier analysis. Moreover, within the range of bare inter-
actions considered, the local irreducible vertices in both the
charge and the spin channels do not differ much from each
other and are close to the bare interaction value [29]. Specifi-
cally, we will consider (i) a ramp and quench up from U = 1.5
to U = 2 and (ii) a ramp and quench down from U = 1.5 to
U = 1, both starting at T = 0.05 (see black cross and arrows
in Fig. 4). Since energy is injected into the system by the
ramp or quench, the temperature Ttherm after thermalization
will be higher than in the initial state. To determine Ttherm,
we compute the total energy E+ = Etot(τ+), which, due to
the bold IPT solver, is conserved after the ramp (t � τ+) and
search for the temperature of the equilibrium system with the
postramp U and Etot = E+. For the ramp (quench) up, this
calculation yields Ttherm = 0.0616 (Ttherm = 0.0852) and for
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FIG. 4. Sketch of the interaction ramps and quenches discussed
in the present paper. The green dots (blue dots) show the tempera-
tures of the thermalized systems after the U ramps (U quenches),
while the red line shows the DMFT+IPT AFM phase boundary
taken from Ref. [7]. The black cross represents the initial state
(U = 1.5, T = 0.05). The vertical gray lines indicate the final values
of the interaction ramps/quenches.

the ramp (quench) down Ttherm = 0.0664 (Ttherm = 0.0909). In
Fig. 4 we sketch the two ramps (quenches) together with the
AFM phase boundary from Ref. [7] in the plane of U and T .
The initial state of the system is indicated by the black cross,
and the state of the final thermalized system is shown by the
green dots (blue dots) in the case of the ramp (quench).

In the quench case, the energy injected into the system at
time t = 0+ is given by �Etot = �Ud (t = 0) with d (t = 0)
the double occupation in the initial state, while for an adi-
abatically slow ramp, the temperature of the system would
be determined by the conservation of entropy. The constant
entropy contours have a negative slope in the T -U region
considered in this study [30]. This negative slope explains
why the heating effect for down ramps/quenches is stronger
than for up ramps/quenches.

B. Single-particle spectrum

The correction to the optical conductivity (11) depends on
the single-particle propagator G, which enters the calculation
of the RPA-type ladder. Therefore, one can suspect that the
properties of the spectral function will leave some traces in the
conductivity. For that reason, we show in Fig. 5 an example of
the local single-particle spectral function

A(ω, t ) ≡ AR(ω, t ) = − 1

π
Im

∫ t+�t

t
dt ′GR

loc(t, t ′)eiω(t−t ′ )

(15)
for various times during and after the interaction ramp from
U = 1.5 to 2 (see inset).

Figure 5 shows that the van Hove singularities at ω = ±2
in the noninteracting DoS are broadened by the interactions
and shifted to ω � ±1.6. There is also a shift of spectral
weight to higher energies (e.g., 2.2 � ω � 6) with increasing
U . These features can be interpreted as satellites of the main
peaks which are split off by an energy ∼U . The upper satellite
corresponds to electron insertion plus creation of a short-lived

FIG. 5. Illustration of the time-dependent single-particle spectral
function during and after the up ramp. The inset shows the profile of
the interaction ramp. The temperature of the initial state is T = 0.05
and the Fourier window is �t = 16.

“doublon-holon” pair. The DoS thermalizes rapidly so that no
significant evolution in the spectral weight can be observed
after t = 2, and the spectra coincide with those of the ther-
malized system.

C. Optical conductivity

1. Equilibrium spectra

Prior to analyzing the nonequilibrium evolution of the
optical conductivity Reσ j j (q = 0, ω) = Imχ ji jiq=0(ω)/ω, we
show in Fig. 6 the equilibrium result at U = 2 for differ-
ent temperatures. Blue lines show the bubble contribution
Eq. (14) and red lines show the π -ton contribution Eq. (11).
Since we multiply the conductivity by ω, the Drude peak is
cut off and the figure emphasizes the spectral weight distri-
bution at higher energies. With increasing temperature, the
Drude peak shrinks but broadens, which leads to a significant

FIG. 6. Longitudinal optical conductivities separated into the
bubble (blue shades) and the π -ton (red shades) contributions in equi-
librium for different temperatures and U = 2. (The U = 1 results
show the same qualitative trend, although the temperature scales are
lower.) The vertical dotted lines indicate the energies for which we
compute the time evolution of the spectral weight.
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FIG. 7. Analysis of different contributions to the π -ton spec-
trum. The different shades of red show the momentum dependence
of the single-ladder vertex spectrum. Light, intermediate, and dark
colored lines show the contributions from momentum tuples with
�k = |k̃ − k̄| = 0, π

2 , and π , respectively. The shades of green show
the momentum dependence of Imχsl, ji ji , whereas the different shades
of blue show that of Imχsl,szsz (vertex correction only).

increase in the bubble contribution at low, but not too small
energies as seen in Fig. 6. The broad peak in the bubble
contribution near ω = 3.9 can be associated with excitations
between the peaks in the DoS (Fig. 5).

We note that in order to resolve the low-frequency behav-
ior, a very large time window is needed. The bubble results
in Fig. 6 were obtained by extrapolating the calculated equi-
librium data to long times with an exponential fit. In the case
of the π -ton contribution, oscillations persist to much longer
times so that we show the Fourier transformation on the cal-
culated time window �t = 17, which implies some smearing
of the low-frequency features.

The spectrum obtained from the π -ton contribution shows
a nontrivial temperature dependence at low frequencies, but
the main characteristic feature is a peak near ω = 0.35, which
grows as one approaches the AFM phase boundary at low
temperatures. At high temperatures, this peak switches from
positive to negative, which implies that the π -ton narrows
(broadens) the Drude feature at high (low) T .

Figure 6 shows that, near the AFM boundary, the equi-
librium optical conductivity (including vertex correction) is
composed of (i) a low-energy Drude peak which, depending
on the temperature range, can be enhanced or narrowed by
the π -ton type vertex correction and (ii) a broad high-energy
hump near ω = 3.9 originating mainly from the bubble dia-
gram and related to peaks in the single-particle DoS. These
results are qualitatively and quantitatively consistent with the
conclusions reached in Ref. [7] based on less reliable maxi-
mum entropy analytical continuation of imaginary-time data.
The general features and trends are also consistent with the π -
ton-related modifications of the conductivity observed in Refs.
[5,6], which used more systematic methods involving parquet
equations and a semianalytical RPA evaluation of the π -ton,
respectively. Similar observations related to the longitudinal
conductivity were also reported in Ref. [2].

To better understand the characteristic energy scales of
the π -ton contribution to the conductivity, we show in
Fig. 7 the reducible single-ladder vertex “�” appearing
in Eq. (13) for the three-momentum differences |k̃ − k̄| ∈

{0, π
2 , π} (red-shaded lines). In addition, we plot both the

imaginary parts of the current and the spin susceptibilities
for the indicated momenta to illustrate the effect of multi-
plying the four Green’s functions in Eq. (11) and adding
velocity factors at the vertices. The plotted Imχsl, ji ji (green
shades) and Imχsl,szsz (blue shades) represent the π -ton
contribution (11) associated with the (k̃, k̄)-tuples whose
difference corresponds to �k = |k̃ − k̄| ∈ {0, π

2 , π}, namely,
1

Nk

∑
|k̃−k̄|=�k χ

sl
(k̃, k̄, q = 0; ω). The spin-spin single-ladder

vertex correction χ
sl,szszq

is equal to Eq. (11) with a global
factor of −1 and without the velocity factors.

In the momentum dependence of �, one notices a promi-
nent peak appearing around ω � 2, which originates from
k = π

2 . This feature is suppressed once the four Green’s func-
tions are multiplied to the ladder, as defined in Eq. (11),
independent of the presence or absence of velocity factors.
On the contrary, the tiny k = 0 contribution to the ladder
contribution gets enhanced by the multiplication with these
Green’s functions, especially for Imχsl, j j . However, as the
name suggests, the by-far dominant contribution to the π -ton
comes from |k̃ − k̄| = π . In the single-band nearest-neighbor
Hubbard model, the Fermi momenta are kF = ±π

2 . These
coincide with the largest values of the velocities and are sepa-
rated by a momentum shift π , partly explaining why Imχsl, ji ji
is larger than Imχsl,szsz .

Note that in Im χsl, ji ji (ω,�k = π ) (dark green spectrum),
a hump appears in Fig. 7 near ω � 1. In the following
subsection, we will thus investigate the time traces of the
conductivity at ω = 0.35, 1.0, and 3.9 (see black dashed lines
in Fig. 6).

2. Nonequilibrium evolution

We next investigate how the bubble and π -ton contribu-
tions to the conductivity evolve with the interaction ramps
and quenches in the vicinity of the AFM phase bound-
ary (see Fig. 4). In Fig. 8, the bubble contribution to the
optical conductivity is plotted with blue-shaded lines and
the π -ton correction with red-shaded lines. For comparison,
dotted-dashed and dashed black lines indicate, respectively,
the bubble and π -ton spectra in the initial equilibrium state
(U = 1.5, T = 0.05). Again we plot ωReσ j j (ω, q = 0) =
Imχ j jq=0(ω) so that the Drude peak is cut off at low frequen-
cies. In both panels of Fig. 8, a time window �t = 7 is used
for the Fourier transformation.

In the top panel of Fig. 8, we show the spectra measured
at different times during and after the up ramp. The first time
(light gray shade) is close to the start of the interaction ramp,
while the remaining curves (darker gray shades) illustrate
the evolution after the ramp. The high-energy feature in the
conductivity, which is associated with excitations between
the van Hove singularities in the DoS (Fig. 5) and is primarily
due to the bubble contribution, shows a rapid relaxation after
the ramp—the two latest curves overlap at that energy. On
the other hand, the prominent π -ton feature near ω ≈ 0.35
appears to relax more slowly since the two latest curves at that
energy do not overlap. Also, as will become clearer in Fig. 9,
the π -ton feature does not exhibit the oscillations that appear
at short times in the low-energy bubble contribution. In Fig. 8,
those oscillations in the bubble contribution are particularly
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FIG. 8. Real-time snapshots of the bubble contribution to the
optical conductivity (blue) and the RPA π -ton vertex correction (red)
during and after the up ramp (top panel) and down ramp (bottom
panel). The ramp shapes are shown by the inset, with gray lines
indicating the measurement times. The dotted-dashed (dashed) black
line shows the bubble (π -ton) contribution in the initial equilibrium
state. A Fourier window �t = 7 is used to compute the equilibrium
and time-dependent spectra.

strong at earlier times where the spectra at ω � 0.35 change
sign.

The analogous plot for the down ramp is shown in the
bottom panel of Fig. 8. Regarding the bubble contribution, it
reveals a qualitatively similar relaxation behavior, with oscil-
lations in the Drude component at early times, and a more
damped relaxation of the features at higher energies. In the
case of the π -ton contribution, the down ramp displays a melt-
ing of the π -ton feature at ω � 0.35, which appears to happen
at a faster rate than that at which it builds up when ramping up
the interaction. The π -ton spectral peak also shifts in energy
while melting down—more so than in the up quench.

For a more detailed analysis of the relaxation behavior,
we consider in Fig. 9 the evolution of the spectral weight at
three characteristic energies ω = 0.35 (Drude feature), ω =
1 (intermediate-energy feature), and ω = 3.9 (high-energy
feature). We first consider the bubble contribution, plotted
in the left panels of Fig. 9, for the ramp up, ramp down,
quench up, and quench down (from top to bottom). For
a better visualization, we plot the changes in the spectral

weight: ωRe[σ j j (q = 0, ω, t ) − σ j j (q = 0, ω, t = 0)]. To il-
lustrate the thermalization dynamics, we furthermore indicate
by gray horizontal lines the values reached in the thermal-
ized state (obtained by calculating the total energy after the
ramp/quench; see green and blue dots in Fig. 4). The fig-
ure clearly reveals a single large amplitude oscillation in the
Drude feature during (after) the ramps (quenches) and similar
but more strongly damped oscillations in the higher energy
cuts. It also shows that after this initial oscillation, the bubble
contribution to the conductivity rapidly relaxes to the thermal-
ized result at all three energies.

The thermalized values of the conductivity for the ramp
(quench) up are larger than in the initial state because
correlation effects shift spectral weight to higher energies.
Interestingly, though, the initial response of the Drude feature
to the ramp goes in the opposite direction. For example, in the
early stages of the ramp up, the weight at ω = 0.35 decreases
substantially (while a large transient increase is found for
the ramp down). However, in the case of the quenches this
short-time behavior can be qualitatively different, and thus
appears to be related to the details of the ramp spectrum. In
the case of the down ramp or quench, we furthermore notice
that the relative change of the Drude weight has the opposite
sign from that expected due to correlation-induced broadening
– presumably this is because of the strong heating effect.

The ramp- and quench-induced changes in the π -ton con-
tribution to the conductivity at ω = 0.35, 1, and 3.9 are plotted
as a function of time in the right panels of Fig. 9. The green
lines, corresponding to ω = 3.9, indicate that the high-energy
structures of the π -ton approach the thermal value quickly
after the ramp or quench on a time scale comparable to the
bubble contribution. This is different for the intermediate-
energy and Drude features. The latter exhibit a delayed
thermalization, overshooting the thermal reference values by
a significant amount, especially when quenching/ramping the
interaction up. For some of these traces the initial response
of the π -ton to the ramp is qualitatively similar to that of the
bubble contribution in the sense that the transient change of
the spectral weight goes in the opposite direction from the
modification expected in the thermalized state, but the effect
is much less pronounced than for the bubble.

The substantial overshooting of the thermal reference val-
ues could be a manifestation of prethermalization behavior.
The optical conductivity is related to the kinetic energy via
a sum rule, and the energy distribution function is known
to exhibit a prethermalization plateau at low energies af-
ter quenches in the considered interaction regime [11,13].
In the following section, we will investigate the occupation
and nonequilibrium distribution functions to demonstrate that
in contrast to the spectral function, which thermalizes fast
(Fig. 5), the occupation remains nonthermal for a long time.
The π -ton correction to the conductivity depends strongly
on the occupied density of states near the Fermi level due
to a combination of the fact that the velocities are largest
in absolute values near the Fermi level and that the poles of
the single-ladder vertex dominate for momentum differences
equal to kπ . We will thus look at the distribution for k ≈ π

2
and discuss its repercussions in Sec. IV.

We also notice significant modifications in the π -ton con-
tribution after t ≈ 10, especially in the low- and intermediate-
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FIG. 9. Time-dependent change in the bubble (left column) and π -ton (right panel) contributions to ωReσ j j (q = 0, ω, t ) at ω = 0.35
(blue), 1.0 (orange), and 3.9 (green). The two upper rows of panels show the results for the ramps: The upper (lower) panel is for the ramp
up (down). Likewise, the two lower rows of panels show the results for the quenches. The horizontal gray lines indicate the values reached in
the thermalized state after the ramp, with the thickness of the lines approximately representing the numerical uncertainty in determining these
thermalized values. For a better visualization of the change in conductivity, we subtract the values at t = 0. Just like for Fig. 8, a time window
�t = 7 was used at all times t .

energy cuts. This is partly related to the energy shifts in
the π -ton feature which at early times are clearly seen in
the bottom panel of Fig. 8. We will discuss other possible
explanations for this behavior below in Sec. IV. We note that
the time traces shown in Fig. 9 are converged with respect to
the time step used in the real-time propagation. Changing the
step size within the range 0.01 � dt � 0.03 does not affect
our observations.

IV. DISCUSSION

In this section, we analyze the results presented in Sec. III
and extract more information on characteristic oscillation fre-
quencies and the thermalization behavior.

Notably we have identified a qualitatively different time
evolution of the bubble contribution and RPA π -ton type ver-
tex correction to the optical conductivity after an interaction
ramp or quench in the vicinity of the AFM phase boundary at
weak coupling. To further investigate the dynamics of these
features, we first extract the dominant oscillation frequencies
ωosc in the bubble signals in Fig. 9 by performing Fourier
transformations on the time traces shown in the left panels.
Here, in order to remove spurious spectral weight coming
from the ramp, we subtract from the signal a smooth back-
ground proportional to the ramp profile. The norms of the
Fourier transforms of the bubble contribution are shown in
Fig. 10, where solid lines indicate the spectra for the ramps
and dashed lines indicate those for the quenches. The upper
(lower) panels show the oscillation spectra for the up (down)
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FIG. 10. Spectral decompositions of the time traces (see Fig. 9)
of the bubble contribution ωReσ j j (q = 0, ω, t ) at the indicated ener-
gies. The plotted lines show the norms of the Fourier transformations
after subtracting a background proportional to the ramp shape (which
is described by the error function). In the case of the quenches, the
mean was subtracted. Dashed (solid) lines are for interaction ramps
(quenches).

ramp/quench at ω = 0.35 (red), 1.0 (orange), and 3.9 (blue).
The spectra in Fig. 10 reveal the main oscillation frequencies
induced by the perturbations.

For ω = 0.35 (Drude component) and 1.0 (intermediate-
energy peak), independent of the direction of the
ramp/quench, the oscillations yield a single peak centered
at ωosc ≈ 3.2, which roughly matches the energy separation
between the peaks in the DoS (see Fig. 5). This peak is very
broad because the corresponding time traces are strongly
damped after the first oscillation. As one can already deduce
from the time traces (Fig. 9), the amplitude of the oscillations
is a bit smaller for the quenches (dashed lines) than for
the ramps (solid lines). At ω = 3.9 the damping is even
stronger and the thermalization is faster. While the oscillation
frequency in the time traces seems to be the same as for the
lower energy cuts, the subtraction of the smooth background
in the form of the ramp shape results in a spectrum consisting
of two frequency humps centered around ω � 1.5 and ω � 5.
These may correspond to fluctuations between the DoS peaks
and the side bands visible in Fig. 5. Also, for ω = 3.9, the
amplitude of the oscillations is larger for the quench than for
the ramp.

As already mentioned above, the π -ton time traces shown
in Fig. 9 exhibit no pronounced oscillations but rather a
prethermalization behavior, especially at ω = 0.35 and 1.0
and in the case of the up ramp/quench. The thermalization
of this vertex correction to the optical conductivity occurs on
time scales that are much longer than the accessible simula-
tion times. Furthermore, the prethermalization phenomenon
is suppressed when the temperature is raised (not shown).

To shed some light on the origin of the prethermalization
behavior, we take a closer look at the time evolution of the
different components of G. We do so because the RPA π -
ton vertex correction is built from nonequilibrium Green’s
functions G computed within DMFT. Since the spectral

function, extracted from the retarded component GR, ther-
malizes fast (Fig. 5), the trapping in a prethermalized state
must be primarily due to nonthermal properties of G<, i.e.,
the corresponding spectral function (occupation function) A<.
Here we will investigate the nonequilibrium distribution func-
tion, which allows us to establish how fast the system reaches
the (momentum independent) thermalized Fermi distribution
function nF (ω) = 1

eβω+1 .
The retarded spectral function reads

AR
k (t, ω) = − 1

π
Im GR

k (t, ω), (16)

and the lesser spectral function is defined as

A<
k (t, ω) = 1

2π
Im G<

k (t, ω), (17)

where we use a forward-in-time Fourier transformation as in
Eq. (15) with a large cutoff in time. Large time windows
are accessible because the real-time functions G<,R

k (t, t ′) for
fixed time t have tails which can be fitted by the function
αe−t ′/β cos (εt ′ + δ). We can therefore extrapolate these func-
tions before the Fourier transformation. From both the lesser
and the retarded spectral functions, a nonequilibrium distribu-
tion function nk can be computed as [20]

nk(t, ω) = A<
k (t, ω)

AR
k (t, ω)

, (18)

since the occupied states are given by ImG<
k (t, ω) =

2πAR
k (t, ω)nk(t, ω). Because the nonthermal distribution

functions are typically not of the Fermi-Dirac form, we eval-
uate the effective inverse temperature βeff = 1/Teff from the
derivative of nk(t, ω) at ω = 0 as

βeff ≡ −4
∂nk(t, ω)

∂ω

∣∣∣∣
ω=0

. (19)

If nk(t, ω) is of the Fermi-Dirac form nF (ω) introduced above,
Eq. (19) yields the corresponding inverse temperature β.

In the top panel of Fig. 11, we plot the nonthermal distri-
bution functions nk(t, ω) for k = π

2 at times t = 10, 20, and
30 for the quench from U = 1.5 to U = 2 at initial temper-
ature T = 0.05. We also show in gray the Fermi distribution
function at the thermalized temperature Ttherm = 0.0852. For
k = π

2 , the distributions at t = 30 are still clearly nonthermal.
Previous studies have already reported similar phenomena
where an interaction quench in the weak-coupling regime
led to nonthermal stationary distributions at the Fermi level
[13,31,32]. For momenta different from k = ±π

2 , one finds a
lower effective temperature and in most cases a faster relax-
ation of the distribution toward the thermalized one, as shown
in the inset plot in the top panel of Fig. 11, which plots the
effective temperature extracted from the slope of nk at ω = 0
[Eq. (19)]. Interestingly, different momenta at times t � 10
have significantly different distributions with different effec-
tive temperatures. On a time scale of O(10), some distribution
functions away from the Fermi level (k = ±π

2 ) approach the
thermal ones. This suggests that the upturn/downturn in the
π -ton spectra occurring near t ∼ 10 (Fig. 9) may be related
to the k-dependent relaxation of the distributions. The slow
relaxation of the distribution at the Fermi level, which is
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FIG. 11. Top panel: In the main plot, the gray curve depicts the
Fermi distribution function for the thermalized state after the quench
from U = 1.5 to U = 2 at T = 0.05. The other curves illustrate the
nonequilibrium distributions nk(t, ω) at k = π

2 (Fermi level) and for
t = {10, 20, 30}. An exponential function was used to extrapolate
the tails of both A<(t, t + �t ′) and AR(t, t + �t ′). In the Fourier
transformation, we use a time window �t ′ = 4000. In the inset
plot, the time traces of the effective temperatures Eq. (19) of the
k-dependent distribution functions are plotted. Bottom panel: In the
main plot, the time evolution of the lesser component of the dressed
Green’s function for the Fermi momentum k = π

2 is plotted for the
same quench. The inset shows the difference between the time traces
of the quenched system and the thermalized system (T = 0.0852 and
U = 2.0).

expected from Fermi liquid theory, constitutes the main bot-
tleneck in the thermalization of the π -ton.

In the quench down, where the heating effect is stronger,
the distribution functions thermalize faster compared with the
quench up (not shown). As a result, the prethermalization is
less prominent.

It is also possible to observe the prethermalization directly
in the time dependence of the Green’s functions. The bottom
panel of Fig. 11 shows ImG<(t, t + �t ′) for 0 � �t ′ � 20.
Again, the interaction is quenched from U = 1.5 to U = 2
at T = 0.05. The inset shows the difference of the various
time traces to the thermal result, that is, ImG<

therm(t, t + �t ′)
at Ttherm = 0.0852 and constant interaction U = 2. These data

confirm the slow relaxation to the time dependence of the
thermalized state, which is evident in the evolution of the
distribution function.

V. CONCLUSION

Using nonequilibrium calculations on the Kadanoff-Baym
contour, we computed the longitudinal optical conductivity in
the single-band half-filled Hubbard model after an interaction
ramp or quench, considering single-ladder vertex corrections
of the RPA π -ton type. First we identified the relevant spec-
tral features in equilibrium systems with U � bandwidth/2
and, in agreement with previous studies related to the π -
ton [2,5–7], found that a sharp spectral feature emerges at
low energy in the optical conductivity when approaching the
AFM phase boundary. We then studied the evolution of this
intermediate-energy spectral feature as well as the low-energy
and high-energy features after quenches or ramps, which in-
crease or decrease U in the vicinity of the AFM phase. While
there was little qualitative difference between a quench and
a (fast) ramp, the up and down quenches or ramps resulted in
different dynamics. This is due to the effects of heating and the
U dependence of the AFM phase boundary. The up ramps or
quenches result in states that are closer to the AFM boundary
and hence feature strong π -ton type vertex corrections.

Comparing time traces for different energy cuts, we found
that the bubble contribution to the optical conductivity ther-
malizes fast after the ramp or quench. The corresponding time
traces essentially feature a single strongly damped oscillation
with a frequency that roughly matches the energy separation
between the van Hove peaks in the DoS. In sharp contrast, the
π -ton contribution to the conductivity exhibits a slower relax-
ation characterized by a long-lived nonthermal spectral distri-
bution, especially at low energies. For the quench up, the main
π -ton feature can transiently grow to values which signifi-
cantly exceed the thermalized result. We have linked this ob-
servation to the prethermalization phenomenon that has been
previously revealed in quenched, weakly interacting systems
[13]. In particular, we have shown that while the spectral func-
tion thermalizes fast, the occupation after the quench can be
distinctly nonthermal, especially for momenta near the Fermi
level. Close to the Fermi energy, the relaxation of the occupa-
tion takes a long time, which due to the large velocity factors
and the momentum difference π between the Fermi points,
translates into a distinctly nonthermal π -ton contribution.

Our analysis shows that ladder-type vertex corrections,
which are prominent near the AFM phase boundary (or some
other ordering instability with wave-vector π ), have a signif-
icant effect on the optical properties in nonthermal, weakly
correlated Hubbard systems. In particular, prethermalization
phenomena in these vertex corrections dominate the slow
relaxation of the conductivity after a quench or other pertur-
bation.
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FIG. 12. Kadanoff-Baym contour and the time arguments involved in the calculation of the single-ladder vertex corrections to the
susceptibilities (11). The integrated time variables are represented in colors, i.e., red and green. In this particular situation, the configuration
shows χ>

sl (z, z′) with z̄ ≺ z̄′, z̄ ∈ C1, and z̄′ ∈ C1.

APPENDIX: SINGLE-LADDER VERTEX CORRECTIONS ON THE KADANOFF-BAYM CONTOUR

In order to compute the retarded component of Eq. (11), one needs to work out both the lesser and the greater components,
implying that both contour parameters z and z′ in Eq. (11) lie on the real-time axes. As a reminder, the lesser component
χ<

sl (z, z′) means that z is encountered first following the contour ordering in Fig. 12 (z′ � z), whereas the greater component
χ>

sl (z, z′) means that z′ is encountered first (z′ ≺ z).
In what follows, we will write down the nine different contributions to χ> and χ< arising from the internal integrals of the

variables z̄ and z̄′ over the different pieces of the contour. In the end, all these contributions to the greater/lesser components
are summed up. The difference between the total greater and lesser components gives the retarded component. The Heaviside
function on the contour θC (z, z′) is defined such that θC (z, z′) = 1 if z � z′ and θC (z, z′) = 0 if not. We also choose, without loss
of generality, z as the largest time on the real-time axis. The different contour functions that will show up are defined in Eq. (5).

1. z̄ ∈ C1 and z̄′ ∈ C1

The contribution to the greater component (z � z′) is

χ>,σ,−σ
sl (q; z, z′) = −

∫ π

−π

dDk̃

(2π )D

∫ π

−π

dDk̄

(2π )D

∫ z

t0

dz̄
∫ z

t0

dz̄′G>,σ

k̃
(z, z̄)θC (z, z̄)G<,σ

k̃−q
(z̄′, z)θC (z, z̄′)

× [
�>,σ,−σ

k̃−k̄
(z̄, z̄′)θC (z̄, z̄′) + �<,σ,−σ

k̃−k̄
(z̄, z̄′)θC (z̄′, z̄)

][
G>,−σ

k̄
(z̄, z′)θC (z̄, z′) + G<,−σ

k̄
(z̄, z′)θC (z′, z̄)

]
× [

G<,−σ

k̄−q
(z′, z̄′)θC (z̄′, z′) + G>,−σ

k̄−q
(z′, z̄′)θC (z′, z̄′)

]
θC (z, z′), (A1)

while the contribution to the lesser component (z′ � z) reads

χ<,σ,−σ
sl (q; z, z′) = −

∫ π

−π

dDk̃

(2π )D

∫ π

−π

dDk̄

(2π )D

∫ z

t0

dz̄
∫ z

t0

dz̄′G>,σ

k̃
(z, z̄)θC (z, z̄)G<,σ

k̃−q
(z̄′, z)θC (z, z̄′)

× [
�>,σ,−σ

k̃−k̄
(z̄, z̄′)θC (z̄, z̄′) + �<,σ,−σ

k̃−k̄
(z̄, z̄′)θC (z̄′, z̄)

]
G<,−σ

k̄
(z̄, z′)θC (z′, z̄)G>,−σ

k̄−q
(z′, z̄′)θC (z′, z̄′)θC (z′, z).

(A2)

The Heaviside functions take care of the domain of integration. Subtracting Eq. (A2) from Eq. (A1) yields the contribution to
the retarded component.

2. z̄ ∈ C1 and z̄′ ∈ C2

The contribution to the greater component (z � z′) is

χ>,σ,−σ
sl (q; z, z′) = −

∫ π

−π

dDk̃

(2π )D

∫ π

−π

dDk̄

(2π )D

∫ z

t0

dz̄
∫ t0

z
dz̄′G>,σ

k̃
(z, z̄)θC (z, z̄)G>,σ

k̃−q
(z̄′, z)θC (z̄′, z)

× �<,σ,−σ

k̃−k̄
(z̄, z̄′)θC (z̄′, z̄)

[
G<,−σ

k̄
(z̄, z′)θC (z′, z̄) + G>,−σ

k̄
(z̄, z′)θC (z̄, z′)

]
G<,−σ

k̄−q
(z′, z̄′)θC (z̄′, z′)θC (z, z′),

(A3)

while the contribution to the lesser component (z′ � z) reads

χ<,σ,−σ
sl (q; z, z′) = −

∫ π

−π

dDk̃

(2π )D

∫ π

−π

dDk̄

(2π )D

∫ z

t0

dz̄
∫ t0

z
dz̄′G>,σ

k̃
(z, z̄)θC (z, z̄)G>,σ

k̃−q
(z̄′, z)θC (z̄′, z)

× �<,σ,−σ

k̃−k̄
(z̄, z̄′)θC (z̄′, z̄)G<,−σ

k̄
(z̄, z′)θC (z′, z̄)

[
G<,−σ

k̄−q
(z′, z̄′)θC (z̄′, z′) + G>,−σ

k̄−q
(z′, z̄′)θC (z′, z̄′)

]
θC (z′, z).

(A4)

245127-11



SIMARD, ECKSTEIN, AND WERNER PHYSICAL REVIEW B 104, 245127 (2021)

The results for the case where z̄ ∈ C2 and z̄′ ∈ C1 can be obtained from Eqs. (A3) and (A4) by swapping z̄ and z̄′ from one branch
to the other.

3. z̄ ∈ C1 and z̄′ ∈ C3

The contribution to the greater component (z � z′) is

χ>,σ,−σ
sl (q; z, z′) = −

∫ π

−π

dDk̃

(2π )D

∫ π

−π

dDk̄

(2π )D

∫ z

t0

dz̄
∫ t0−iβ

t0

dz̄′G>,σ

k̃
(z, z̄)θC (z, z̄)G�,σ

k̃−q
(z̄′, z)

× �¬,σ,−σ

k̃−k̄
(z̄, z̄′)

[
G<,−σ

k̄
(z̄, z′)θC (z′, z̄) + G>,−σ

k̄
(z̄, z′)θC (z̄, z′)

]
G¬,−σ

k̄−q
(z′, z̄′)θC (z, z′), (A5)

while the contribution to the lesser component (z′ � z) reads

χ<,σ,−σ
sl (q; z, z′) = −

∫ π

−π

dDk̃

(2π )D

∫ π

−π

dDk̄

(2π )D

∫ z

t0

dz̄
∫ t0−iβ

t0

dz̄′G>,σ

k̃
(z, z̄)θC (z, z̄)G�,σ

k̃−q
(z̄′, z)

× �¬,σ,−σ

k̃−k̄
(z̄, z̄′)G<,−σ

k̄
(z̄, z′)θC (z′, z̄)G¬,−σ

k̄−q
(z′, z̄′)θC (z′, z). (A6)

The results for z̄ ∈ C3 and z̄′ ∈ C1 can be obtained by swapping z̄ and z̄′ in Eqs. (A5) and (A6).

4. z̄ ∈ C2 and z̄′ ∈ C2

The contribution to the greater component (z � z′) is

χ>,σ,−σ
sl (q; z, z′) = −

∫ π

−π

dDk̃

(2π )D

∫ π

−π

dDk̄

(2π )D

∫ t0

z
dz̄

∫ t0

z
dz̄′G<,σ

k̃
(z, z̄)θC (z̄, z)G>,σ

k̃−q
(z̄′, z)θC (z̄′, z)

× [
�>,σ,−σ

k̃−k̄
(z̄, z̄′)θC (z̄, z̄′) + �<,σ,−σ

k̃−k̄
(z̄, z̄′)θC (z̄′, z̄)

]
G>,−σ

k̄
(z̄, z′)θC (z̄, z′)G<,−σ

k̄−q
(z′, z̄′)θC (z̄′, z′)θC (z, z′),

(A7)

while the contribution to the lesser component (z′ � z) reads

χ<,σ,−σ
sl (q; z, z′) = −

∫ π

−π

dDk̃

(2π )D

∫ π

−π

dDk̄

(2π )D

∫ t0

z
dz̄

∫ t0

z
dz̄′G<,σ

k̃
(z, z̄)θC (z̄, z)G>,σ

k̃−q
(z̄′, z)θC (z̄′, z)

× [
�>,σ,−σ

k̃−k̄
(z̄, z̄′)θC (z̄, z̄′) + �<,σ,−σ

k̃−k̄
(z̄, z̄′)θC (z̄′, z̄)

][
G>,−σ

k̄
(z̄, z′)θC (z̄, z′) + G<,−σ

k̄
(z̄, z′)θC (z′, z̄)

]
× [

G>,−σ

k̄−q
(z′, z̄′)θC (z′, z̄′) + G<,−σ

k̄−q
(z′, z̄′)θC (z̄′, z′)

]
θC (z′, z). (A8)

5. z̄ ∈ C2 and z̄′ ∈ C3

The contribution to the greater component (z � z′) is

χ>,σ,−σ
sl (q; z, z′) = −

∫ π

−π

dDk̃

(2π )D

∫ π

−π

dDk̄

(2π )D

∫ t0

z
dz̄

∫ t0−iβ

t0

dz̄′G<,σ

k̃
(z, z̄)θC (z̄, z)G�,σ

k̃−q
(z̄′, z)

× �¬,σ,−σ

k̃−k̄
(z̄, z̄′)G>,−σ

k̄
(z̄, z′)θC (z̄, z′)G¬,−σ

k̄−q
(z′, z̄′)θC (z, z′), (A9)

while the contribution to the lesser component (z′ � z) reads

χ<,σ,−σ
sl (q; z, z′) = −

∫ π

−π

dDk̃

(2π )D

∫ π

−π

dDk̄

(2π )D

∫ t0

z
dz̄

∫ t0−iβ

t0

dz̄′G<,σ

k̃
(z, z̄)θC (z̄, z)G�,σ

k̃−q
(z̄′, z)

× �¬,σ,−σ

k̃−k̄
(z̄, z̄′)

[
G<,−σ

k̄
(z̄, z′)θC (z′, z̄) + G>,−σ

k̄
(z̄, z′)θC (z̄, z′)

]
G¬,−σ

k̄−q
(z′, z̄′)θC (z′, z). (A10)

The case where z̄ ∈ C3 and z̄′ ∈ C2 can be deduced from Eqs. (A9) and (A10) by swapping the arguments.

6. z̄ ∈ C3 and z̄′ ∈ C3

In this case, due to time translation invariance, the greater and lesser components are the same:

χ>,σ,−σ
sl (q; z, z′) = −

∫ π

−π

dDk̃

(2π )D

∫ π

−π

dDk̄

(2π )D

∫ t0−iβ

t0

dz̄
∫ t0−iβ

t0

dz̄′G¬,σ

k̃
(z, z̄)G�,σ

k̃−q
(z̄′, z)

× �M,σ,−σ

k̃−k̄
(z̄ − z̄′)G�,−σ

k̄
(z̄, z′)G¬,−σ

k̄−q
(z′, z̄′) = χ<,σ,−σ

sl (q; z, z′). (A11)
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