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Wood’s anomaly beyond the Meixner-Schäfke theorem: Analytical and experimental investigation
of sinusoidally modulated metasurfaces with normal susceptibilities
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We present a rigorous analysis of plane-wave-illuminated sinusoidally modulated metasurfaces (MSs) with
normal susceptibility components, without limiting the modulation-index values. In contrast to tangentially
polarizable scenarios, which are treated within the conventional continued-fraction framework of Meixner and
Schäfke, the unconventional structure of the generalized sheet transition conditions with regard to normal
components manifests exotic stability conditions, which were not addressed by this framework. By introducing
small losses into the constituents of such MSs (inevitable in practice), we resolve these stability issues and
establish a valid solution for the scattered fields. Such solutions reveal that for a certain range of modulations
these surfaces feature a resonant absorptive notch at an angle related to the period, associated with strong
coupling to the weakly evanescent first-order Floquet-Bloch harmonic. Based on our observations, we identify
this phenomenon as Wood’s anomaly for MSs with normal susceptibilities. We verify these observations numer-
ically and experimentally using suitable, systematically designed, printed-circuit-board prototypes. This work
highlights the fundamental intricacies involving theoretical analyses of inhomogeneous normally polarizable
MSs and constitutes a firm ground for further exploration and utilization of nonuniform configurations with
these mostly ignored degrees of freedom.

DOI: 10.1103/PhysRevB.104.245123

I. INTRODUCTION

Wave propagation in periodic structures manifests many
fundamental phenomena, which have aided studying and con-
trolling the features of electromagnetic, optical, acoustic, and
matter (de Broglie) waves, ever since the dawn of modern
science [1–6]. Particularly, in electromagnetism and optics,
the properties of dielectric and metallic periodic configura-
tions, such as diffraction gratings, stratified bulks, periodically
loaded waveguides, periodic impedance surfaces, photonic
crystals, and artificial metamaterials, have been extensively
investigated and exploited in a wide variety of applications,
including filters, polarizers, resonators, transducers, super-
lenses, and slow-wave structures for particle beams and
antennas [3,4,6,7].

Among all forms of periodicity, the sinusoidal modulation
constitutes a relatively simple yet essential subclass to in-
vestigate. Compared to general periodic modulations, which
may be expressed in terms of Fourier series, the sinusoidal
modulation merely contains the offset and the fundamental
harmonic of the series. Therefore, the latter is typically con-
venient to analyze, especially as a principal case study from
which fundamental properties can be deduced and applied
in more advanced configurations. As such, several electro-
magnetic configurations with spatial sinusoidal modulation
were thoroughly analyzed in the past, mainly in aspect of
their dispersion properties, band structures, and eigenmode
compositions [1,3,8–11]. An important demonstration for the
analysis of sinusoidally modulated structures was carried out
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by Hessel and Oliner [12], who rigorously addressed reac-
tance surfaces with general periodic modulations in order to
explain the empirically discovered Wood’s anomalies [13,14],
and satisfactorily demonstrated their results using a sinu-
soidally modulated case study.

Conceptually, the reactance surfaces analyzed in [3,8,12]
can be viewed as a subclass of metasurfaces (MSs). Meta-
surfaces are thin planar arrangements of engineered subwave-
length scatterers, such that the electric and magnetic dipoles
induced upon them reradiate prespecified scattered fields.
They have been extensively studied throughout the past few
decades for their ability to efficiently manipulate electromag-
netic wave fronts [15–17]. The compactness and low loss of
MSs make them notable candidates for implementation of
modern microwave and optical applications: enhanced anten-
nas, thin lenses, unconventional reflectors, polarizers, filters,
and cloaking, to name but a few [15,16].

Owing to the vanishing thickness of MSs and the subwave-
length interparticle spacing upon them, one may homogenize
the aforementioned individual dipoles into macroscopic dis-
tributions of surface electric ( �Ps) and magnetic ( �Ms) polariza-
tions. Such polarizations inflict tangential field discontinuities
across the MS, as formulated by the generalized sheet tran-
sition conditions (GSTCs) [18–20]. Furthermore, for linear
MSs, the induced polarizations are related to the driving elec-
tromagnetic fields via four 3 × 3 surface susceptibility tensors
(χ) determined by the constituents and geometry of the MS.
Once carefully engineered, the field discontinuities across the
MS uniquely determine the scattered fields everywhere via the
equivalence principle [17,21].

Over the past two decades or so, these GSTCs [18–20]
were utilized to analyze and synthesize MSs for a wide
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variety of applications. For example, it has been shown that
collocated electric and magnetic susceptibilities are neces-
sary to allow reflectionless anomalous refraction, also known
as Huygens’ MSs [22–24]; for wide-angle beam steering, a
more elaborated structure turned out to be required, includ-
ing bianisotropic response of the omega type [25–28]; and
for advanced polarization manipulations, bianisotropic chiral
inclusions were found to be of use [29–31]. Particularly, based
on the analysis in [8], sinusoidally modulated MSs were re-
cently integrated in MS leaky-wave antennas [32–35].

A closer look at the GSTCs [18–20] reveals that tangential
gradients of normal polarizations generate tangential field
discontinuities across the MS, as equally well as tangential
polarizations. Thus, in order to implement a specific desired
field transformation, it is sufficient to introduce only the latter
(and discard the former). Following this notion, the main-
stream framework for MS analysis and synthesis, e.g., as
in [22–31], which typically considers MS functionality or
reactance requirements only at a single incidence scenario,
adopted utilization of tangential (in-plane) susceptibilities
while mostly ignoring the normal (out-of-plane) components.
The rationale behind such a choice is that implementation
of a desired tangential-polarizations profile is expected to be
less cumbersome than the alternative gradient profile of their
normal counterparts [36,37].

This gives rise to the question of whether such equiva-
lence between tangential and normal polarizations ( �Ps and �Ms)
passes on, in a sense, to the susceptibilities (χ). In this context,
it was recently shown by Albooyeh et al. [37] that when a
single obliquely incident plane-wave scenario is considered,
normal susceptibilities may indeed be replaced with equiva-
lent tangential components to achieve the same response for
the same incident-field configuration. However, when multi-
ple incidence scenarios are considered, results from the same
report and from other reports, e.g., [38–41], indicate that
tangential and normal susceptibilities are distinguishable. For
example, Zaluški et al. [38] managed to separate between the
characterization of the tangential and normal components of
a macroscopically uniform MS by measuring its scattering
parameters at two different angles of incidence.

Therefore, one may directly deduce that normal sus-
ceptibilities constitute separate and independent degrees of
freedom which hold the potential to enhance MS function-
alities, especially with respect to multiangular and spatially
dispersive designs. In fact, implicit and explicit forms of
normal susceptibilities were already suggested to stabilize
the angular response of high impedance surfaces (HISs,
also known as artificial magnetic conductors, AMCs) [42],
Huygens’ (reflectionless) MSs [43], and absorbers [44]. Fur-
thermore, angular filters [45], spatially dispersive optical
analog computing operations [46], and mimicry of nonrecip-
rocal functionalities with reciprocal structures [39] were also
implemented by embedding normal susceptibilities in MSs.

Be that as it may, the territory of normal susceptibili-
ties remains mostly uncharted as far as spatially modulated
MSs are concerned. Nevertheless, studying such structures
is pertinent, seeing as spatial modulation is essential for the
operation of many MS devices: lenses, anomalous reflectors
and refractors, beam splitters, spatial light modulators, and
so forth. Hence, embedding normal susceptibilities as addi-

tional degrees of freedom in such designs may provide them
with augmented functionalities and performance, as well as
facilitate and improve control over their angular response and
spatial-dispersion properties.

In this paper, we address spatially modulated MSs with
normal susceptibilities by analyzing and validating a principal
case study: plane-wave scattering off MSs with sinusoidally
modulated normal magnetic susceptibilities. Following previ-
ous studies, which effectively feature sinusoidally modulated
tangential susceptibilities, e.g., [8,9,12], we apply conven-
tional Floquet-Bloch (FB) analysis for the scattered fields
(Sec. II A) and arrive at an infinite set of linear equations to be
solved. In these past studies, [8,9,12], such sets of equations
were treated using a particular mathematical theorem pre-
sented by Meixner and Schäfke [47] (henceforth referred to
as the Meixner-Schäfke theorem), which guarantees a unique
stable solution under certain conditions. Contrarily to such
studies, our analysis reveals that the unconventional structure
of the GSTCs with regard to normal components leads to
scenarios for which the Meixner-Schäfke theorem is no longer
valid, such that no stable solution can be formulated following
standard procedures. We propose to overcome such stability
issues by introducing small loss (unavoidable in practice) and
amending the formula in the Meixner-Schäfke theorem to
yield well-defined unique solutions for normal inclusions as
well (Sec. II B).

To verify the fidelity of our theoretical predictions, we
methodically synthesize realistic printed-circuit-board (PCB)
MS prototypes (Sec. III A), and inspect them via full-wave
simulations (Sec. III A) and experimental measurements after
fabrication (Sec. III B). Our results exhibit a narrow resonant
absorptive notch in the angular behavior of the fundamental
FB harmonic (diffraction order) for vanishing offsets and
small amplitudes of the modulation. We further show that the
reason for such a phenomenon is strong coupling into the first
order FB harmonic at the vicinity of its cutoff, upon tran-
sition from radiation to evanescence. We identify this result
as a manifestation of Wood’s anomalies [12–14], extending
the scope of this evidently universal phenomenon to include
normally polarizable MSs as well. We show that inclusion of
other parasitic susceptibility components and fabrication non-
idealities is essential for proper interpretation of the response
of the realistic prototype, yielding good agreement between
theory, full-wave, and experimental results.

Our theory and results regarding normally polarizable sinu-
soidally modulated MS, as presented in this paper, shed light
on the uniqueness of normal components, which necessitate
nontrivial treatment when incorporated in canonical problems,
in addition to their distinct angular-dependence properties
discussed earlier. Importantly, it points out a physical path to
resolve instability issues in wave-grating scattering problems
beyond the standard Meixner-Schafke theorem, revealing that
the nonconventional normal susceptibility components sup-
port Wood’s anomaly as well.

II. THEORY

A. Formulation

We consider a MS at z = 0, illuminated by a plane wave
from below (z < 0). In the general scenario, such a MS may
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FIG. 1. Physical scattering configuration of a sinusoidally mod-
ulated MS with normal susceptibilities. An incident TE wave
(“Incident E0”) impinges the sinusoidally modulated MS at z = 0
and angle θ0. Scattered FB harmonics are excited. Here only the
n = 0, ±1 harmonics are visualized (as radiating).

possess both electric ( �Ps) and magnetic ( �Ms) polarizations,
which are responsible for the tangential discontinuities of the
electric ( �E ) and magnetic ( �H) fields, as prescribed by the
GSTCs [18–20],

ẑ × ( �H+
t − �H−

t ) = jω �Pst − ẑ × �∇tMsz

( �E+
t − �E−

t ) × ẑ = jωμ �Mst − �∇t

(Psz

ε

)
× ẑ (1)

and

�Ps = εχ ee · �E av + c−1χ em · �H av,

�Ms = η−1χme · �E av + χmm · �H av, (2)

where ± superscripts denote the fields as evaluated at z → 0±;
t and z subscripts denote components tangential and normal
to the MS, respectively; av superscript denotes the average
of the fields acting on the MS, i.e., �E av = ( �E+ + �E−)/2
and �H av = ( �H+ + �H−)/2; χ ee, χmm, χ em, and χme are the
electric, magnetic, electromagnetic, and magnetoelectric sus-
ceptibility tensors, respectively; ε, μ, c, and η are the standard
constitutive parameters of the surrounding medium; and har-
monic time dependence of e jωt is assumed and suppressed.

Herein, as we recall, we wish to focus on normal suscep-
tibility components. In particular, we consider a sinusoidally
modulated MS with normal magnetic susceptibility

χ zz
mm(x) = χ0 + χ1 cos (κx), (3)

where χ zz
mm(x) denotes the ẑẑ-dyad component of the magnetic

susceptibility χmm, χ0 is the offset of the modulation, χ1

is its amplitude, and κ is its spatial frequency in units of
radians divided by length, related to the modulation’s spatial
period 2π/κ (Fig. 1). All other susceptibility components are
assumed to vanish. The MS is illuminated from z < 0 with a
y-polarized transverse-electric (TE) plane wave with θ0 as the
angle of incidence, described by Ey,inc(�r) = E0e− j(kx,0x+kz,0z),
where E0 is the electric-field amplitude of the incident wave;
kx,0 = k sin θ0 and kz,0 = k cos θ0 are the tangential and nor-
mal components of its wave vector (with respect to the
MS); and k = ω

√
εμ is the wave number in the surrounding

medium.
Due to the periodicity of the MS, we may express the

scattered fields everywhere as a superposition of FB harmon-
ics [11,48,49]. Furthermore, the problem is y independent

(∂y = 0), hence, no transverse-magnetic polarized fields are
scattered and the total electric field is y polarized:

Ey(�r) = E0

∞∑
n=−∞

e− jkx,nx

{
δn,0e− jkz,0z + rne jkz,nz z < 0
tne− jkz,nz z > 0,

(4)

where rn and tn are the yet-to-be-found reflection and
transmission coefficients associated with the nth FB har-
monic, respectively (see Fig. 1); kx,n = kx,0 + nκ and kz,n =√

k2 − k2
x,n are the tangential and normal wave-vector compo-

nents associated with the nth FB harmonic, respectively (the
radiation condition requires Re{kz,n} > 0 and Im{kz,n} < 0);
and δn,0 is the Kronecker delta, which corresponds to the inci-
dent wave. The magnetic fields may be obtained by applying
Faraday’s law on Eq. (4):

Hx(�r) = −E0

kη

∞∑
n=−∞

kz,ne− jkx,nx

{
δn,0e− jkz,0z − rne jkz,nz z < 0
tne− jkz,nz z > 0

(5)
and

Hz(�r) = E0

kη

∞∑
n=−∞

kx,ne− jkx,nx

{
δn,0e− jkz,0z + rne jkz,nz z < 0
tne− jkz,nz z > 0

.

(6)

Therefore, once rn and tn are found for all n ∈ Z, the scattered
fields are known entirely via Eqs. (4)–(6).

For the MS defined by Eq. (3) and the TE field configura-
tion in Eqs. (4)–(6), the GSTCs of Eqs. (1) and (2) reduce into

E+
y = E−

y , H+
x − H−

x = −∂x

[
χ zz

mm(x)
H+

z + H−
z

2

]
. (7)

We substitute the fields, Eqs. (4)–(6), at z → 0± in the GSTCs
of Eq. (7). The continuity of the tangential electric field
in Eq. (7) yields an inhomogeneous infinite set of linear
equations

tn = rn + δn,0, ∀n ∈ Z; (8)

while the discontinuity of the tangential magnetic field in
Eq. (7) results, after some algebraic manipulations, in another
inhomogeneous system of infinitely many linear equations,

(δn,0 − tn − rn)kz,n = jχ0

2
k2

x,n(tn + rn + δn,0)

+ jχ1

4
kx,n−1kx,n(tn−1 + rn−1 + δn−1,0)

+ jχ1

4
kx,n+1kx,n(tn+1 + rn+1 + δn+1,0),

(9)

which should be satisfied for every n ∈ Z. Substituting Eq. (8)
in Eq. (9), we obtain

jχ1

2
kx,n(kx,n+1tn+1 + kx,n−1tn−1) + ( jχ0k2

x,n + 2kz,n)tn

= 2kz,0δn,0. (10)

A canonical and more compact form of Eq. (10) reads

τn+1 − Dnτn + τn−1 = 4kz,0δn,0

jχ1kx,0
∀n ∈ Z, (11)
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where we define the normal magnetic field transmission coef-
ficients [see Eq. (6)]

τn = kx,ntn; (12)

the canonical coefficient sequence

Dn = −2χ0

χ1
+ 4 jkz,n

χ1k2
x,n

def= D∞ + 4 jkz,n

χ1k2
x,n

; (13)

and its asymptote D∞ = − 2χ0

χ1
, the limit of Dn as n → ±∞.

Given the sequence of canonical coefficients Dn, which is
entirely determined by the parameters of the MS configuration
in Eq. (3) and the incident plane wave (i.e., χ0, χ1, κ , k, and
θ0), our goal is to find a proper solution for the unknown
sequence τn (n ∈ Z) and, in turn, extract tn and rn using
Eqs. (12) and (8). In fact, mathematically speaking, Eq. (11)
constitutes a linear second-order recurrence relation with vari-
able coefficients; as such, for each choice of an adequate
initial-value set, (τ0, τ1) ∈ C2, one obtains a unique solution
for all the elements of the sequence τn, by applying Eq. (11)
recursively. As a consequence, infinitely many solutions exist
for Eq. (11); yet, as inferred from Eqs. (6) and (12), it is
necessary to seek for a solution with well-behaved (namely,
stable, nondiverging) asymptotes as n → ±∞, such that the
FB series for H+

z , as expressed in Eq. (6), converges properly.
Recurrence relations of the canonical form in Eq. (11)

were extensively investigated in the past, as they occur in
many physical and mathematical problems, especially in the
analysis of wave propagation in sinusoidally stratified media
[1,3,8,9,12,47,50]. In particular, it was shown by Meixner
and Schäfke (Meixner-Schäfke theorem) [47] that if ∃N ∈ N
such that |Dn| � 2, ∀|n| > N , then there exists a unique stable
solution for Eq. (11) (i.e., τn → 0 for |n| → ±∞), where
τ0/τ1 is expressed in the form of a continued fraction.

Indeed, all conventional studies that involve such a form
of recursive relations (e.g., as in [1,3,8,9,12,32–34,47,50], for
which |Dn| → ∞) rely on the Meixner-Schäfke theorem. In
contrast, due to the unconventional structure of the GSTCs
(1) with respect to the normal susceptibilities, the sequence
Dn = D∞ + O(n)

O(n2 ) −−−−→
n→±∞ D∞ = − 2χ0

χ1
does not satisfy the

Meixner-Schäfke theorem if the absolute value of the modula-
tion index (χ1/χ0) is greater than unity (the modulation index
is not limited in this analysis). More specifically, in our study,
the spatial derivative operator ∂x in Eq. (7), which did not
appear in conventional problems, such as [8], operates twice
on the tangential electric field Ey [since in addition to the ex-
plicit ∂x operator written in Eq. (7), the normal magnetic field
is evaluated via Hz = − ∂xEy

ωμ
], and eventually manifests itself

in the denominator in Eq. (13). This directly stems from the
inherent nonlocality of the normal (magnetic) susceptibilities.
Therefore, the conventional continued-fraction formula of the
Meixner-Schäfke theorem [47] fails to converge (namely, un-
stable) if one naively plugs Eq. (13) into it. This will be further
discussed in the following subsection.

B. Semianalytical converging solution

In what follows, we propose a path to overcome the insta-
bility issues encountered in the previous section. In order to
devise a way that would lead to a stable solution of Eqs. (11)

and (13) nonetheless, we inspect the asymptote of Eq. (11)
for large n > 0 by approximating Dn as D∞ therein. This
asymptote is then described via a homogeneous second-order
difference equation with constant coefficients, which has two
independent exponential solutions [51],

τ±
n = (α±)n, (14)

where

α± = D∞ ± √
D2∞ − 4

2
(15)

are the roots of the characteristic equation

α2 − D∞α + 1 = 0. (16)

Vietta’s formulas state that α+α− = 1 in this case, leading
to two possible scenarios: (i) one of the roots α± has less-
than-unity magnitude [exponential decay, stable, as indicated
by Eq. (14)], while the other has greater-than-unity magnitude
(exponential growth, unstable); and (ii) both the roots have
unity magnitudes (oscillatory, unstable). From Eq. (15), for
the lossless case (χ0, χ1, D∞ ∈ R), scenario (i) occurs for
|D∞| > 2 and (ii) occurs for |D∞| < 2, in consistency with
the condition required for the Meixner-Schäfke theorem [47].

The key for obtaining a stable solution is the introduction
of small losses in the constituents of our model, an essential
physical property of any practical system. Such inclusion of
losses (even if infinitesimal) is mandatory in many physi-
cal models, which are otherwise described by excessively
idealistic mathematical formulations that lead to ill-defined
results. In the context of our problem, such consideration of
losses constitutes the heart of the uniqueness theorem for
time-harmonic electromagnetic fields [21], which relies on
the presence of (at least) infinitesimal losses in the overall
medium.

Hence, in order to arrive at well-defined solutions for
unlimited modulation-index values (e.g., χ0 → 0, as we con-
sider later herein), we resolve the instability issue in case
(ii) above by introducing small loss, ensuring that one of
the roots in Eq. (15) of the asymptote in Eq. (16), denoted
hereafter by α̃, is always stable as in case (i) above.

For example, let us consider a particular scenario of small
losses by introducing χ0 = χ ′

0 − jχ ′′
0 , where χ ′

0 ∈ R and
χ ′′

0 > 0 are the reactive (real) and lossy (imaginary) parts of
the modulation offset χ0, respectively. For simplicity and con-
ciseness we retain χ1 as real and positive, set χ ′

0 = 0 (i.e., only
lossy part in the offset), and assume small losses χ ′′

0 � χ1.

Then D∞ = − 2χ0

χ1
= 2 jχ ′′

0
χ1

[see Eq. (13)] and Eq. (15) becomes

α± = − j

⎡
⎣

√
1 +

(
χ ′′

0

χ1

)2

± χ ′′
0

χ1

⎤
⎦ ≈ − j

(
1 ± χ ′′

0

χ1

)
. (17)

It is immediately seen that |α+| > 1 and |α−| < 1, in accor-
dance with Vietta’s formulas. Therefore, the stable root to be
taken is α̃ = α− in this case.

Next, to solve the scattering problem in practice, we denote
qn = τn−1/τn, n ∈ N\{0}. The recurrence relation of Eq. (11)
becomes qn = Dn − 1/qn+1. Repeated substitutions yield
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terminated continued fractions as follows [47]:

τ0

τ1
= q1 = D1 − 1

q2
= D1 − 1

D2 − 1
q3

= · · · = D1 − 1 |
|D2

− · · · − 1 |
|Dm−1

− 1

qm
. (18)

For large values of m, we terminate Eq. (18) with the
asymptote qm = τm−1/τm → α̃m−1/α̃m = 1/α̃, where α̃ is the
aforementioned stable root of the asymptotic characteristic
equation [Eq. (16)] when small loss is considered, and (semi-
analytically) obtain the ratio τ0/τ1. The corresponding ratio
τ0/τ−1 for the negative FB-harmonic indices (n < 0) of the
sequence is obtained similarly by inspecting the sequence for
n → −∞. These two ratios are then substituted in Eq. (11)
with n = 0 to extract τ0. With the values of τ0 and q1 at
hand, one may obtain all the other unknowns (τn, tn, and rn)
by applying the recurrence relation of Eq. (11) recursively:
τ1 = τ0/q1; τ2 = D1τ1 − τ0; τ3 = D2τ2 − τ1; and so forth.

At this point, an important observation regarding our
method of solution should be emphasized for the com-
pleteness of our discussion. Many scattering and dispersion
relations for periodic media ([3,8–12,52], for instance), which
are analyzed using FB-harmonic expansions, are typically
expressed via an infinite set of linear equations with infinitely
many unknowns (namely, the FB harmonics’ amplitudes) to
be solved. Such equation sets can be represented in infinite-
matrix form. Specifically, in our analysis, the matrix form of
Eq. (11) is⎡

⎢⎢⎢⎢⎢⎣

. . .
... . .

.

1 −D−1 1 0 0
· · · 0 1 −D0 1 0 · · ·

0 0 1 −D1 1

. .
. ...

. . .

⎤
⎥⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

...

τ−1

τ0

τ1
...

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

...

0
4kz,0

jχ1kx,0

0
...

⎤
⎥⎥⎥⎥⎥⎦. (19)

To solve Eq. (19) and extract the coefficients τn as desired,
one might be tempted to employ truncation and inversion,
as conventionally performed in such problems, e.g., as in
[11,52]. However, such truncation, say into a 2N + 1 by
2N + 1 system, in other words, keeping only the −N � n �
N elements of τn and −N � n � N equations of the equation
set Eq. (11), tacitly enforces τn = 0 for every |n| > N . Conse-
quently, this imposes the termination of 1/qN+1 = τN+1/τN =
0 in Eq. (18) (for nontrivial solutions), in contrast to the
termination condition 1/qN+1 = α̃, which was just shown to
be the only choice leading to a stable solution.

Therefore, although the typical truncation methodology
works well for many cases, it should be used with care,
since it may lead to solution divergence in some scenarios
(such as the one considered herein, for instance). In addition,
in case of uncertainty with regard to the convergence rate,
applying truncation and inversion to Eq. (19) might invoke
time-consuming inversions of large matrices. In contrast, our

method of stable-root terminated continued fractions, as for-
mulated in Eq. (18), merely requires a sequence of relatively
simple arithmetic calculations, and results in an exponentially
decaying sequences of amplitudes τn and tn, which guarantee
the absolute and uniform convergence of the FB sums in
Eqs. (4)–(6) into meaningful and physical values.

In conclusion, the resolution of the nonrealistic lossless
scenario with the introduction of physically inevitable dissi-
pation establishes a fast converging and robust semianalytical
method for analyzing sinusoidally modulated MSs with nor-
mal susceptibilities.

III. RESULTS AND DISCUSSION

A. Design and full-wave validation

To validate the theoretical analysis and demonstrate it in
practice, we design two PCB MS prototypes, operating at
20 GHz. Following standard MS synthesis schemes [17],
the abstract constituent distribution, Eq. (3), should be dis-
cretized into subwavelength intervals, and suitable scatterer
geometries (meta atoms), locally implementing the required
response, should be devised. Thus, we first focus on design-
ing the general meta-atom structure, and associating specific
geometrical parameters with effective magnetic susceptibility
(lookup table). Subsequently, to construct the entire MS, we
place the various meta-atoms in their respective locations to
implement the stipulated modulation profile χ zz

mm(x) [Eq. (3)],
using the lookup table (LUT) to replace the abstract suscepti-
bility with a physical structure.

1. Meta-atom design and characterization

We focus first on the preparatory design process of the
individual meta atoms to be used. Following [19], the lo-
cal magnetic response of each meta atom is implemented
by a subwavelength, capacitively loaded printed copper loop
with out-of-plane magnetic dipole moment [Fig. 2(a)]. When
z-directed magnetic field is applied, circumventing currents
in the loop are induced, giving rise to an effective magnetic
dipole (magnetic polarization), as desired.

The overall dimensions of each unit cell accommodating
the loop is Lx × Ly, where Lx = Ly = 3 mm ≈0.2λ (λ ≈
15 mm is the wavelength in the vacuum surroundings at
20 GHz); tsub = 0.127 mm is the thickness of the commercial
Rogers RO3003TM substrate, chosen for the implementa-
tion, with relative dielectric permittivity of εsub = 3 and loss
tangent of 0.001; a = 0.85 mm is the outer radius of the
printed copper loops; t = 0.08 mm is the traces’ width; g =
0.08 mm is the separation between the printed capacitors’
strips, compatible with standard PCB fabrication limitations;
and W is the capacitors’ width, by which the local suscepti-
bility value of the meta atom χ zz

mm(x) is yet to be controlled.
Owing to the subwavelength dimensions of each loop, we

approximately model its response via an equivalent quasistatic
lumped circuit, excited by the time-varying flux of the normal
magnetic field Hz [19] [Fig. 2(b)]. The induced electromotive
force generates a corresponding current flow I along the loop,
which is inversely proportional to the total impedance of
the equivalent circuit. The resultant normal magnetic dipole
moment of the individual loop, which is proportional to this
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FIG. 2. (a) Perspective (left) and top (right) views of a typical meta atom as designed in CST along with relevant dimensions. (b) Simple
quasistatic circuit approximation for the meta atoms in (a): the normal magnetic field Hz induces electromotive force along the loop via
Faraday’s law [ jωμ(πa2)Hz]. The resultant current I upon the loop is then determined by the reactive impedance of the loop (Zloop) in series
with the load capacitance C. In turn, the magnetic dipole moment is generated, which is proportional to I . Following such analysis, the meta
atom’s local susceptibility χ zz

mm approximation, Eq. (20), is obtained (see Appendix A)

current, is then used to deduce the effective local value of
the normal magnetic polarization distribution Msz; the normal
magnetic susceptibility value χ zz

mm of such meta atoms may
thus be evaluated (see Appendix A).

This practically means that the magnetic susceptibility χ zz
mm

of the loaded-loop meta atom can be controlled via the total
impedance of the equivalent circuit in Fig. 2(b) (this notion
will soon be exploited). In our design, this total impedance
is comprised of the loop’s impedance Zloop in series with the
( jωC)−1 reactance of the equivalent load capacitance C due
to both printed capacitors. The impedance Zloop is determined
by the fixed dimensions and electromagnetic properties of the
loop and the substrate, as well as the frequency [19,53,54],
whereas the load capacitance C (two identical capacitors in
series) is approximately proportional to the width W [55–57],
by which the local susceptibility value of the meta atom is
eventually controlled. The loop’s dimensions, a and t , are
intentionally fixed such that Zloop is inductive at 20 GHz
(accompanied by undesired, yet inevitable, small resistance
due to copper and dielectric losses). In this situation, one may
access a wide range of positive and negative susceptibility
values1 at 20 GHz by carefully tuning the capacitors’ width
W close to the series LC resonance of the circuit. Overall,
this model yields the following approximate relation between
the real (reactive) part of the loop’s susceptibility and the
capacitors’ width:

Re{χ zz
mm} ≈ βW (1 − γW )

(1 − γW )2 + (δW )2
, (20)

where β, γ , and δ are constants determined from the electrical
and geometrical properties of the substrate, loop, and capac-
itors, as well as the frequency of operation (see Appendix A
and Ref. [19] for more details).

In order to realize accurate susceptibility values for the
implementation of the sinusoidal modulation in Eq. (3), we
characterized and fine-tuned our meta atoms at 20 GHz with
the help of the commercial full-wave solver “CST Microwave

1Here we mean a wide range of positive and negative values for
the real (reactive) part of the magnetic susceptibility. The imaginary
(lossy) part will be discussed separately.

Studio” (CST), as prescribed in [38]: for each value of W
we arranged the meta atom in Fig. 2(a) in a macroscopi-
cally uniform planar MS configuration (by enforcing periodic
boundary conditions in CST) and calculated the complex
plane-wave reflection and transmission coefficients at inci-
dence angles of 0◦ and 30◦; from these scattering parameters,
we extracted the normal magnetic χ zz

mm [Fig. 3(a)] and tan-
gential electric χ

yy
ee [Fig. 3(b), regarded as negligible for the

moment] components, as formulated in [38]. Copper and
dielectric losses were taken into account in these simula-
tions and all the other simulations that follow; the lossy part
(imaginary part of the susceptibilities) obtained from the char-
acterization will be discussed in the next subsection.

Since the full-wave simulations tend to be time consuming
at the vicinity of the meta atom’s LC resonance, we per-
formed the simulation for several values of W which yield
moderate Re{χ zz

mm} values, and fitted the plot to the analytical
approximation of Eq. (20), by extracting the least-square-error
values of β, γ , and δ, using cftool (curve-fitting tool) in the
commercial computing platform MATLAB [Fig. 3(a)].2 In this
manner a reliable LUT with sufficient resolution and accuracy
is established for the entire set of the loaded-loop meta atoms
[Fig. 3(a)], enabling us to proceed towards constructing the
sinusoidally modulated prototypes.

2. Sinusoidally modulated prototype design and full-wave
validation

As mentioned in the beginning of Sec. III A, we proceed
with the established LUT to the macroscopic design [17] of
two sinusoidally modulated PCB MS prorotypes (Fig. 4): we
discretize the desired normal magnetic susceptibility profile in
Eq. (3) and arrange the loaded-loop meta atoms in accordance
with the discretized profile; the capacitors’ width W for the
meta atom in each site is determined by utilizing the LUT ob-
tained in Fig. 3(a). The prototypes are designed with the same

2The obtained least-square-error values for the meta atoms in
Fig. 2(a) at 20 GHz and characterization [38] at 0◦ and 30◦ are
β ≈ 48.24 × 10−3 k−1 mm−1, γ ≈ 0.8511 mm−1, and δ ≈ 7.137 ×
10−3 mm−1.
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FIG. 3. (a) Characterized real part of the magnetic susceptibility Re{χ zz
mm} vs the capacitors’ width W for the meta-atom configuration in

Fig. 2(a) at 20 GHz: full-wave results (orange x markers) and analytical fit following Eq. (20) (solid blue line). (b) Full-wave characterized
real part of the electric susceptibility Re{χ yy

ee } for the meta atom in Fig. 2(a) vs capacitors’ width W at 20 GHz.

goal values of χ0 = 0 and χ1 = 0.7k−1 for the modulation’s
offset and amplitude, and different spatial-variation rates of
κ/k = 1/2 and κ/k = 5/8. One period of each prototype, as
constructed in CST, is shown in Figs. 4(a) and 4(b); the chosen
capacitors’ width W and local real part of the susceptibility
Re{χ zz

mm(x)} of each meta atom in both designs are summa-
rized in Table I. For these specific capacitor widths chosen
to realize our prototypes, we also characterized the imaginary
(lossy) part of the magnetic susceptibility Im{χ zz

mm(x)}, by us-
ing the process in [38] again; although the values vary slightly
between meta atoms, they all remain around Im{χ zz

mm(x)} ≈
−0.01k−1 order of magnitude, which is used as an effective
mean (offset) value in our theoretical calculations for these
prototypes. Periodic boundary conditions were enforced in
the simulation and a plane wave was launched towards each
prototype with θ0 incidence angle (as illustrated in Fig. 1),
whose value was swept between 0◦ and 80◦.

The fractions of power coupled to the specular reflec-
tion (|r0|2) and direct transmission (|t0|2) of the zeroth-order
FB harmonic at 20 GHz are presented in Figs. 5(a) and
5(b) for these two prototypes, comparing the semianalytical
predictions for the goal parameters χ0 = 0 (the small lossy

part of χ ′′
0 = −Im{χ0} = 0.01k−1, as previously character-

ized, is added to arrive at the stable solution discussed in
Sec. II B) and χ1 = 0.7k−1 with the numerical full-wave re-
sults of the prototypes in Fig. 4. We first observe that the
MS is transparent for near-normal incidence (θ0 values close
to 0) and highly reflective at near-grazing illumination (θ0

close to 90◦). This observation is explained by the vanishing
normal magnetic field for near-normal impingement, such
that negligible normal magnetic polarization takes place [38].
Furthermore, a sharp angular notch, which manifests substan-
tial reflectance and absorption, appears at a certain angle θ̃ ,
which, by virtue of these results, is seen to strongly depend on
the spatial variation rate κ .

In order to shed light on the notch phenomenon, let us take
a closer look at Eqs. (13) and (18) with vanishing offset (χ0 =
0) and small amplitude values (χ1) of the modulation. In this
case, D∞ vanishes and the elements of Dn, which are inversely
proportional to χ1, attain large magnitudes, which decay as
n increases towards the limit D∞ = 0 [Eq. (13)]. The larger
the spatial variation rate κ , the faster the decay rate of the
sequence Dn with respect to n, and the faster the convergence
of the sequence qn to its limit 1/α̃ [due to the rapid growth of

FIG. 4. One period of the PCB version for the (a) κ/k = 1/2 and (b) κ/k = 5/8 prototypes, as modeled in CST. The goal parameters for
the modulation are χ0 = 0, χ1 = 0.7k−1. The chosen capacitors’ width W and local susceptibility χ zz

mm of each meta atom in both designs are
summarized in Table I.
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TABLE I. Chosen capacitor lengths W and corresponding local
susceptibility values χ zz

mm [according to the LUT in Fig. 2(c)] for both
the sinusoidally modulated MS prototypes designed in Figs. 4(a) and
4(a). The values are ordered from left to right in correspondence
with the meta-atom arrangements in Fig. 4. “N/A” meta atoms refer
to sites where no loaded loops are placed (only substrate), realizing
vanishing susceptibilities (to a very good approximation).

Prototype κ/k = 1/2 κ/k = 5/8

Meta-atom no. W (mm) χ zz
mm(k−1) W (mm) χ zz

mm(k−1)

1 (leftmost) 1.283 −0.6657 1.277 −0.7
2 1.362 −0.4114 1.326 −0.495
3 N/A 0 N/A 0
4 1.033 0.4114 1.055 0.495
5 1.084 0.6657 1.088 0.7
6 1.084 0.6657 1.055 0.495
7 1.033 0.4114 N/A 0
8 N/A 0 1.326 −0.495
9 1.362 −0.4114
10 1.283 −0.6657

k2
x,n in the denominator of Eq. (13)], recalling that α̃ ≈ − j for

the low-loss vanishing-offset scenario [Eq. (17)].
Thus, in view of Eq. (13) and its behavior for the

range of parameters discussed herein (χ0 = 0, small χ1, and

moderate κ values, which lead to large values and moder-
ate decay rate of the sequence Dn), we may approximate
τ0/τ1 ≈ D1, i.e., keep the dominant term in Eq. (18). At the
notch angle θ̃ , we expect the direct transmission to fall dras-
tically. This corresponds to τ0 ≈ 0, hence, the notch angle
θ̃ can be estimated from this relation by setting τ0/τ1 ≈ 0,
i.e., D1 ≈ 0. These steps result in the requirement kz,1 ≈
0 [see Eq. (13)] at the notch angle, which yields sin θ̃ ≈
1 − κ/k (provided that κ/k < 1). Following this analyti-
cal approximation yields 30◦ for κ/k = 1/2 [Fig. 5(a)] and
22.02◦ for κ/k = 5/8 [Fig. 5(b)], which agrees very well
with the semianalytical results, θ̃ ≈ 30.2◦ and θ̃ ≈ 22.2◦,
respectively.

The requirement kz,1 ≈ 0 (also called the Rayleigh wave-
length of the first-order FB harmonic [12,58]) implies that at
the notch angle the first-order FB harmonic is weakly evanes-
cent (i.e., on the verge of radiation, close to its cutoff), while
the resulting condition τ0/τ1 ≈ 0 implies that the amplitude
of electric field |t1| coupled into this mode is large. This phe-
nomenon is further demonstrated in Fig. 5(c), which shows
the semianalytical predictions of the field transmission (|t1|)
and reflection (|r1|) coefficients’ magnitudes into the first-
order FB harmonic vs angle of incidence for the κ/k = 1/2
prototype. These magnitudes attain their large maximal value
exactly at the notch angle, where the strong coupling into
this confined surface mode (and other high-order modes) is

FIG. 5. (a),(b) Semianalytical predictions following Eq. (18) with χ yy
ee = 0 (black solid and red dashed lines) compared to full-wave

simulation results (black x and red circle markers) of the zeroth-order FB harmonic power scattering coefficients, |r0|2 (red dashed line and
circle markers) and |t0|2 (black solid line and x markers) in linear scale, vs incidence angle for the two prototypes of Fig. 4 (χ0 = −0.01 jk−1

and χ1 = 0.7k−1), differing by their spatial modulation rate (a) κ/k = 1/2 and (b) κ/k = 5/8. (c) Semianalytical field transmission and
reflection coefficients into the n = 0, 1 FB harmonics in linear scale for the κ/k = 1/2 prototype (χ yy

ee = 0), exhibiting strong coupling into
the n = 1 harmonic around its transition between radiation and evanescence (at the notch angle). (d) κ/k = 1/2 and (e) κ/k = 5/8 prototypes
zeroth-order FB harmonic power scattering coefficients (|r0|2 and |t0|2 in linear scale) vs incidence angle, compared with the extended analytical
model that also includes constant tangential electric susceptibility χ yy

ee = 0.14k−1 (see Appendix B). (f) Real part of the electric-field phasor at
the vicinity of the κ/k = 1/2 MS on the y = 0 plane, for illumination at its notch angle θ0 = 30.8◦; left: full-wave results with the prototype
from Fig. 4(a); right: semianalytical predictions following the analysis elaborated on in Appendix B with χ yy

ee = 0.14k−1.
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responsible for the substantial dissipation of power in the MS
(typically few tens of percent).

Similar phenomena of sharp fluctuations in transmit-
tance or reflectance were observed in the past, for example
by Wood [13,14], which empirically noticed “unexpected”
narrow dark bands in the spectrum of an optical diffrac-
tion grating illuminated by white light (widely known as
Wood’s anomalies). The phenomenon was later explained by
Hessel and Oliner [12], who presented a thorough scattering
analysis for plane-wave-illuminated periodically modulated
impedance sheets (which feature, in effect, tangential sus-
ceptibility components). Upon investigation of their obtained
scattering equation, Hessel and Oliner revealed that the un-
derlying phenomena behind the dark bands observed by Wood
are, in fact, forced resonances of the impedance surface. These
resonances occur when the incident wave’s real-valued trans-
verse wave number (denoted herein as kx,0) is close to one
of the complex-valued transverse wave numbers of the sur-
face’s leaky-wave eigenmodes. In particular, they have further
shown that for vanishing offsets of the constituents’ modu-
lation, the nth resonance, associated with the nth leaky-wave
eigenmode, occurs exactly under the same condition derived
herein: kz,n ≈ 0. Indeed, as is clear from these similarities,
the notch phenomenon observed in Fig. 5 is yet another type
of Wood’s anomaly, shown herein to occur also in MSs with
normal susceptibilities (compared to previous reports, which
regard tangentially polarizable scenarios), thus further high-
lighting the universal nature of this physical phenomenon.

In addition to the angular trend of the prototypes, we ob-
serve that the qualitative behavior of the simulated results
is similar to that of the analytical predictions, yet certain
quantitative discrepancies can be observed between the two
scattering coefficients’ magnitudes. These discrepancies can
be explained by the fact that the loop meta atoms possess ad-
ditional electric and bianisotropic susceptibility components
[19] [see Fig. 3(b)]. These additional components mainly stem
from the azimuthal asymmetry of the loops due to the load
capacitors (compared to unloaded closed loops, for instance):
these asymmetries give rise to non-negligible higher-order
nonuniform spatial harmonics in the current distribution along
each loop (even when their dimensions are subwavelength)
and lead to charge accumulation, which effectively manifests
parasitic electric dipole moment [19,53,54].

In order to probe this hypothesis, we incorporated addi-
tional constant (x- and y- independent) electric susceptibility
component χ

yy
ee into the analytical model (Appendix B) and

swept its values, seeking the best fit between the analytical and
full-wave results. The best match occurs at χ

yy
ee = 0.14k−1,

for both prototypes [Figs. 5(d) and 5(e)]. This effective value
is comparable to the ones extracted for the individual meta
atoms in Fig. 3(b). The difference between the former and
the latter values implies that other factors may also contribute
to the discrepancies seen in Figs. 5(a) and 5(b), such as
(small) bianisotropic components possessed by the loop [19],
which are not considered in our model and the characteri-
zation process [38]; small variations in local susceptibility
values due to different adjacent-cell coupling when the MS
is no longer uniform; and discretization errors. Nevertheless,
excellent agreement is observed between theory and simu-
lation [Figs. 5(d) and 5(e)] when effective dominant electric

susceptibility is considered [as implied by Fig 3(b)]. Overall,
Figs. 5(a) and 5(b) clearly show that the main qualitative fea-
tures of the original model predictions are still retained, even
with the slight nonideality of the practical implementation.

To conclude our full-wave validation, we compare between
the semianalytical predictions [calculated via Eq. (4) with
the parasitic χ

yy
ee = 0.14k−1 evaluated above] and full-wave

results obtained for the real part of the tangential electric
field Re{Ey(�r)} on the y = 0 plane [Fig. 5(f)]. In this demon-
stration, a plane wave impinges the κ/k = 1/2 prototype at
the notch angle θ0 = 30.8◦ [Fig. 5(d)] for both the full-wave
simulation and semianalytical calculation. A dominant surface
wave with periodicity that corresponds to that of the first-
order FB harmonic is evident, in agreement with the results
in Fig. 5(c) and the physical interpretation following Wood’s
anomaly. Excellent agreement between the fields’ distribu-
tions is noticeable (despite the high sensitivity of the MS
response near the resonant notch), which serves as another
support for the fidelity of the analytical model, succeeding in
accurate reproduction of the scattering phenomena around the
surface.

At this point, we may already conclude that our exten-
sion to the semianalytical Meixner-Schäfke theorem [47] for
normal-susceptibility scenarios yields accurate and reliable
results, as evident from the very good overall correspondence
with the full-wave simulations.

B. Experimental verification

In order to experimentally verify our theoretical obser-
vations, both PCB prototypical designs from Fig. 4 were
printed on a commercial 9 × 12-in. (≈15.24λ in the uniform y
direction and ≈20.32λ in the sinusoidally modulated x direc-
tion) Rogers RO3003TM laminates by PCB Technologies Ltd.,
Migdal Haemek, Israel [Figs. 6(a) and 6(b)], and experimen-
tally characterized in the anechoic chamber at the Technion
[Figs. 6(c) and 6(d)]. Each prototype was mounted on a ro-
tatable foam holder, placed approximately at the focus of
a Gaussian-beam antenna (Millitech Inc., GOA-42-S000094,
focal distance of 196 mm ≈13 λ), illuminating the device
under test (DUT) with a quasiplanar wave front. A planar
near-field measurement system (MVG/Orbit-FR) was used
to record the forward scattering pattern, by scanning an area
of 400 mm (≈26.6λ) in the y direction over 400 mm in the
x direction, at a distance of z = 220 mm from the center
of the MS plane, from which the far-field pattern can be
deduced using the equivalence principle [21]. After deter-
mining the angle of incidence θ0 by rotation of the foam
holder, an 18.5–20-GHz sweep was performed, accompanied
by a reference measurement, for which the MS was removed
and the Gaussian-beam antenna directly illuminated the same
near-field scanning plane. By repeating this procedure for a
set of angles θ0 covering the desired characterization range,
the angular response of the MS can be obtained.

The maximal far-field gain, calculated from the near-field
measurements and calibrated with respect to the reference
measurement (thus, representing the power fraction coupled
into the direct transmission of the fundamental FB harmonic
|t0|2), is presented as a function of the angle of incidence
θ0 for both MSs at several representative frequencies in
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FIG. 6. Close view of the fabricated (a) κ/k = 1/2 and (b) κ/k = 5/8 MSs; the dashed black rectangles in (a) and (b) capture one period of
the MS, as designed in Figs. 4(a) and 4(b), respectively. (c) Perspective view of the experimental setup: the MS is approximately located at the
focus of the Gaussian-beam illumination from the antenna, while the near-field probe performs a planar scan. (d) Top view of the experimental
setup. The angle of incidence θ0 is set with the help of a goniometer with 0.5◦ resolution.

Fig. 7, in comparison to the analytical predictions presented
in Figs. 5(c) and 5(d). The experimental results for both MSs
show shallow and spread drop in the transmitted power around
a certain, frequency-dependent angle, accompanied by a steep
rolloff at grazing incidence angles for ∼18.5–19 GHz, and a
deeper and less spread frequency-dependent drop, followed

by a moderate rolloff at grazing angles for ∼19–19.75 GHz.
At higher frequencies the drop completely disappears and the
MS exhibits only rolloff behavior.

Although the measured response at the intended frequency
of operation (20 GHz) does not fit well to our theoretical pre-
dictions, better correspondence is observed at slightly lower

FIG. 7. Measured far-field transmittance in linear scale vs the angle of incidence (colored solid lines with full circles) for the (a) κ/k = 1/2
and (b) κ/k = 5/8 prototypes for several frequencies: f = 18.75 GHz (blue), f = 19 GHz (red), f = 19.25 GHz (orange), f = 19.5 GHz
(purple), f = 19.75 GHz (green), and f = 20 GHz (cyan). The dashed black “Semianalytical 20 GHz” traces show the semianalytical
predictions [Figs. 5(c) and 5(d)] of the infinite periodic MSs designed in Fig. 4 and illuminated by a 20-GHz plane wave.
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FIG. 8. (a) Zeroth-order FB-harmonic transmittance in linear scale of the κ/k = 1/2 prototype vs the incident angle, as compared between
the experimental 20-GHz results (cyan solid line with full circles); full-wave 20-GHz simulations with different substrate permittivities εsub =
3.2 (magenta dot-dashed line), εsub = 3.22 (green dashed line with circles), and εsub = 3.24 (red dashed line); and modified semianalytical
predictions with χ0 = (0.2 − 0.1 j)k−1, χ1 = 1.15k−1, and χ yy

ee = 0.14k−1 (black solid line). (b) Real part of the local magnetic susceptibility
values χ zz

mm of the meta atoms as arranged on the κ/k = 1/2 prototype in Fig. 4(a): goal sinusoidal modulation (χ0 = 0 and χ1 = 0.7k−1, blue
solid line) and its discretization (blue dashed line with circles), best-fit sinusoidal modulation (Re{χ0} = 0.2k−1, χ1 = 1.15k−1, black solid
line), and resultant local values for modified substrate permittivities εsub [other dashed and dot-dashed lines in correspondence with (a) herein].

frequencies (19.75 GHz, green trace, 1.25% relative frequency
shift): one can clearly identify a drop occurring at the ex-
pected angle of incidence (with the theoretical notch) for both
κ values consistently. Nonetheless, the measured drops are
shallower and wider than those expected according to the
theoretical analysis.

Seeing as possible fabrication tolerances and inaccuracies
may inflict deviations of the measurements from the theoreti-
cal predictions, we probed the influence of certain parameter
variations in our design on the MS response. One such factor
that may affect our results, as was also suggested in [59], is
a possible variation in the substrate’s permittivity εsub with
respect to the nominal values provided by the manufacturer.
Based on the realistic estimations of up to ±10% deviation
in εsub, as reported in [59,60], we investigate the dependence
of the κ/k = 1/2-prototype [Fig. 4(a)] response on such vari-
ations at 20 GHz. It is expected that such variations, even
if moderate, would cause non-negligible discrepancies in the
local meta atoms’ susceptibilities [e.g., via the deviations of
the capacitance values C in Eq. (20)], due to their proximity
to resonance, as inferred by Fig. 3(a). Since the resultant devi-
ation of the susceptibility values most likely leads to spatial
variations which are not precisely sinusoidally modulated,
full-wave simulations of the model in Fig. 4(a) were applied
in this investigation for the sake of accuracy.

A comparison between the experimental and full-wave re-
sults for the values of εsub = 3.2, 3.22 and 3.24 (instead of
the originally specified nominal value εsub = 3) is presented in
Fig. 8(a). Despite the high sensitivity of the MS transmittance
at large angles with respect to the substrate’s permittivity εsub

at this range of values, good agreement is observed between
the measured and full-wave results with εsub = 3.22.

To examine the possible extent of such susceptibility
variations, which may lead to the effects exhibited by the
experimental measurements, we swept the χ0 and χ1 values of

the analytical model, seeking for the effective values that yield
the best agreement between the semianalytical (with χ

yy
ee =

0.14k−1) and experimental results for the κ/k = 1/2 proto-
type at 20 GHz. Even though the fabricated MS is not likely
to remain precisely sinusoidally modulated at 20 GHz, the
effective values of χ0 = (0.2 − 0.1 j)k−1 and χ1 = 1.15k−1

[leading to the black profile plotted in Fig. 8(b)], compared
to the original χ0 = 0 and χ1 = 0.7k−1 [blue profiles in
Fig. 8(b)], achieve good agreement between the results, as
shown by the black trace in Fig. 8(a).

In view of this fit, one may ask whether the permittivity
shifts which were pointed out as a possible cause for the
measured scattering coefficients can indeed affect the meta-
atom susceptibilities in a such a manner. To examine this, we
re-extracted the individual meta-atom properties, as discussed
in Sec. III A (using [38] and CST simulations again), for
the various substrate permittivities considered in Fig. 8(a).
Figure 8(b) shows these re-characterized values in situ [with
respect to the prototype in Fig. 4(a)] and compares them with
the effective sinusoidal modulation obtained from our semian-
alytical investigation (black trace), as well as the original goal
values of the modulation (blue traces). Indeed, plausible cor-
respondence can be observed, especially at the larger positive
values around the peak of the modulation, which seem to play
the dominant part in the overall response of the MS.

It is important to note that the value of εsub = 3.22, which
leads to best agreement between theory and measurement,
is, in fact, an effective value which may account for other
possible realistic fabrication tolerances (e.g., deviations in the
substrate’s thickness or printed-traces’ dimensions), which
may very well cause substantial disturbance to the surface
susceptibility profiles in a way that can explain the general
trends seen in the measurements.

In summary, our experimental results (Fig. 7,
19.75 GHz) show qualitative agreement between theory and
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measurements, especially in aspects of drop (or notch) angle
and overall trend. Subject to reasonable realistic manufactur-
ing errors (physically supported by the semianalytical model),
especially when considering the sensitive near-resonance
design, good congruence is simultaneously observed between
theory, simulations, and experimental measurements.

IV. CONCLUSION

To conclude, we have presented and validated a rigor-
ous, robust, and fast-converging methodology for scattering
analysis of a fundamental case study of spatially modulated
MSs with normal susceptibilities: sinusoidally modulated
MSs with normal magnetic susceptibilities. Importantly, we
have shown that it is essential to include physically in-
evitable losses in the constituents of such MSs in order
to enable valid solutions for the scattered fields. Such ex-
tensions of the Meixner-Schäfke theorem could be readily
adopted in other physical problems of sort, or utilized to
treat more complex meta-atom configurations (involving bian-
isotropic components, for instance, or more general periodic
modulations).

In addition, we thoroughly validated this theory and pro-
posed an elaborate practical PCB-compatible design scheme,
supported by standard manufacturing process of etching
commercial laminates. We identified Wood’s anomalies for
normally polarizable MSs, which retain their universal
resonant-notch nature for this scenario as well (i.e., not re-
stricted to tangentially polarizable configurations, which were
analyzed in previous reports). The numerical and experi-
mental results are well explained, both semianalytically and
with full-wave simulations, within the bounds of plausible
manufacturing inaccuracies, despite the challenging resonant
behavior and susceptibility imperfection of the meta atoms in
practice. On the other hand, such increased sensitivity to the
close surrounding exhibited by this kind of MSs may prove
advantageous in applications of sensing [61]. This analysis of
the possible measurement errors emphasizes the importance
and usefulness of the analytical model, which provides a con-
venient and insightful way of probing the effects of the various
physical parameters on the behavior of the MS.

Overall, this work can be viewed as a significant step
towards better clarifying the role of normal susceptibilities
and their integration in more elaborated configurations, en-
abling solutions also for devices which do not obey the
Meixner-Schäfke theorem conditions, aiming at harnessing
these unique and often-overlooked degrees of freedom in ad-
vanced designs.
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APPENDIX A: DESIGN CONSIDERATIONS AND
ELABORATED CIRCUIT ANALYSIS FOR THE

LOADED-LOOP META ATOMS

In this Appendix we summarize the main steps and consid-
erations of the the meta atoms’ design process at 20 GHz (see
[19] for more details). First, in order to achieve the maximal
inductance from each loop, we set the trace width as t =
0.08 mm (which is slightly wider than the fabrication-process
limitation of minimal 3-mil trace and gap widths). Then, in
order to minimize the undesired susceptibility components
of the loop (mainly χ

yy
ee and χ

yz
em = −χ

zy
me) we sought the

minimal possible value for the outer radius of the loop (a =
0.85 mm) that maintains sufficiently large inductance. Such
a radius would allow a wide enough range of positive and
negative Re{χ zz

mm} values via reasonable (i.e., contained inside
the unit-cell boundaries) widths of the printed capacitors W
[by tuning the serial LC resonance of the loaded lumped loop,
as described in Fig. 3(a)].

By sweeping the printed capacitors’ width W , one effec-
tively controls the meta atom’s local susceptibility via the total
series impedance of the loaded loop [see Fig. 2(b)]. Following
[19] and the equivalent lumped-circuit model in Fig. 2(b), an
approximate expression for χ zz

mm is given by

χ zz
mm ≈ μ0ω

2(πa2)2

LxLy

C

jωCZloop + 1

= μ0ω
2(πa2)2

LxLy

C

jωC(Rloop + jXloop) + 1
, (A1)

where a, Lx, and Ly are the dimensions of the meta atom spec-
ified in Fig. 2(a); C is the total load capacitance implemented
by the two printed capacitors (in series); and Zloop = Rloop +
jXloop is the lumped impedance of the loop, where its real and
imaginary parts, Rloop and Xloop, are, in principle, determined
from the geometrical and electrical parameters of the loop and
the dielectric substrate for the frequency of operation ω [19].
The relation between the load capacitance C (two identical
capacitors in series) and the width W is approximately linear
[55–57]: C/W ≈ 6.9εeff (fF/mm); where εeff is the effective
value of the relative dielectric constant experienced by the
loop and the capacitors. Thus, the real (reactive) part of χ zz

mm
in (A1) as a function of the capacitors’ width W has the
approximate form of

Re
{
χ zz

mm

} ≈ μ0ω
2(πa2)2

LxLy

C(1 − ωXloopC)

(1 − ωXloopC)2 + (ωRloopC)2

def= βW (1 − γW )

(1 − γW )2 + (δW )2
, (A2)

where β = 6.9 × 10−12μ0εeffω
2(πa2)2/(LxLy), γ = 6.9 ×

10−12ωεeffXloop [m−1], and δ = 6.9 × 10−12ωεeffRloop (m−1).
For the sake of accuracy, the values of β, γ , and δ were
retrieved via full-wave simulations as described in Sec. III A.

APPENDIX B: INCORPORATION OF CONSTANT
TANGENTIAL ELECTRIC SUSCEPTIBILITY χyy

ee INTO THE
MODEL

In this Appendix we show the main steps for the incor-
poration of constant electric susceptibility χ

yy
ee into the model
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introduced in Sec. II. The magnetic susceptibility χ zz
mm(x) and

the expression for the fields �E (�r) and �H (�r) remain as defined
in Eqs. (3) and (4)–(6), respectively. On the other hand, the
GSTCs are modified into

E+
y = E−

y , H+
x − H−

x = −∂x

[
χ zz

mm(x)
H+

z + H−
z

2

]

+ jωεχ yy
ee

[
E+

y + E−
y

2

]
. (B1)

We repeat the same process executed in Sec. II and
substitute Eqs. (4)–(6) in Eq. (B1). After some algebraic ma-
nipulations we obtain Eq. (8) and

jχ1

2
kx,n(kx,n+1tn+1 + kx,n−1tn−1)

+ ( jχ0k2
x,n + jk2χ yy

ee + 2kz,n)tn = 2kz,0δn,0, (B2)

which should be satisfied for every n ∈ Z. Clearly, Eq. (B2)
reduces into Eq. (10) when χ

yy
ee = 0 (i.e., when no electric

susceptibility is considered). Defining τ̃n = kx,ntn and manip-
ulating Eq. (B2) yield

τ̃n+1 − D̃nτ̃n + τ̃n−1 = 4kz,0δn,0

jχ1kx,0
, ∀n ∈ Z, (B3)

where

D̃n = −2χ0

χ1
+ 4 jkz,n − 2k2χ

yy
ee

χ1k2
x,n

. (B4)

To evaluate the coupling to the various scattered modes, the
same procedure shown in Sec. II B is readily performed for τ̃n

with the simple replacement of Dn by D̃n. In particular, since
the limit of D̃n as |n| → ∞ is still D∞ = − 2χ0

χ1
, small loss is

added to the magnetic susceptibility in this scenario as well, in
order for a stable root α̃ of the asymptote in Eq. (16) to exist.
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