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Considering a noncentrosymmetric, nonmagnetic double Weyl semimetal (WSM) SrSi2, we investigate the
electron and hole pockets in bulk Fermi surface behavior that enables us to characterize the material as a type-I
WSM. We study the structural handedness of the material and correlate it with the distinct surface Fermi surface
at two opposite surfaces following an energy evolution. The Fermi arc singlet becomes doublet with the onset
of spin orbit coupling that is in accordance with the topological charge of the Weyl nodes (WNs). A finite
energy separation between WNs of opposite chirality in SrSi2 allows us to compute circular photogalvanic effect
(CPGE). Followed by the three band formula, we show that CPGE is only quantized for Fermi level chosen in
the vicinity of WN residing at a higher value of energy. Surprisingly, for the other WN of opposite chirality in the
lower value of energy, CPGE is not found to be quantized. Such a behavior of CPGE is in complete contrast to
the time reversal breaking WSM where CPGE is quantized to two opposite plateau depending on the topological
charge of the activated WN. We further analyze our finding by examining the momentum resolved CPGE. Finally
we show that two band formula for CPGE is not able to capture the quantization that is apprehended by the three
band formula.
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I. INTRODUCTION

The concept of chirality, determined by whether an ob-
ject is superimposable with its mirror image, is present in
various research fields from biology to high energy physics.
The chiral crystals have a well defined structural handedness
due to the lack of inversion, mirror, or other rotoinversion
symmetries. Such symmetry breaking manifests itself through
many fascinating properties, e.g., optical activity [1], negative
refraction [2], unusual superconductivity [3], quantized circu-
lar photogalvanic effect (CPGE) [4–7], gyrotropic magnetic
effect [8], unusual phonon dynamics, chiral magnetoelectric
effects [9,10], magnetic skyrmions [11], and many more. The
structural handedness thus imprints its effect in topological
responses for chiral semimetals. The fourfold degeneracy of
the linear band touching in Dirac semimetals (DSMs) such
as Cd3As2 and Na3Bi is broken by either time reversal or
inversion symmetry leading to Weyl semimetals (WSMs) with
isolated twofold nontrivial band crossings [12–14].

In this process, WSM is found to exhibit Weyl nodes
(WNs), protected by certain crystalline symmetries that act as
monopoles or antimonopoles of Berry curvature in momen-
tum space, with integer topological charge n [15–18]. On the
other hand, DSMs have net vanishing topological charge n =
0 [12–14]. As compared to the conventional WSMs with n =
1 [19–21], the multi-WSMs have higher topological charge
n > 1 with the crystalline symmetries bounding its maximum
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value to three [22–24]. The double WSM (triple WSM) show
linear dispersion along one symmetry direction and quadratic
(cubic) energy dispersion relations in the remaining two di-
rections, respectively. We note that higher topological charge
is also observed for multifold band crossing with integer
spin in topological chiral crystals such as the transition metal
monosilicides MSi (M = Co, Mn, Fe, Rh) [25–29]. The Fermi
arc surface states and chiral anomaly induced negative mag-
netoresistance directly reflect the topological nature of WSM
through its transport signatures [30,31].

Apart from first order electromagnetic and thermal re-
sponses [31–38], WSMs are further studied in the context of
second order transport response, namely CPGE. The WSMs
are found to exhibit quantized CPGE response where the
direction of DC photocurrent depends on the helicity of the
absorbed circularly polarized photons [39–41]. The optical
transitions near a WN play an important role in quantization
of CPGE serving as a direct experimental probe to measure
the Chern numbers in topological WSMs [42,43]. It is note-
worthy that the breaking of inversion symmetry guarantees a
finite CPGE. To be precise, the breaking of inversion sym-
metry (while preserving mirror symmetry) and tilting of the
Weyl cones in noncentrosymmetric TaAs family cause a giant
nonzero and nonquantized CPGE response [6,44–50]. On the
other hand, nondegenerate WNs can only result in a quantized
CPGE referring to the chiral nature of the underlying sys-
tem where all mirror symmetries are broken [4,8,51]. More
importantly, it has been shown considering a time reversal
symmetry invariant WSM lattice model that quantization in
CPGE is substantially different from a time reversal broken
WSM [52].
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The double WSM state has been theoretically predicted
recently in noncentrosymmetric SrSi2 that preserves time
reversal symmetry [53,54]. From the technological perspec-
tive, in general, noncentrosymmetric WSMs can be useful
in designing the high-efficiency solar cells [44,55]. A finite
energy separation between two WNs with opposite topologi-
cal charge makes SrSi2 an ideal material to study the CPGE.
Hence a natural question arises of how CPGE behaves in
such a nonmagnetic double WSM. Our quest is indeed gen-
uine due to the fact that SrSi2 is categorically different from
TaAs WSM family as far as their electronic structures are
concerned. At the same time, our study is equally relevant in
the context of possible device application such as solar cell
and experimental realizations.

In this work, we find SrSi2 has a structural handedness
with enantiomeric properties. This is manifested in the surface
Fermi surface (SFS) profile where Fermi arc exhibits inverted
structure in two opposite surfaces (001) and (001̄). The bulk
Fermi surface, on the other hand, bears the information of
electron and hole pocket referring to SrSi2 as a type-I WSM.
We observe a quantized CPGE response in SrSi2 when the
Fermi level is kept in the vicinity of the WN at higher energy
while there is no quantization for other WN at lower energy.
Our finding is in accordance with the fact that CPGE behaves
in a qualitatively distinct manner to time reversal invariant
WSM as compared to time reversal broken WSM [52]. We
examine the evolution of CPGE with the Fermi level con-
sidering spin orbit coupling (SOC) into the calculation and
compare it to the bare calculation with generalized gradient
approximation (GGA) only. Both the findings match qualita-
tively with each other while topological charge is found to
be n = 2 (n = 1) followed by GGA+SOC (GGA) calcula-
tions. We anchor our findings with the momentum resolved
analysis of CPGE. Furthermore, we check that the two band
formula for CPGE is unable to predict the quantization that
is correctly described by the three band formula. In short, our
study uncovers various interesting nonlinear optical response
properties of SrSi2 besides its implications based on structural
properties.

The organization of the paper is as follows. In Sec. II,
we discuss the crystal structure, electronic band structure,
position of the WNs, and other other bulk properties(Fermi
surface, Berry curvature). In Sec. III, we present the surface
properties such as surface Fermi surface, spectral energy dis-
tribution, and Fermi arcs, employing the slab geometry. We
next describe the framework of CPGE and the associated
results in Sec. IV. We provide the analysis on two band for-
mula alongside there. We discuss the necessary computational
details within the individual sections accordingly. Finally, in
Sec. V, we end with the conclusion and outlook.

II. TOPOLOGICAL CHARACTERIZATION

SrSi2, crystallizing in a cubic Bravais lattice, has the chiral
space group P4332 (212) with the lattice constant 6.563 Å.
The unit cell contains four strontium (Sr) atoms and eight
silicon (Si) atoms, which occupy the Wyckoff positions 4a
and 8c, respectively. The orientation of the atomic positions is
responsible for handedness in SrSi2. Under a mirror operation,
these two structural views in the (111) and (1̄1̄1̄) direction,

FIG. 1. (a) Crystal structure of SrSi2 showing the (111) view
of two enantiomers for single (lower) and double (upper) the unit
cell. (b) The crystal structure viewed from (1̄1̄1̄) which is the mirror
(a → b, b → a and c → c) + flipped image (a → −b, b → −a and
c → −c) of (a). Structural chirality generates a distinct handedness
under a mirror operation referring to the enantiomeric property of the
material.

as shown in Figs. 1(a) and 1(b), reverse their handedness.
This fact can be used to distinguish the two enantiomers of
SrSi2 crystal. Due to this unique chiral crystal structure, SrSi2

lacks both mirror and inversion symmetries but has C2, C3,
and C4 rotational symmetries. Since SrSi2 is a nonmagnetic
system, respecting the time-reversal symmetry, the absence
of inversion symmetry is fundamental for realizing a WSM
phase with four WNs.

We study the electronic structure in SrSi2 using DFT calcu-
lations. The density functional theory (DFT) calculations are
based on GGA with the k-mesh 32 × 32 × 32 within the full-
potential local-orbital (FPLO) code [56]. The band structures
from GGA+SOC along the high symmetry direction in the
Brillouin zone (BZ) are shown in Fig. 2(a). We observe the
band crossing between the highest occupied valence bands
and the lowest unoccupied conduction along the �-X direc-
tion. The WNs appear at −34.4 meV (V1) and 82.3 meV
(V2) with topological charge n = +1 and n = −1, respec-
tively, without SOC. Under inclusion of SOC, the single WNs
change their dispersion to form the double WNs in SrSi2.
These WNs appear at −26.3 meV (W1) and 88.2 meV (W2)
with topological charge n = +2 and n = −2, respectively, as
shown in Table I.

The band shown in green [inset of Fig. 2(a)] forms the top
of the valence band and gives rise to two nested hole pockets
along the line �-X . Similarly, the band shown in red [inset I1

TABLE I. Positions, Chern numbers, and energies of the WNs
with SOC (W1,2) and without SOC (V1,2).

Position [(kx, ky, kz)]
WP in ( 2π

a , 2π

b , 2π

c ) C E (meV)

V1 (±0.2001, 0, 0) +1 −34.4
V2 (±0.3691, 0, 0) −1 82.3

W1 (±0.2003, 0, 0) +2 −26.3
W2 (±0.3696, 0, 0) −2 88.2

245122-2



ELECTRONIC STRUCTURE AND UNCONVENTIONAL … PHYSICAL REVIEW B 104, 245122 (2021)

(g) 104

0

-10
4

(e)

a

b

(f)(b)

(c)

(d)

X M R

-1

0

1

-2

2 (a)

FIG. 2. (a) Bulk band structure of SrSi2 from GGA+SOC calculation. The energies of the double WNs are at EW1 = −26.3 meV and
EW2 = 88.2 meV associated with topological charge n = +2 and n = −2, respectively, as depicted in inset I1. The insets I2 and I3 demonstrate
the linear and quadratic band dispersion, around the WN of chirality +2, along kx and ky, respectively. The bulk isoenergy surface for kz = 0
cut at Ef = EW1 (b), Ef = EW2 (c), and Ef = 0 (d). The Weyl points with positive and negative chiralities are marked by + and ×, respectively.
(e) Three-dimensional Fermi surface for a single unit cell and its projection (f) on the kx-ky plane by doubling the unit cell. (g) The kz averaged
Berry curvature projected on the kx-ky plane.

in Fig. 2(a)] forms the lowest conduction band which results
in two nested, closed electron pockets centering around the �

along the direction M-�-X . The linear and quadratic nature of
the band dispersion along kx and ky are clearly shown in insets
I2 and I3 while focusing on the WN of chirality +2. Impor-
tantly, the WNs of double WSM SrSi2 in the presence of SOC
are protected by time reversal and C2 rotation symmetries
while the inversion and mirror symmetries are already broken.
Interestingly, in the absence of SOC, the quadratic dispersion
turns into linear. The size of the electron pockets are larger
than the hole pockets. The conventional type-I WSMs are
characterized by shrinking of the Fermi surface to a point at
the WN energy. The simplest Fermi surface of such a WSM
would consist of only two such points. The cut of the bulk
three-dimensional Fermi surface for the kz = 0 plane at dif-
ferent energies E f = EW1 , 0, and EW2 is depicted in Figs. 2(b),
2(c) and 2(d), respectively. There exists only hole (electron)
pockets for E f = EW1 (E f = EW2 ) while the Fermi surface
hosts both electron and hole pockets simultaneously for any
energy EW1 < E f < EW2 . The energy separation between these
single and double WNs are 116.7 and 114.5 meV, respectively,
resulting in interesting chirality related phenomena, namely
quantized CPGE response in SrSi2 which we describe in the
subsequent section.

SrSi2 exhibits a complicated and nested bulk 3D Fermi
surface [see Fig. 2(e)] whose projection in the kx − ky plane
with the doubling of unit cell along with the high symmetry
points of BZ is shown in Fig. 2(f). We show the kz averaged
Berry curvature in the kx − ky plane, as depicted in Fig. 2(f),
by summing over all the occupied valence bands until E f = 0.
The sink (C = −2) and source (C = 2) of the Berry flux are
marked by blue and red colors, respectively, in Fig. 2(g). The
Berry curvature has the negative (positive) flux in the hole
pockets along �-X (�-X̄ ) and electron pockets along M-�-R
(M̄-�-R̄), respectively.

III. TOPOLOGICAL SURFACE STATES

Figure 3 shows the evolution of the SFS mapping in the
(001) surface with decreasing (increasing) the energy from
Fermi level E f = 0 meV to the WN energy E f = EW1 (E f =
EW2 ) using PYFPLO [56] module as implemented within
FPLO via Green’s function techniques. We obtain a tight-
binding Hamiltonian with 136 bands by projecting the Bloch

wave functions onto Wannier functions. Here we consider
Sr-4d , -5s, and -5p, Si-3s and -3p orbitals within the energy
range −11.6 eV to 10.0 eV. Here we will study the grad-
ual formation of Fermi arcs considering semi-infinite slab
geometry. The projection of big electron pocket appears
around the � point and hole pocket appears along the �-X di-
rection at E f = 0 [see Fig. 3(a)]. The surface states are found
on the right (left) side for kx > 0 (kx < 0) in the (001) surface.
At E f = 0, two Fermi arcs are connected around kx ≈ ±0.1
and kx ≈ ±0.3 [marked by circle in Fig. 3(a)] in the (001)
surface. With the decreasing energy from E f = 0 to E f =
−10 meV, the electron pockets around � gradually shrink and
the hole pocket along �-X increases as shown in Fig. 3(b).
The Fermi arcs get splitted at the point around kx ≈ ±0.1 and
kx ≈ ±0.3 and start to form the long S-shaped Fermi arcs. Fi-
nally at E f = EW1 = −26.3 meV, the tail of the long S-shaped
Fermi arcs touch the WNs [see Fig. 3(c)]. With increasing the
Fermi level from E f = 0 to E f = 30 meV, the electron pocket
increases and hole pocket decreases [see Fig. 3(d)]. The Fermi
arcs are gradually going into the projected bulk band structure
marked by arrows in Fig. 3(d). At E f = EW 2 = 88.2 meV,
the Fermi arcs touching the WNs around kx ≈ ±0.37 are
submerged into the bulk projected band structure as shown
in Fig. 3(e). Additionally, some trivial surface states running
parallel to |kx| appear and form a closed loop. With increasing
the Fermi level from E f = 0, the trivial surface states touch
the electron pockets at E f = 88.2 meV. The same features
in the SFS mapping are also observed for GGA with a singlet
Fermi arc instead of Fermi arc doublet.

To further investigate the nature of the Fermi arc, we calcu-
late the SFS states of the (001) and (001̄) surface, respectively,
as shown in Figs. 4(a) and 4(b) at the WN energy E f = EW2 =
−26.3 meV. Two pairs of WNs appear with opposite chirality
and are marked by plus (cross) with the topological charge
n = +2 (n = −2). The noncentrosymmetric compound SrSi2

has two distinct surfaces for (001) and (001̄) due to lack of
mirror symmetry [see Figs. 1(a) and 1(b)]. This causes the
SFS profile to possess a handedness that we describe below.
We observe a Fermi surface map with a large “S”-shaped
Fermi arc in the full BZ connecting the two WNs of oppo-
site chirality in the (001) surface. Interestingly, the inverted
“S”-shaped Fermi arcs are observed in the (001̄) surface.
Hence, the orientation of connecting pattern of Fermi arcs
becomes reversed in the (001) and (001̄) surface. This
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FIG. 3. Surface Fermi surface of the (001) surface from GGA+SOC at (a) Ef = 0, (b) Ef = −10 meV, (c) Ef = −26.3 meV, (d) Ef =
30 meV, (e) Ef = 88.2 meV. This shows the gradual formation of Fermi arcs, i.e., nontrivial surface states (trivial surface states) with the
variation of Ef marked by pink (green) arrows.

property of Fermi surface is related to the enantiomer struc-
ture of the material where the mirror symmetric counterpart
cannot be superimposed with the parent structure. We show in
Fig. 1 that the two enantiomers of SrSi2 can be distinguished
by the handedness of the crystal which is formed by their
Sr/Si atoms along the (111) direction. Such a connection
between Fermi arcs and crystalline handedness can lead to
future studies on transports of chiral topological semimetal
and their connection with the structural handedness. Here the
Fermi arcs are doubly splitted related to its magnitude of
the topological charge n = 2 and marked by arrows in both
Fig. 4(a) and 4(b).

To further elucidate the topological structure of the Fermi
arcs, we also calculated the energy dispersion curve of
the semi-infinite slab for the (001) surface the along the
2π
a (kx, kW P

y , 0) from both GGA and GGA+SOC as shown in
Fig. 4. The Fermi arcs in both cases are formed by a band
which connects the top of the valence bands around kx = 0.3
to the bottom of the conduction around kx = 0.2, respectively.
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FIG. 4. The surface Fermi surface of the (001) surface (a) and
(001̄) surface (b) at Ef = EW1 , respectively. The long “S”-shaped
Fermi arcs doublet, marked by arrows, connecting WNs with oppo-
site chirality are found. The surface Fermi surface profiles on the
(001̄) surface and (001) surface are related by the mirror reflec-
tion but not superimposable on each other. The energy dispersion
curve on the (001) surface along 2π

a (kx, ky
W P, 0) from GGA (c) and

GGA+SOC (d) calculations. The long chiral Fermi arcs singlet and
doublet are clearly visible for GGA and GGA+SOC and marked by
arrows.

The Fermi arcs are indicated by the arrows in Figs. 4(c) and
4(d). The singlet and doublet structures of the Fermi arc are
clearly visible in GGA and GGA+SOC in accordance with
the magnitude of topological charges. The Fermi arc con-
necting WNs with n = ±2 has positive (negative) chirality
for the � → X (� → −X ) direction. This is in stark contrast
to the magnetic WSMs where a single Fermi arc connecting
two WN of opposite topological charge is observed. The exis-
tence of such chiral Fermi arcs for time reversal symmetry
broken WSM might lead to distinct transport signatures as
compared to the time reversal symmetry invariant WSM. We
also note that the energy dispersion in the (001̄) surface can
be obtained by mirror reflection on that of the (001) surface.
Hence the energy dispersions in the (001̄) and (001) surfaces
are superimposable with each other. The energy dispersion
profile follows an achiral pattern in the above surfaces where
surprisingly, nonsuperimposable chiral nature of SFS profiles
are visible.

IV. SECOND ORDER CPGE RESPONSE

The CPGE injection current is a second order optical
response when the system is irradiated with the circularly
polarized light. It is defined as

dJa

dt
= βab(ω)[E(ω) × E∗(ω)]b, (1)

where E(ω) = E∗(−ω) is the circularly polarized electric
field of frequency ω, and a and b indices are the direction of
current Ja and circular polarized light field, respectively. Con-
sidering the relaxation time approximation and momentum
independent relaxation time τ [27,31,57], we can introduce
the broadening parameter � = h̄/τ . The conductivity σ c

ab
(a, b, c = x, y, z) is a third rank tensor representing the pho-
tocurrent Jc generated by electric fields Ea and Eb: Jc =
σ c

abE∗
a Eb. We note that photoconductivity tensor σ c

ab and
CPGE tensor βcc are essentially related by relation σ c

ab =
τβcc. From quadratic response theory, the photoconductivity
reads as [44,58–60]:

σ c
ab(ω) = e3

ω2
Re

{
φab

∑
	=±ω

∑
l,m,n

∫
BZ

d3k

(2π )3

(
f �k
l − f �k

n

)

× 〈n�k|v̂a|l�k〉〈l�k|v̂b|m�k〉〈m�k|v̂c|n�k〉
(E�kn − E�km − i�)(E�kn − E�kl − h̄	 − i�)

}
(2)

where φab is the phase difference between the driving field
Ea and Eb. Here, |n�k〉, E�kn, m0, and v̂b = p̂/m0 are electronic
state, associated energy, free-electron mass, and quasiparti-
cle velocity operator along the b direction, respectively. For
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circularly (linearly) polarized light, φab becomes imaginary
(real). We note that φab = i and −i correspond to right and left
circularly polarized light, respectively. Hence, the photocur-
rent along the c direction changes its sign under the reversal of
polarization of the light having electric fields along the a and b
direction [44]. For example, one can consider the polarization
vector (0, 1, i) and (0, 1,−i) for right and left circularly po-
larized light. Once the polarization of the circularly polarized
light changes, the relative phases between the electric fields
Ey and Ez also change such that φyz = i → −i and eventually
leading to the reversal in the direction for the photocurrent Jx.
The imaginary (real) part of the integral in Eq. (2) describes
the CPGE (shift current response) under circularly (linearly)
polarized light [61,62].

We now discuss the photoconductivity formula as given in
Eq. (2) in more detail. The formula is based on the three band
transition where an additional virtual band is considered in
addition to the valence and conduction band. The three band
transitions are given by n → m → l and l �= m, whereas two
band transitions are given by l = m. It has been found that the
two-band real transitions contribute much less in photocurrent
than WN contributes maximally. On the other hand, virtual
transitions from the occupied Weyl to the empty Weyl band
via a third trivial band predominantly contribute to the high
value of shift current and CPGE [44]. At the same time, we
note that quantized CPGE responses are observed in various

model systems without inversion symmetry employing the
two band formula for CPGE that we discuss at the end of this
section [4,29,52].

We below probe the behavior of photocurrent by plausible
analytical argument. At the outset, we note that the imaginary
part of velocity numerator N = 〈n�k|v̂a|l�k〉〈l�k|v̂b|m�k〉〈m�k|v̂c|n�k〉
would survive after the integral for time reversal symme-
try invariant nonmagnetic WSM. Since the real part of the
photoconductivity formula Eq. (2) gives the CPGE current,
the energy denominator D = (E�kn − E�km − i�)(E�kn − E�kl +
h̄	 − i�) has to be real under these circumstances. The
momentum integration in Eq. (2) acquires imaginary values
for CPGE photoconductivity. One can continue the calcu-
lation of photoconductivity by retaining the real part of D
as Re[D] = −δ(E�k,n − E�k,m)/�. We note that δ(E�k,n − E�k,m)
comes from the imaginary part of (E�kn − E�km − i�)−1 and
the term 1/� arises from the second part (E�kn − E�kl + h̄	 −
i�)−1 due to the selection rule E�kn = E�kl − h̄	. We know that
CPGE receives the contribution from closed optically acti-
vated momentum surface as mediated by δ functions [4,52].
The momentum integration of N/D becomes imaginary for the
CPGE photocurrent. Considering the time reversal symmetry
invariant nature of the material and type of polarization, one
can perform the momentum integration by taking into account
the appropriate terms only. Then the photoconductivity can be
rewritten in the following approximated form

σ c
ab(ω) = e3

ω2
Re

[
φab

∑
	=±ω

∑
l,n,m

∫
d3k

(2π )3
f �k
nl

〈n�k|v̂a|l�k〉〈l�k|v̂b|m�k〉〈m�k|v̂c|n�k〉
(E�kn − E�km − i�)(E�kn − E�kl − h̄	 − i�)

]

≈ − e3

ω2

[ ∑
	=±ω

∑
l,n,m

∫
d3k

(2π )3
f �k
nlδ(E�kn − E�km)

〈n�k|v̂a|l�k〉〈l�k|v̂b|m�k〉〈m�k|v̂c|n�k〉
(E�kn − E�kl − h̄	 − i�)

]

≈ − e3

ω2

[ ∑
	=±ω

∑
l,n

∫
d3k

(2π )3
f �k
nl

〈n�k|v̂a|l�k〉〈l�k|v̂b|n�k〉〈n�k|v̂c|n�k〉
(E�kn − E�kl − h̄	 − i�)

]

≈ − e3

h̄2ω2

[ ∑
	=±ω

∑
l,n

∫
k2dkcd�

(2π )3
f �k
nl

E2
�k,nl

Rc
�k,nl

∂kc E�kn

(E�kn − E�kl − h̄	 − i�)

]

≈ − e3

h̄2ω2

[ ∑
	=±ω

∑
l,n

∫
dE�kd�

(2π )3

E2
�k,nl

k2Rc
�k,nl

(E�kn − E�kl − h̄	 − i�)

]

≈ − e3τ

h̄ω2

∑
	=±ω

∑
l,n

∫
d�

(2π )3
	2k2Rc

�k,nl

≈ −β0τ
∑
l,n

∫
dS�k,nlR�k,nl

≈ iβ0τ
∑

n

∫
d �Sn · �	n

≈ iCβ0τ (3)

where C = ∑
n Cn is the Chern number summing over all the

occupied bands and β0 = e3/h̄.
Considering the relaxation time approximation for diffu-

sive transport, the relation between the broadening parameter

� and the quasiparticle lifetime τ is given by � = h̄/τ

for metallic systems [27,31,44,57]. In the above derivation,
we first combine φab × (E�k,n − E�k,m − i�)−1 as −δ(E�k,n −
E�k,m) to retain the real part. Thereafter, we remove Re[...]
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considering the fact that integration of 〈n�k |v̂a|l�k〉〈l�k |v̂b|m�k〉〈m�k |v̂c|n�k〉
(E�k,n−E�k,l −h̄	−i�)

yields quantized contributions to CPGE. To be precise,
the terms Im[〈n�k|v̂a|l�k〉〈l�k|v̂b|m�k〉〈m�k|v̂c|n�k〉] and Im[(E�k,n −
E�k,l − h̄	 − i�)] combine together allowing the quantized
contribution to CPGE within the closed optically activated
momentum surface. We below demonstrate the technical steps
with plausible arguments.

The topological charges of the activated WNs contribute
to the quantization of photoconductivity. We consider the
selection rule E�k,nl = E�k,l − E�k,n = h̄	, owing to the opti-

cally activated momentum surface, and f �k
nl = f �k

n − f �k
l are

the difference between band energies and Fermi-Dirac distri-

butions, and ra
�k,nl

= i〈l�k|∂ka |n�k〉 = i
h̄v̂a

�k,nl

E�k,nl
. For n �= l , ra

�k,nl
are

the interband position matrix elements or off-diagonal Berry
connection. For n = l , ra

�k,nn
is the diagonal Berry connec-

tion. For the general case with n �= l , Rc
�k,nl

= εabcra
�k,nl

rb
�k,ln

.
We note that 〈n�k|v̂a|l�k〉〈l�k|v̂b|n�k〉, coming from the imaginary
numerator as described above, can be written as E2

�k,nl
Rc

�k,nl
. On

the other hand, the energy integration
∫

dE�k[
E2

�k,nl

(E�k,n−E�k,l −h̄	−i�) ],

assuming the imaginary part of denominator contributes to
CPGE, reduces to h̄2	2

�
. Upon judiciously implementing all

the above mathematical steps, one can bring down the quantity∫
dkc[

〈n�k |v̂a|l�k〉〈l�k |v̂b|n�k〉∂kc E�k,n

(E�k,n−E�k,l −h̄	−i�) ] to the following form
h̄2	2Rc

�k,nl

�
. The

relation between �R�k,nl and the Berry curvature is given by
�	�k,n = i

∑
l �=n

�R�k,nl . Here �Sn is a closed surface of band n
enclosing the degenerate points. For a given frequency ω, the
delta function and Fermi-Dirac distributions select a surface
�Snl in the �k space where d �S = k2d� denotes the surface
element oriented normal to �S where d� is the differential solid
angle. Therefore, the CPGE current is essentially the Berry
flux penetrating through surface �S. We note that a trace of
CPGE tensor Tr[β]/iβ0 is found to be quantized [4,29,52].

We now derive the two-band formula for the photocurrent
σ̃ c

ab(ω) from the three-band formula by accounting the direct
optical transition from |l�k〉 to |n�k〉 as given in Eq. (2). We con-
sider n = m and (E�k,n − E�k,m − i�)−1 = i/� = iτ/h̄. One can
allow a broadening � around a given energy level E�k,n. This
comes into play when any two energy levels become equal
to each other within the quantum limit. Using E�k,nl = ±h̄ω,

we can write ra
�k,nl

= i
h̄v̂a

�k,nl

E�k,nl
= i

v̂a
�k,nl

ω
. The photoconductivity as

reduced from Eq. (2) is given below [4,5,63]:

σ̃ c
ab(ω) = e3τ

h̄
εb f g

∑
l,n

∫
BZ

d3k

(2π )3
f �k
nl�

a
�k,nl

r f
�k,nl

rg
�k,ln

δ(h̄ω−E�k,nl )

(4)

with v̂
f
�k,nl

= 〈n�k|v̂ f |l�k〉, E�k,nl = E�k,n − E�k,l and �a
�k,nl

=
v̂a

�k,nn
− v̂a

�k,ll
. Notice that εb f g represents the Levi-Civita

symbol and the two band formula for photoconductivity is
usually referred to as σ̃ab(ω) in the literature. Here we have
already considered φab = i while computing the two band
formula Eq. (4) from the three band formula Eq. (2). One has
to be careful with the summation

∑
l,n f �k

nl v̂
a
�k,nl

v̂b
�k,ln

v̂c
�k,nn

. We

below discuss the analytical reduction from the three band
formula [Eq. (2)] to the two band with plausible argument.

The summation is over the repeated indices, and l (n) →
n(l ); one can find f �k

nl v̂
a
�k,nl

v̂b
�k,ln

v̂c
�k,nn

→ f �k
lnv̂

a
�k,ln

v̂b
�k,nl

v̂c
�k,ll

. The

term v̂a
�k,nl

v̂b
�k,ln

can be written in an antisymmetric way

A(a, b) = 1
2 (v̂a

�k,nl
v̂b

�k,ln
− v̂a

�k,ln
v̂b

�k,nl
) such that A(a, b) reverses

its sign under the reversal of polarization A(a, b) = −A(b, a)
with a(b) → b(a). Now, we can decompose the summation

with l (n) → n(l ) and find
∑

n,l
1
2 [ f �k

nlA(a, b)v̂c
�k,nn

+
f �k
lnA(a, b)v̂c

�k,ll
] = ∑

n,l [ f �k
nl

(v̂a
�k,nl

v̂b
�k,ln

−v̂a
�k,ln

v̂b
�k,nl

)

2 �c
�k,nl

] with

�c
�k,nl

= ∂kc E�k,nn − ∂kc E�k,ll = v̂c
�k,nn

− v̂c
�k,ll

and f �k
nl = − f �k

ln.
As a result, the two-band photoconductivity formula looks
like

σ̃ c
ab(ω) = e3τ

ω2h̄

∑
	=±ω

∑
l,n

∫
d3k

(2π )3
f �k
nl

1

2

(
v̂a

�k,nl
v̂b

�k,ln
− v̂a

�k,ln
v̂b

�k,nl

)
×�c

�k,nl
δ(E�k,nl − h̄	). (5)

In order to cast the above expression in terms of ra,b
�k,nl

, one has

to use v̂a,b
�k,nl

= −ira,b
�k,nl

E�k,nl/h̄ with the selection rule E�k,nl =
±h̄ω, provided E�k,nl = h̄	, in accordance with the delta
function δ(E�k,nl − h̄ω). Therefore, by replacing δ(E�k,nl − h̄	)
with δ(E�k,nl − h̄ω), and absorbing the summation over 	 =
±ω, the photoconductivity is found to be

σ̃ c
ab(ω) = e3τ

h̄

∑
l,n

∫
BZ

d3k

(2π )3
f �k
nl

[
ra
�k,nl

rb
�k,ln

]
�c

lnδ(E�k,nl − h̄ω)

(6)

with [ra
�k,nl

, rb
�k,ln

] = (ra
�k,nl

rb
�k,ln

− ra
�k,ln

rb
�k,nl

)/2. One can thus ob-
tain the two band CPGE formula Eq. (4), starting from
the three band approach, where the reversal of polarization
appropriately leads to a reversal in sign σ̃ c

ab(ω) = −σ̃ c
ba(ω)

owing to the above commutator like relation [ra
�k,nl

, rb
�k,ln

] =
−[rb

�k,nl
, ra

�k,ln
]. We note that Eqs. (6) and (4) are connected

by appropriate rearrangement of indices in the Levi-Civita
symbol. We below examine the quantization in the photocon-
ductivity from the three and two band approaches.

According to symmetry classification of the material, the
nonzero elements of the CPGE tensor for SrSi2 are σ x

yz, σ
y
zx,

σ z
xy. To be precise, σ x

yz = −σ
y
zx = σ z

xy. The relaxation time
plays an important role in determining the quantization of
CPGE. Therefore it is indeed very important to have the
correct estimation of relaxation time to obtain reliable CPGE.
Typically, the hot-electron scattering time for metallic systems
≈ f s [28] which corresponds to a broadening parameter � =
h̄/τ = 10–100 meV. The effect of temperature and impurity
scattering on photocurrent generation is taken into account by
this broadening parameter �. The BZ was sampled by k mesh
with 250 × 250 × 250 to compute the CPGE current.

Figures 5(a), 5(b) and 5(c), 5(d) shows the CPGE response
for � = 10, 100 meV with and without SOC, respectively. We
find the chiral chemical potential μch = EV2 − EV1 = 116.7
(= EW2 − EW1 = 114.5) meV for GGA (GGA+SOC) calcula-
tions. The magnitude of topological charge changes whether
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FIG. 5. CPGE, computed from Eq. (2), with GGA [(a),(b)] and
GGA+SOC [(c),(d)] for broadening parameter � = 10 meV and
� = 100 meV, respectively. We plot σ c

ab = σ c
ab/i in all the figures.

The different colored lines correspond to different chemical poten-
tials as denoted in the figures. The red (orange) line in each figure
represents the CPGE response when Ef is set at the energy associated
with WN of negative (positive) chirality.

SOC is excluded or included in the DFT calculation. This
is clearly reflected in the quantization of photoconductivity
while studied in the presence and absence of SOC, i.e., pho-
toconductivity is found to be quantized around the value 1
(2) for GGA (GGA+SOC) calculations. The magnitude of
the quantization is governed by the topological charge of
the activated WN. This is in accordance with the theoretical
conjecture as discussed in an earlier section. With inclusion
of SOC, we further observe the quantization within the energy
≈0.6 < ω < 0.9 eV is very prominent compared to the GGA
results when the Fermi level is kept near one of the WNs at
E f = EW2 = 88.2 meV for � = 10 meV as shown in Fig. 5(a).
The σ x

yz and σ z
zx components of CPGE response follow the

same sign of the activated WN at EW2 = 88.2 meV (n = −2)
whereas the σ

y
yz reverses its sign.

The frequency windows for quantization are given by
2|E ′

W1
| < ω < 2|E ′

W2
| with E ′

W1,W2
= EW1,W2 − E f . For, E f =

88.2 meV, the frequency window for quantization becomes
0 < ω < 0.3 eV that does not match with our numerical find-
ings. However, the extent of frequency interval within which
quantization occurs, i.e., 0.3 eV, predicted from analytical
analysis, matches well with the numerical finding. We find
that the quantization starts around ω 
 0.6 eV which can be
due to the presence of other bands lying in the vicinity of WN
energies EW2 and EW1 and their nonlinear dispersive nature.
The quantization within a given frequency window can only
be predicted by the low-energy mode. On the other hand, in
real material there exists a variety of nonlinear and nontrivial
effects causing the deviation from the exact quantization.

We observe a deviation from quantization for E f = 95.0,
80.0 meV away from the WN energies. Interestingly, when
we keep the Fermi level near other WN (with topological
charge n = 2) energy at EW2 = −26.3 meV, a nonzero but
nonquantized response of CPGE is observed. It is expected

FIG. 6. Momentum resolved kz-averaged photoconductivity con-
sidering ω = 0.75 eV for two energies at (a) Ef = 88.2 meV and
(b) Ef = −26.3 meV respectively associated with WNs of opposite
chirality.

that WN with n = +2 will contribute to the photoconduc-
tivity. We observe qualitatively the same behavior for E f =
30.9 meV, E ′

W1
= E ′

W2
, i.e., the Fermi level is exactly at mid-

way between two WN energies. These results are qualitatively
different from time reversal symmetry broken WSMs where
CPGE responses are quantized to two opposite values de-
pending on the topological charge of the activated WN at a
given Fermi level [4]. On the other hand, CPGE response
for time reversal symmetry invariant WSM is found to be
different from time reversal symmetry broken WSM as the
Berry curvature and velocity exhibit nontrivial behavior over
BZ. We here find similar agreement in CPGE response for the
nonmagnetic material SrSi2. We obtain similar findings with
GGA calculations as shown in Figs. 5(c) and 5(d). We note
that with increasing broadening parameter �, the quantization
of photoconductivity is lost and it can acquire values more
than the magnitude of topological charge [see Figs. 5(b) and
5(d)]. This is due to the fact that more states contribute to
the photoconductivity around a given Fermi level. Therefore,
photoconductivity exhibits quantization only when � is less
than the energy difference between two consecutive bands
around a given Fermi energy in the vicinity of WN energy.

To understand the distinct behavior of photoconductivity
around two WNs in different energies E f = 88.2,−26.3 meV,
we analyze the momentum resolved structure of CPGE con-
ductivity as shown in Figs. 6(a) and 6(b). We evaluate Eq. (2)
as a function of kx and ky, integrating over kz, at a given
value of ω = 75.0 meV for which photoconductivity becomes
quantized. We find that the structure of the momentum re-
solved photoconductivity for E f = 88.2 meV is substantially
different from that for E f = −26.3 meV. These two different
momentum distributions at two WNs with opposite chirality
clearly refer to the fact that the CPGE will not be opposite
of each other for these two WNs. This is due to the fact that
the Berry curvature and velocity, essentially determining the
response, behave differently at the two WNs with opposite
chirality for time reversal symmetric systems [52].

We now compare our findings, followed by the three-band
formula [Eq. (2)], with the two-band formula [Eq. (4)] as
shown in Figs. 7(a) and 7(b), considering GGA+SOC calcula-
tions. It is evident that there is no quantization observed from
the two-band formula suggesting the important role played
by the virtual transition channel as incorporated in the three-
band formula. However, the CPGE, obtained from Eq. (4),
becomes qualitatively pronounced within the same frequency
window for which quantization is observed following Eq. (2).
On the other hand, we commonly observe that CPGE are not
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FIG. 7. (a) CPGE from two-band approach Eq. (4) with SOC
using the Lorentzian broadening parameter � = 10 meV while
numerically implementing δ(h̄ω − E�k,nl ) [27]. (b) Comparison of
CPGE response from two-band (marked by circle) and three-band
(marked by star) approach using the same broadening parameter,
respectively. We plot σ̃ c

ab = σ̃ c
ab/i in all the figures. The different col-

ored lines correspond to different chemical potentials as designated
in the figures.

opposite of each other for E f = 88.2 meV and E f =
−26.3 meV. Therefore, in order to predict the correct behavior
as far as the quantization is concerned, the three-band formula
is found to be useful in examining the optical responses of
semimetals [61].

We here compare with the quantized CPGE response for
multifold fermion transition metal monosilicides, with higher
spin degrees of freedom, where multiple bands show linear
band crossing at the degenerate points [5]. By contrast, SrSi2,
with effective spin-1/2 degrees of freedom, exhibits nonlinear
band crossing at the WNs in the presence of SOC. However,
in both the materials, the inversion and mirror symmetries
are broken resulting in nondegenerate WNs with finite chiral
chemical potential. The quantized response in CPGE is a
consequence of that while noncentrosymmetric WSM TaAs
with degenerate WNs shows a nonquantized CPGE response
[44]. Therefore, the linear band dispersion along at least one
momentum around the gap closing point, noticed for all of
the above materials, might not be directly responsible for the
quantized response unless there exists finite chiral chemical
potential. Having said that, we note that the magnitude of
quantization depends on the underlying topological structure
of these materials.

In the case of multifold fermions, to be precise, the higher
spin degrees of freedom essentially lead to the higher order
topological charge. The optically activated momentum surface
might include more than a single band. This equivalently
results in the quantized CPGE trace coming from the Berry
curvatures associated with more than a single band. Therefore,
Chern numbers, associated with the various activated topo-
logical bands (i.e., within the optically activated momentum
surface) are essentially responsible for the high value of quan-
tization for CPGE trace in multifold fermions [5]. On the other
hand, the quadratic energy dispersion of SrSi2 with SOC [see
Fig. 2(a)] imprints its signature in the quantized CPGE trace
via the topological charge even though it does not have more
than twofold degeneracy or higher spin degrees of freedom
as found in multifold fermion. The Berry curvature of a single
band, within the optically activated momentum surface, would
contribute to the quantized CPGE trace in double WSM SrSi2.
This is in contrast to the multifold fermions where Berry
curvatures coming from different bands can add up to give
rise to the high value of quantized CPGE trace.

The quantization in multifold fermions is observed follow-
ing the two-band formula [Eq. (4)] [5] while the quantization
in the present case of double WSM is based on the three-
band formula [Eq. (2)]. This is apparently very intriguing,
and it requires extensive future investigations. However, the
deviation from quantization following the two-band formula
in the present case is not related to the broadening parameter
as this parameter appears both in the two-band as well as
three-band formulas. It might be that the three-band approach
is able to mimic the effect of anisotropic nonlinear bands
in double WSM more vividly than the two-band approach.
Therefore, it would really be an interesting future direction to
systematically explore the photoconductivity in various other
suitable materials.

V. CONCLUSIONS

To summarize, considering SrSi2 as a noncentrosymmetric
and nonmagnetic double WSM we first study the structural
handedness to show the enantiomeric nature of the material.
This manifests itself through the SFS profile in the (001) and
(001̄) surface. The large S [inverted S] shaped Fermi arcs in
the high symmetry direction �-X for the (001) [(001̄)] sur-
face referring to the mirror symmetric but not superimposable
nature of SFS between (001) [(001̄)] surfaces. On the other
hand, bulk Fermi surface depicts the emergence of electron
and hole pocket suggesting the type-I nature of the WSM.
We perform GGA and GGA+SOC calculations to examine
the topological properties of the material from surface energy
spectrum where we find singlet and doublet chiral Fermi arc,
respectively. Unlike the SFS, the surface energy dispersion be-
tween (001) and (001̄) surfaces is mirror symmetric as well as
superimposable with respect to each other. The enantiomeric
property of the material thus leads to a chiral SFS and an
achiral surface energy dispersion.

Having investigated the connection between structural
handedness and chirality of surface Fermi surface profiles, we
now study the CPGE as there exists a substantial gap between
the energies of WNs with opposite chirality. The CPGE shows
a quantized plateau depending on the topological charge of
the activated WN when Fermi level is set only around the WN
with higher energy. This is markedly different from the time
reversal symmetry breaking WSM where CPGE is quantized
to two exactly opposite plateau, depending on the topological
charge of the respective activated WN, for two different ener-
gies. We analyze the momentum resolved structure of CPGE
at the two different WN energies to strengthen our findings.
We additionally compare our results with the two-band for-
mula to show that the three-band formula captures the virtual
transitions from Weyl bands to trivial bands in determining
the accurate photocurrent responses.
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