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Propagation of longitudinal acoustic phonons in ZrTe5 exposed to a quantizing magnetic field
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The compound ZrTe5 has recently been connected to a charge-density-wave (CDW) state with intriguing
transport properties. Here, we investigate quantum oscillations in ultrasound measurements that microscopically
originate from electron-phonon coupling and analyze how these would be affected by the presence or absence
of a CDW. We calculate the phonon self-energy due to electron-phonon coupling, and from there deduce the
sound-velocity renormalization and sound attenuation. We find that the theoretical predictions for a metallic
Dirac model resemble the experimental data on a quantitative level for magnetic fields up to the quantum-limit
regime.
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I. INTRODUCTION

The three-dimensional (3D) compound zirconium pentatel-
luride (ZrTe5) has been extensively studied due to its large
negative magnetoresistivity [1,2] and thermoelectric prop-
erties [3–5], and because it possibly exhibits a variety of
topological phases, including weak and strong topological in-
sulator and Dirac semimetal phases [6–10]. A focus of recent
discussions has been the observation of plateaulike features in
the transverse resistivity accompanied by minima in the lon-
gitudinal resistivity both in ZrTe5 [11–13] and the structurally
similar HfTe5 [14,15]. These plateaulike features have been
proposed to be linked to the formation of a periodic modula-
tion of electron density, a charge-density wave (CDW), and to
a truly quantized Hall effect in three dimensions.

Alternatively, it has been proposed that the Hall response of
ZrTe5 may only be quasiquantized and results from a gapless
state without a CDW [13]. It is thus worthwhile to search for
additional experimental probes allowing one to discriminate
between a gapped CDW state and a quasiquantized metallic
state. As one key consequence, the formation of a CDW
would induce a gap in the electronic spectrum and, therefore,
strongly suppress the electronic density of states at the Fermi
level. In principle, this has experimentally observable conse-
quences in transport [16–18], magnetization [19], and phonon
dynamics [20–22]. Furthermore, a CDW amplitude mode can
directly be probed by Raman spectroscopy [23]. While some
of the existing experimental data have been argued to agree
with theoretical models that predict the existence of a CDW
transition in ZrTe5 [24,25], other experiments on ZrTe5 show
negative evidence for a CDW state [13,16,26]. To falsify one
of the two scenarios, it is thus desirable to have access to
a detailed modeling of a large number of complementary

observables. In this work, we focus on a quantitative analysis
of ultrasound measurements that we presented in Ref. [13] to
further strengthen the hypothesis of a quasiquantized metallic
state in ZrTe5. We do so by including electron-phonon inter-
actions in the very same model that has been used to describe
the transport and magnetization measurements in Ref. [13].
We complement these findings with a calculation that adds a
CDW into our model, and show that a CDW would only be
consistent with the experimental data if the electron-phonon
coupling was unexpectedly large.

We theoretically investigate longitudinal acoustic phonons
in ZrTe5 and, in particular, how their propagation is af-
fected by external magnetic fields. Due to the electron-phonon
interaction, lattice vibrations can decay into electron-hole
pairs that eventually recombine to form a new phonon, as
shown in Fig. 1(a). As a consequence, the lattice vibrations
inherit a magnetic-field dependence from the intermediate
electron-hole-pair propagation. Thus, phonon-related observ-
ables, such as Hall viscosity [27], Raman scattering [28],
sound velocity [29–32], and sound attenuation [33–36], are
powerful tools for monitoring the electronic structure of a
system. We focus our analysis on the renormalized sound
velocity and the sound attenuation resulting from electron-
phonon coupling in ZrTe5.

The remainder of the paper is organized as follows. In
Sec. II, we construct the effective low-energy Hamiltonian for
the electronic degrees of freedom in ZrTe5 in the presence of
a static, homogeneous magnetic field. Furthermore, we intro-
duce phonons to the system and we explain how these couple
to the electrons. Using a random-phase-like approximation,
we obtain the dressed phonon propagator. We then deduce
the sound-velocity renormalization and the sound attenua-
tion, which we evaluate and compare to experimental data in
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FIG. 1. (a) Perturbative expansion for the full propagator (double
curled) of the longitudinal acoustic phonon mode that couples to
Dirac fermions in a magnetic field via the electron-phonon interac-
tion given in Eq. (14) in the spirit of a random-phase approximation.
A free phonon (single curled) may decay into a particle-hole pair
of free Dirac fermions (solid) and eventually recombines to a new
phonon. (b) Orthorhombic crystal structure of ZrTe5. The Zr atoms
form trigonal prismatic chains of ZrTe3 that are connected via
zigzag chains of Te atoms (gray). These weakly coupled, quasi-two-
dimensional sheets of ZrTe5 stack along the b axis.

Sec. III. Finally, in Sec. IV, we compare the results of the
metallic Dirac scenario with a model containing a CDW in the
quantum-limit regime of the system. This allows us to analyze
the effect of a bulk gap on the phonon self-energy.

II. THEORETICAL FRAMEWORK

A. From microscopics to an effective low-energy
Landau-band theory

The microscopic crystal structure of ZrTe5 is depicted in
Fig. 1(b). This compound exhibits the orthorhombic space
group Cmcm (no. 63) [37], and the crystallographic lattice
axes (a, b, c) define the coordinate system (x, z, y) that we
use in the remainder of this paper. The material is layered
along the z axis. Overall, the electronic band structure ex-
hibits the usual degree of complexity typically encountered in
solids, with numerous bands deriving from multiple orbitals
at each atom in the unit cell. At low energies, however, this
complexity is reduced dramatically. Various theoretical and
experimental studies have shown that the low-energy band
structure of ZrTe5 exhibits a (possibly weakly gapped) Dirac
node at the � point [6,12]. In addition, several other pockets
might be present in the Brillouin zone, but consensus has not
yet been reached on their existence and physical consequences

(they might, for example, be important for the temperature
dependence of transport) [7,38]. Sample-to-sample variations
and growth conditions might play some role in explaining
these apparent discrepancies.

Our study is geared towards the description of ultrasound
experiments in a specific set of samples, namely, the ones
reported in Ref. [13]. The most important features in this
data for the present discussion are the plateaulike structures
in the Hall response of ZrTe5, which have also been seen in
independent transport measurements [12] and which are well
captured by the model. Moreover, since the model includes
all symmetry-allowed terms, we expect our findings to be
generically important for understanding whether or not ZrTe5

has a CDW. In the considered samples, quantum oscillations
show no signatures of Fermi-surface sheets in addition to the
Dirac pocket around �. Furthermore, even the inclusion of
quadratic bands at the boundary of the first Brillouin zone has
been argued to not change the electronic-transport properties
close to the quantum limit qualitatively at low temperatures
[38]. As we discuss below, ultrasound measurements in these
samples can also be explained by only taking into account
a single Dirac pocket. The possible presence of additional
Fermi surfaces thus plays no significant role for transport and
ultrasound properties in our case.

These observations motivate a model that focuses on the
low-energy electrons in the Dirac pocket close to the � point.
Given the space group and symmetries of the material, the
most general Bloch Hamiltonian up to first order in the three-
dimensional momentum k has been shown to read [2]

he(k) = m τ3σ0 + h̄(vxkx τ1σ3 + vyky τ2σ0 + vzkz τ1σ1), (1)

where τi (σi) are Pauli matrices describing an orbital (spin)
degree of freedom, m is a mass parameter, vi are Fermi
velocities, and h̄ is the reduced Planck constant. Given the
layered character of the material, it is not surprising that the
Dirac pocket is strongly elongated (cigarlike) along the kz

axis, which means that vx, vy � vz.
In the remainder of this paper, we are in particular inter-

ested in the effects of a static, homogeneous magnetic field
B = Bez along the z direction on the ultrasound properties
(we choose B > 0). While phonons do not couple directly to
the magnetic field, the electron-phonon interaction mediates
an indirect coupling of the phonons with the magnetic field
passing via the electrons. For the latter, the effect of a mag-
netic field is modeled by including the Zeeman term hZ =
−gμBB τ0σ3/2 and the orbital magnetic effect h̄k → h̄k + eA
[2]. Here, g is the g factor, μB is the Bohr magneton, −e is the
electronic charge, and A = −yBex is the vector potential in the
Landau gauge. The second-quantized electronic Hamiltonian,
therefore, reads

He = He − μN =
∫

d3r ψ (r)†[he(r) − μ] ψ (r), (2)

he(r̂) = mτ3σ0 + vx(h̄k̂x − eBŷ) τ1σ3

+ h̄(vyk̂y τ2σ0 + vzk̂z τ1σ1) − 1

2
gμBB τ0σ3, (3)

where k̂i = −i∂̂xi , μ is the chemical potential, ψ (r) =
[ψ+↑(r), ψ+↓(r), ψ−↑(r), ψ−↓(r)]T is the vector of annihila-
tion operators for electrons with orbital quantum number ±
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and spin quantum number ↑,↓ (defined with respect to τ3

and σ3, respectively), and N = ∫
d3r ψ (r)†ψ (r) denotes the

particle number.
Diagonalizing the electronic Hamiltonian yields the

Landau-band structure of the system. Each Landau band has
the typical degeneracy of LxLy/(2π�2

B), where Lx (Ly) is the
length of the system in the x direction (y direction), and where
�B = √

h̄/(eB) is the magnetic length. For vx < 0 and vy > 0,
the zeroth Landau bands have the dispersion

ε0s(kz ) = s
√

m2∗ + (h̄vzkz )2, (4)

with s = ±, and where the renormalized Dirac gap is m∗ =
m − 1

2 gμBB. The Zeeman term is thus the only coupling be-
tween the magnetic field and the zeroth Landau bands. The
higher Landau bands, on the contrary, have energies

εnst (kz ) = s
[(√

m2 + 2eh̄B|vx|vyn + 1
2 tgμBB

)2 + (h̄vzkz )2
] 1

2 ,

(5)

with n = 1, 2, . . . , and s, t = ±. The calculation of the
electron-phonon coupling in Sec. II C also requires the eigen-
spinors of the Hamiltonian (3), which can be found in
Appendix A.

Diagonalizing the many-body Hamiltonian (2), we obtain

He =
∑
kxkzs

[
ξ0s(kz ) c†

kxkz0sckxkz0s

+
∑

nt

ξnst (kz )c†
kxkznst ckxkznst

]
(6)

≡
∑

ν

ξνc†
νcν, (7)

where ν is a combined index of all electronic quantum
numbers that classifies the fermionic eigenmodes cν and
eigenenergies ξν = εν − μ. The propagation of the Dirac elec-
trons is described by their Matsubara Green’s functions,

G (0)(ν; τ ) = −〈T̂τ cν (τ )cν (0)†〉0. (8)

Here, T̂τ is the imaginary-time-ordering operator, 〈. . .〉0 =
Tr(e−βHe . . . )/ Tr(e−βHe ) is the thermal average with respect
to He at inverse thermal energy β = 1/(kBT ), and O(τ ) =
eτHe/h̄Oe−τHe/h̄ is the Heisenberg-picture time evolution for
an operator O. Following Endo et al. [39], we modify the bare
Green’s functions ad hoc by a finite self-energy that represents
disorder and impurity scattering in the system. We thus use the
Green’s functions

G (0)(ν; iωn) → 1

ih̄ωn − ξν − �ν (iωn)
, (9)

where �ν (iωn) is the electronic self-energy contribution
due to impurity scattering and ωn = (2n + 1)π/(h̄β ) are
fermionic Matsubara frequencies. Although a microscopic
calculation of the full impurity-averaged electronic Green’s
function from Eq. (9) would yield a nontrivial frequency de-
pendence [40,41], we replace the self-energy by the constant
Landau-level broadening, �ν (iωn) = −i sgn(ωn) �. This ad
hoc approximation surely restricts the regime of validity for
the following considerations to the limit of weak impurity

scattering and magnetic fields up to the quantum-limit regime,
i.e., for fields B � 1.5T [12,13]. However, it allows for an
easy interpretation of results and successfully described ob-
servables previously for various quantum-Hall-type systems
[13,39,42] or in the context of Weyl electrons [43] and para-
magnetic states in pyrochlore iridates [44]. In the following,
we choose either � = 0.1meV (see Sec. IV) or � = 0.5meV
(see Sec. III).

B. Fixing the charge-carrier density

Having defined our effective low-energy model, we are
now in a position to discuss the density of the charge carriers
in the system. Since we assume the samples to be electrically
isolated, the number of charge carriers is fixed, also as a
function of the magnetic field. Because the valence band of
our linearized low-energy model is formally occupied by an
infinite number of electrons, we define the particle number
with respect to the filled Dirac sea (chemical potential μ at
the Dirac node, μ = 0). The electronic density relative to this
reference state is

n0 = 1

V

∑
ν

εν>0

〈c†
νcν〉 − 1

V

∑
ν

εν<0

〈cνc†
ν〉 (10)

= 1

V

∫ ∞

−∞
dωh̄

∑
ν

sgn(εν )ρν (ω)nF [sgn(εν )h̄ω], (11)

where nF (ε) = [exp(βε) + 1]−1 is the Fermi function, and the
spectral function ρν (ω) = − Im G(0)

r (ν; ω)/π is defined from
the retarded Green’s function G(0)

r (ν; ω) = G (0)(ν; iωn →
ω + i0+). In the zero-temperature limit, where nF (ε) =
�(−ε), the frequency integration in Eq. (11) is performed
analytically,

n0 = 1

2π�2
B

∫ ∞

−∞

dkz

2π

{
arctan

(
ε0+(kz ) + μ

�

)

− arctan

(
ε0+(kz ) − μ

�

)

+
∑

nt

[
arctan

(
εn+t (kz ) + μ

�

)

− arctan

(
εn+t (kz ) − μ

�

)]}
. (12)

It turns out that this expression diverges with respect to the
n series after the ad hoc introduction of a spectral broadening
� > 0. Because the band structure of ZrTe5 is no longer de-
scribed by a Dirac Hamiltonian at energies far above the Fermi
level, however, our model naturally requires a high-energy
cutoff � that regularizes Eq. (12). This also fixes the problem
of a divergent particle number. Crucially, we find that the
ultrasound properties analyzed in the present work are essen-
tially cutoff independent (see Appendix B). In the remainder,
we choose � = 25 meV, which is sufficiently large compared
to the chemical potential in the maximal considered range of
magnetic-field strengths B � 10 T and certainly sufficient in
the range B � 3 T, for which we compare theory and experi-
ments.
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FIG. 2. Landau-band extrema (black solid lines) ε0s(0) and
εnst (0) from Eqs. (4) and (5), respectively, as a function of
magnetic-field strength and the chemical potential (red dashed
line) that fixes the charge-carrier density from Eq. (11). At
small fields, the Fermi level is approximately fixed. Fluctu-
ations in μ become significant for B � 1.5T, the quantum-
limit regime. The parameters are m = 1 meV, vz = 15 340 m s−1,

g = 18,
√

2eh̄|vx|vy = 12.5 meV T− 1
2 , n0 = 2 × 10−7 Å−3, T = 2K,

� = 0.5 meV, � = 25 meV.

In order to pin the charge-carrier density, the Fermi energy
has to shift as a function of the magnetic field, μ = μ(B). The
corresponding self-consistently calculated chemical potential
is shown in Fig. 2 as a function of the magnetic field along
with the minima of the Landau bands. We find that the Fermi
energy only shows small fluctuations around the value at zero
field. This is due to an interplay between the field dependence
of the Landau bands and their increasing degeneracy. The
quantum-limit regime in which only the zeroth Landau band is
occupied is reached at about BQL = 1.5T, which is remarkably
small compared to other materials.

C. Electron-phonon interaction

Next, we introduce a longitudinal acoustic phonon to the
system, whose low-energy dispersion as a function of momen-
tum q is �q = vsq, where vs is the sound velocity and q = |q|.
The bare phonons are described by the Hamiltonian

Hp =
∑

q

h̄�q

(
b†

qbq + 1

2

)
, (13)

where bq (b†
q) are phononic annihilation (creation) operators.

These phonons are coupled to the electrons in the system via
the electron-phonon interaction [45]

Vep =
∑
νν ′

∑
q

γνν ′ (q)c†
νcν ′ (bq + b†

−q), (14)

such that the full Hamiltonian of the many-particle system is

H = He + Hp + Vep. (15)

Given that we are interested in small-momentum physics,
we neglect Umklapp scattering. The electron-phonon matrix

elements then read

γνν ′ (q) = ie

√
h̄q

2ρV vs
〈ν|V̂q eiqr̂|ν ′〉, (16)

where V̂q is the Fourier transform of the electrostatic electron-
ion potential and ρ is the ion-mass density. We simplify the
interaction by assuming a local deformation potential that
acts trivially on the electronic orbital and spin degrees of
freedom, V̂q = D 1̂. The leading contribution of the electron-
phonon matrix elements for small momenta is given by (see
Appendix C for the arbitrary-order expression with respect
to q)

|γνν ′ (q)|2 = e2D2h̄

2ρV vs
q δνν ′ + O(q2). (17)

D. Phonon self-energy

Phonon propagation is described by their Matsubara
Green’s function,

D(q; τ ) = −〈T̂τ Aq(τ )A†
q(0)〉, (18)

where the thermal average and the time dependence of the op-
erators are given as described below Eq. (8) but with respect to
the full Hamiltonian H from Eq. (15) and with Aq = bq + b†

−q.
Performing a perturbative expansion of the phonon propaga-
tor with respect to the electron-phonon interaction yields the
Dyson equation

D(q; i�n)−1 = D(0)(q; i�n)−1 − �q(i�n), (19)

where i�n = 2nπ/(h̄β ) are bosonic Matsubara frequencies,
�q(i�n) is the phonon self-energy, and with the free phonon
propagator [45],

D(0)(q; i�n) = 2h̄�q

(ih̄�n)2 − (h̄�q)2
. (20)

The electron-phonon vertex from Eq. (14) describes that a
phonon may decay into an electron-hole pair. As depicted in
Fig. 1(a), this electron-hole pair can eventually recombine to
create a new phonon. In the spirit of Zhang and Zhou [29], we
sum up the infinite ladder of such particle-hole bubbles, i.e.,
we perform a random-phase-like approximation. This yields

�q(i�n) = 1

β

∑
iωm

∑
νν ′

[|γνν ′ (q)|2G (0)(ν ′; iωm)

× G (0)(ν; iωm + i�n)]. (21)

Performing the sum over ωn and the analytical continuation
i�n → � + i0+, and considering phonon frequencies � that
satisfy the unperturbed dispersion, yields the retarded phonon
self-energy �r

q = �q(�q + i0+). Explicitly, we have

�r
q =

∫ ∞

−∞
dω

∑
νν ′

{
h̄nF (h̄ω)|γνν ′ (q)|2

× [
G(0)

r (ν; ω + �q) ρν ′ (ω)

+ ρν (ω) G(0)
r (ν ′; ω − �q)∗

]}
. (22)

In the remainder, we are interested in the leading-order
contributions to the long-wavelength expansion. While the
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real part corresponds to a renormalization �vs of the
sound velocity, Re �q = h̄�vsq + O(q2), the imaginary part
describes the spectral width �q = − Im �q and thus the atten-
uation αq = −�q/(h̄vs) of the phonon. Inserting the simplified
electron-phonon interaction matrix elements from Eq. (17),
we deduce the final form for the retarded phonon self-energy,

�r
q =

∫ ∞

−∞
dω

∑
ν

{
A� nF (h̄ω)ρν (ω)

× [
G(0)

r (ν; ω + �q) + G(0)
r (ν ′; ω − �q)∗

]}
, (23)

where A� = e2D2h̄2q/(2ρV vs).

III. RESULTS AND EXPERIMENTAL COMPARISON

A. Phonon-velocity renormalization

A first important experimental observable is the phonon-
velocity renormalization �vs as a function of magnetic-field
strength. Taking the real part of the phonon self-energy from
Eq. (23) and only considering the leading-order term in q
yields

�vs = e2D2

ρV vs

∫ ∞

−∞
dω

∑
ν

[
h̄nF(h̄ω)ρν (ω)

× Re G(0)
r (ν; ω)

]
. (24)

A more insightful way to write the phonon-velocity renor-
malization is obtained by considering the zero-temperature
limit, T = 0. In this limit, we can perform the ω integration
analytically. We then find

�vs = −AvBv2
s h̄

∫ ∞

−∞

dkz

2π

∑
s

[
ρ0skz (0) +

∑
nt

ρnstkz (0)

]

= −AvBv2
s h̄D(μ), (25)

where D(μ) = ∫ ∞
−∞

dkz

2π

∑
s[ρ0skz (0) + ∑

nt ρnstkz (0)] is the
density of states at the Fermi level and Av = e3D2/

(4πρv3
s h̄2). Equation (25) is a natural generalization of

Eq. (16) in the work of Zhang and Zhou [29] to a sys-
tem with finite Landau-level broadening. In the limit of
δ-shaped spectral functions, � → 0+, and if the Fermi level
approaches the band bottom of the νth Landau band, a
van Hove singularity occurs since �vs ∝ 1/

√
μ − εν (kz = 0).

The impurity-induced Landau-band broadening � > 0 reg-
ularizes these singularities and yields smooth quantum
oscillations of the phonon-velocity renormalization.

To assess the accuracy of our theoretical prediction in
Eq. (24), we compare it with the experimental data taken from
Ref. [13], which investigated longitudinal acoustic modes
along the x axis, q = q ex. The field dependence of the experi-
mentally observed sound velocity ṽs(B) is handed down to the
phonons from the electrons via the electron-phonon coupling.
Roughly speaking, the latter renormalizes the sound velocity
by both an oscillatory term and a constant offset. Since the
experiment measures the change of the sound velocity with
respect to the value at a small reference field, the constant
offset cannot be extracted from the experimental data. We thus
define

δvs(B) = ṽs(B) − ṽs(Bref ) = �vs(B) − �vs(Bref ), (26)

FIG. 3. Relative phonon-velocity renormalization as a function
of the applied magnetic field with fixed charge-carrier density. The
blue dashed line is obtained from Eq. (24). The green solid line is
experimental data taken from Ref. [13]. The parameters are m =
1 MeV, vz = 15 340 m s−1, g = 18,

√
2eh̄|vx|vy = 12.5 meV T− 1

2 ,
vs = 3375 m s−1, n0 = 2 × 10−7 Å−3, T = 2 K, � = 0.5 meV,

� = 25 meV, Av = 78.54 MT−1.

where Bref is the reference magnetic field used in the
experiments (|Bref| = 0.0339T � BQL). For the theoretical
prediction, we estimate the value of the sound-velocity renor-
malization at the reference field Bref by averaging over the
quantum oscillations in �vs(B) for small magnetic fields,
0.05 < B < 0.3T . The microscopic parameters for the elec-
tronic part of our Hamiltonian (3), which determine the peak
structure of the quantum oscillations, are chosen in a similar
range as the values used in Refs. [2,13] for the description
of transport experiments. Since the ultrasound measurements
have been performed on different samples, however, we al-
low for slight modifications of the parameter values. In the
remainder of this paper, we use the following set of elec-
tronic parameters: m = 1 meV, vz = 15 340 m s−1, g = 18,√

2eh̄|vx|vy = 12.5 meV T− 1
2 , n0 = 2 × 10−7Å−3. In addi-

tion, our model features the parameters of the phononic
subsystem and of the electron-phonon coupling. The sound
velocity has been taken from experimental data in Ref. [13],
vs = 3375ms−1. The global prefactors of the phonon-velocity
renormalization and attenuation in Eqs. (24) and (45), Av and
Aα = e3D2q2/(4ρv2

s h̄3) [see Eq. (28) below], respectively,
which determine the amplitude of the quantum oscillations,
allow us to fit the phononic parameters for a magnetic-field
range from zero up to fields slightly beyond the quantum-limit
regime, B � 3T; see Fig. 3.

For the considered sample, we obtain the fit parameters
Av = 78.54 MT−1 and Aα = 0.942 meV dB T−1 cm−1, which
suggest that the deformation potential is weak compared to
other materials. This is consistent with experimental obser-
vations from time-resolved optical-reflectivity measurements
[46]. Furthermore, materials with stronger electron-phonon
interaction, such as TbTe3 [22], typically show quantum
oscillations in phonon dynamics that are several orders of
magnitude larger than the ones for ZrTe5. The smallness of
the electron-phonon coupling in the gapless Dirac semimetal
scenario is also consistent with our initial assumption that the
material does not exhibit charge-density-wave order of the
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FIG. 4. Sound attenuation as a function of the applied
magnetic field with fixed charge-carrier density. The blue
dashed line is obtained from Eq. (27). The green solid line is
experimental data taken from Ref. [13]. The parameters are m =
1 MeV, vz = 15 340 m s−1, g = 18,

√
2eh̄|vx|vy = 12.5 meV T− 1

2 ,

vs = 3375 ms−1, n0 = 2 × 10−7 Å−3, T = 2 K, � = 0.5 meV, � =
25 meV, Aα = 0.942 meV dB T−1 cm−1.

electrons, in particular also not induced by phonon-mediated
electron-electron interactions [24].

B. Sound attenuation

In addition to the phonon-velocity renormalization, the de-
cay of the ultrasound signal that is observed in the experiments
directly allows one to extract the sound-attenuation factor
αq. To compare the experimental results with our model, we
expand Eq. (23) to second order in q. This yields

αq = π
e2D2

2ρV vsh̄
q2

∫ ∞

−∞
dω h̄n′

F(h̄ω)
∑

ν

ρν (ω)2. (27)

At zero temperature, where n′
F(ε) = −δ(ε), the sound attenu-

ation becomes

αq = −AαBvsh̄
∫ ∞

−∞

dkz

2π

∑
s

[
ρ0skz (0)2 +

∑
nt

ρnstkz (0)2

]
,

(28)

where Aα = e3D2q2/(4ρv2
s h̄3), as mentioned above.

As for the phonon-velocity renormalization, the electron-
phonon coupling induces quantum oscillations in the sound
attenuation, which are, similarly to Eq. (26), measured with
respect to the reference-field value,

δαq(B) = αq(B) − αq(Bref ). (29)

We obtain αq(Bref ) by averaging over αq(B) for small fields,
0.05 < B < 0.3T . For the same set of parameters that has
been used for the data shown in Fig. 3, we obtain a quanti-
tatively good agreement of Eq. (27) with experimental data
from Ref. [13] up to the quantum-limit regime, as shown in
Fig. 4.

Combining our theoretical results for the phonon-velocity
renormalization and the sound attenuation, we find that the
gapless Dirac model from Eq. (3) supplemented by a simple
electron-phonon coupling building on the deformation poten-

tial in Eq. (17) is able to describe experimental observables
from phonon dynamics in ZrTe5 on a quantitative level up to
the quantum-limit regime. Note that the very same model is
also consistent with measurements of electric and thermoelec-
tric transport quantities [13].

IV. EFFECT OF A CHARGE-DENSITY-WAVE GAP

A. Density-density interaction and charge-density-wave state

As discussed in Sec. I, an alternative explanation for the
plateaulike features in the Hall resistivity of ZrTe5 is a bulk
CDW whose ordering wave vector spans the Dirac pocket
along the direction of the applied magnetic field. In the fol-
lowing, we discuss what effect a CDW gap would have on
ultrasound measurements.

In general, different mechanisms might lead to the forma-
tion of a CDW in ZrTe5, including direct electron-electron
interactions, or electronic interactions deriving from electron-
phonon coupling [24]. For the sake of our discussion, the
microscopic mechanism leading to the formation of a CDW
is not important and we consider a possibly effective (e.g.,
phonon-mediated) electronic density-density interaction in
the local approximation,

Vee = g0

2

∫
d3r n(r)2 (30)

= g0

2

∫
d3r

∑
ττ ′

∑
σσ ′

ψτσ (r)† ψτσ (r)

×ψτ ′σ ′ (r)† ψτ ′σ ′ (r), (31)

where n(r) = ∑
τσ ψτσ (r)†ψτσ (r) is the electron density and

g0 is the coupling strength. In a mean-field-like spirit, we
replace this interaction by the effective CDW Hamiltonian

HM = He + VM (32)

=
∫

d3r ψ (r)†[he(r) + g0 n̄(r)1]ψ (r). (33)

We assume n̄ to exhibit periodic modulations along the z axis
with a single wave number Q, i.e., n̄(r) = 2 n̄Q cos(Qz), which
implies the real-space periodicity λ = 2π/Q. The latter is, in
general, much larger than the lattice constant az along the z
axis, λ � az.

However, instead of calculating the CDW amplitude n̄Q

self-consistently (as in Ref. [24]), it is, in our case, sufficient
to consider it a parameter since we are merely interested in
a qualitative analysis of how a CDW gap affects the phonon
self-energies, and thus ultrasound measurements. This is suffi-
cient to compare with experiments since n̄Q is directly related
to the CDW-induced gap in the electronic structure, and can
thus be measured experimentally.

Expressing Eq. (32) in terms of the Landau-band eigen-
modes, given in Eqs. (A1) and (A2), yields VM = V0 +∑∞

n=1 Vn, with the contribution from the zeroth Landau bands,

V0 =
∑
kxkz

∑
ss′

[�ss′ (kz + Q, kz )c†
kx (kz+Q)0sckxkz0s′ + H.c.], (34)

where

�ss′ (kz + Q, kz ) = g0 n̄Q 〈w0s(kz + Q)|w0s′ (kz )〉 (35)
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is the overlap of the corresponding eigenvectors from
Eq. (A4), and the potential arising from the nth Landau bands
reads

Vn =
∑
kxkz

∑
ss′
tt ′

[
�nsts′t ′ (kz + Q, kz )

× c†
kx (kz+Q)nst ckxkzns′t ′ + H.c.

]
, (36)

where

�nsts′t ′ (kz + Q, kz ) = g0 n̄Q 〈wnst (kz + Q)|wns′t ′ (kz )〉 (37)

is the overlap of the eigenvectors from Eq. (A8). This term
mixes electronic states with different wave numbers kz and
Landau-band indices s and t . In the quantum-limit regime, the
low-energy physics is dominated by the zeroth Landau bands.
We, therefore, project out all higher Landau bands. Motivated
by the scenario proposed in Refs. [12,24], we consider Q =
2kF,z and fold the Hamiltonian back into the reduced Brillouin
zone using kz = κz + ξQ, with |κz| < kF,z and integer ξ . The
Hamiltonian thus becomes

Hm =
∑
kxκz

c†
kxκz

hm(κz ) ckxκz , (38)

where we have introduced the fermionic spinors ckxκz =
(ckx (κz+ξQ)0s)T that contain the modes from the particle and
hole branches of the zeroth Landau bands, s = ±, and that
have wave numbers kz differing from κz by integer multiples
ξ of the CDW wave number Q. Furthermore, we have defined
the effective Hamiltonian

[hm(κz )]ξsξ ′s′ = ε0s(κz + ξQ) δξξ ′δss′

+ �ss′ (κz + ξQ, κz + ξ ′Q)δξ (ξ ′+1)

+ �s′s(κz + ξ ′Q, κz + ξQ) δ(ξ+1)ξ ′ . (39)

Because the system is inversion symmetric, it suffices to con-
sider κz > 0. The relevant bands are then ξ = −1 and ξ = 0,
and the single-particle Hamiltonian from Eq. (39) becomes

hm(κz ) = E+(κz ) τ0σ3 + E−(κz ) τ3τ3

+ �g(κz ) τ1σ3 + �ph(κz ) τ1σ1, (40)

where E±(κz ) = [ε0+(κz − Q) ± ε0+(κz )]/2 , and with

�g(κz ) = g0n̄Q

2

[√
1 + m∗

ε0+(κz − Q)

√
1 + m∗

ε0+(κz )

−
√

1 − m∗
ε0+(κz − Q)

√
1 − m∗

ε0+(κz )

]
, (41)

and

�ph(κz ) = −g0n̄Q

2

[√
1 + m∗

ε0+(κz − Q)

√
1 − m∗

ε0+(κz )

+
√

1 − m∗
ε0+(κz − Q)

√
1 + m∗

ε0+(κz )

]
. (42)

Here, the matrix element �g(kF,z ) describes the coupling
of modes within the same unperturbed Landau band at the
boundary of the reduced Brillouin zone, and thus the size of
the CDW-induced gap, whereas �ph(kF,z ) couples the particle

FIG. 5. The positive branches of the band structure in the
charge-density-wave scenario (black solid lines) from Eq. (43) at
the boundary of the first Brillouin zone, κz = kF,z, and the Fermi
level (red dash-dotted line) as a function of �CDW = g0n̄Q. The inset
shows the CDW-induced gap between the positive electronic bands
at the Fermi wave vector as a function of �CDW. The parameters
are m = 1 MeV, vz = 15 340 m s−1, g = 18,

√
2eh̄|vx|vy = 12.5

meV T− 1
2 , μ(�CDW = 0) = 14.239 meV, kF,z = 0.135 Å−1, T = 0 K,

� = 0.1 meV, B = 10 T, � = 25 meV.

and the hole branches of the zeroth Landau levels. Diagonal-
izing Eq. (40) yields the final expression for the band structure
in the CDW scenario,

Est (κz ) = s{E+(κz )2 + E−(κz )2 + �ph(κz )2

+ �g(κz )2 + 2t[E−(κz )2�ph(κz )2

+ E+(κz )2E−(κz )2 + E+(κz )2�g(κz )2]
1
2 } 1

2 , (43)

where s, t = ±, which we depict for κz = kF,z in Fig. 5. We
observe that in our simple model, the electrons remain gapless
even in the presence of a CDW unless there is a finite effective
Dirac gap m∗ �= 0. This can be traced back to the orthogonal-
ity of the electronic states in that limit [see Eq. (A4)], which
results in �g = 0. Physically, this corresponds to the fact that
a spinless CDW cannot couple electronic states of orthogonal
spins. For any finite Dirac gap, however, the CDW induces a
gap M > 0 between the electronic bands at the Fermi wave
vector. The density of states at the Fermi level is reduced
drastically if the gap is larger than the level broadening. As
an aside, we note that the gap M > 0 ceases to grow at very
large �g(kF,z ) due to a crossing between the Landau bands of
the conduction and valence bands.

B. Charge-density-wave induced decay of phonon self-energy

We close our discussion by analyzing the effect of a CDW
on the phonon-velocity renormalization and the sound attenu-
ation. Due to the reduced density of states at the Fermi level
resulting from the opening of a CDW gap, we observe a
power-law decay of the phonon-velocity renormalization and
the sound attenuation compared to the gapless Dirac-metal
state whenever the gap at the Fermi level is large compared to
the level broadening; see Fig. 6. The phonon-velocity renor-
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FIG. 6. Phonon-velocity renormalization (blue solid line) and
sound attenuation (red solid line) in the charge-density-wave sce-
nario relative to the Dirac-metal scenario as a function of the gap.
If the gap is larger than the level broadening �, both quantities decay
with a power law [see Eqs. (44) (blue dashed line) and (45) (red
dashed line), respectively]. The parameters are given in Fig. 5.

malization and the sound attenuation scale as

�vs(�CDW)

�vs(0)
∝ �

M
(44)

and

αq(�CDW)

αq(0)
∝

(
�

M

)3

, (45)

respectively.
Our model thus predicts that a CDW, via the related gap,

induces a significant suppression in the amplitude of quantum
oscillations in phonon-propagation-related properties. This
result can, for example, be compared with the proposition
of Ref. [24] that the CDW-induced gap in ZrTe5 in the
quantum-limit regime may be of the order of several 10meV,
and thus large compared to the Landau-level broadening as-
sumed in the present work. Our calculation then suggests
that the sound attenuation might be suppressed by a fac-
tor of 10−4 as compared to the gapless Dirac scenario. To
still explain the experimentally observed field dependence of
phonon properties, the deformation potential D would have
to be rescaled by a factor 102; see Eq. (27). A CDW in
ZrTe5 would thus require a significant electron-phonon inter-
action, which is not expected in this compound [46]. Thus,
while the CDW scenario, in principle, is possible, we believe
that the metallic Dirac model, which consistently explains
a number of independent measurements in addition to the
presently discussed ultrasound properties [13], seems much
more plausible.

V. SUMMARY AND OUTLOOK

Starting from a microscopic description of the material, we
constructed a simple low-energy model for the phonon dy-
namics of ZrTe5. We showed that our model is able to describe
the experimental data of ultrasound measurements (sound-
velocity renormalization and sound attenuation) in ZrTe5 on a
quantitative level up to the quantum-limit regime. Our results
are consistent with the hypothesis that up to the quantum-limit
regime, the low-energy physics of ZrTe5 is dominated by a

gapless Dirac-type Fermi surface close to the � point. We
contrasted these results with the possible formation of a CDW.
The latter would suppress the electronic density of states at
the Fermi level, and thus the magnetic-field dependence of the
phonon self-energy. A CDW would, therefore, only be consis-
tent with the experimentally observed ultrasound properties if
the electron-phonon coupling would be unusually large. This
leads us to conclude that ultrasound measurements strongly
indicate a gapless state in ZrTe5.

The model that we developed is easily generalizable to
materials whose electronic low-energy physics is dominated
by small Fermi surface pockets, such as HfTe5 [14] or InAs
[47]. Future work can furthermore extend our analysis in
a number of directions. One important question concerns
the strong simplification we made for the impurity-induced
level broadening, which should be compared to more realistic
treatments, e.g., using a self-consistent Born approximation
[41,48,49]. Another important direction is the possible ex-
istence of additional Fermi-surface pockets that might be
especially important at magnetic fields larger than the quan-
tum limit [7,38].
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APPENDIX A: EIGENSPINORS OF THE LANDAU-BAND
HAMILTONIAN

Here, we discuss the eigenspinors of the Landau-band
Hamiltonian (3). For the zeroth Landau bands, these read

〈r|kxkz0s〉 = 1√
LxLz

ei(xkx+zkz )ϕ0[y − y0(kx )]

×

⎛
⎜⎜⎜⎝

w
+↑
0s (kz )

0
0

w
−↓
0s (kz )

⎞
⎟⎟⎟⎠, (A1)

while we obtain

〈r|kxkznst〉 = 1√
LxLz

ei(xkx+zkz )

×

⎛
⎜⎜⎜⎝

w
+↑
nst (kz ) ϕn[y − y0(kx )]

w
+↓
nst (kz ) ϕn−1[y − y0(kx )]

w
−↑
nst (kz ) ϕn−1[y − y0(kx )]

w
−↓
nst (kz ) ϕn[y − y0(kx )]

⎞
⎟⎟⎟⎠ (A2)

for the higher Landau bands. Here, Lz is the length of the sys-
tem in the z direction, y0(kx ) = h̄kx/(eB) is the guiding center
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position, and ϕn is the nth harmonic-oscillator eigenstate,

ϕn(y) = 1√
2nn!

√
πLB

exp

[
−1

2

(
y

LB

)2]
Hn

(
y

LB

)
, (A3)

with LB = �B
√

vy/|vx|, and Hn denoting the nth Hermite poly-

nomial. The coefficients w
+↑
nst (kz ), . . . ,w−↓

nst (kz ) in Eqs. (A1)
and (A2) are the components of the eigenvectors of the block-
diagonal Hamiltonian.

For the zeroth Landau bands, the explicit form of the eigen-
vectors is

w0s(kz ) =

⎛
⎜⎜⎜⎝

w
+↑
0s (kz )

0

0

w
−↓
0s (kz )

⎞
⎟⎟⎟⎠

= 1√
2

⎛
⎜⎜⎜⎝

s
√

1 + sm∗/ε0+(kz )

0

0

sgn(vzkz )
√

1 − sm∗/ε0+(kz )

⎞
⎟⎟⎟⎠. (A4)

For n = 1, 2, . . . , the eigenvectors are a bit more involved.
The corresponding Bloch Hamiltonian in the Landau-band
basis takes the form

he(n, kz ) = m τ3σ0 + √
2eh̄B|vx|vyn τ1σ3 (A5)

− 1
2 gμBB τ0σ3 + h̄vzkz τ1σ1. (A6)

Unnormalized eigenvectors of he(n, kz ) to the eigenvalue
εnst (kz ) can be obtained by projecting an arbitrary vector x �=
0 onto the corresponding eigenspace via

w̃nst (kz ) = [he(n, kz ) + εnst (kz )]

× [
he(n, kz )2 + εnst (kz )2 − 2γ

]
x, (A7)

where γ = m2 + 2eh̄B|vx|vyn + (h̄vzkz )2 + (gμBB/2)2. Nor-
malization yields the coefficients from Eq. (A2),

wnst (kz ) =

⎛
⎜⎜⎜⎝

w
+↑
nst (kz )

w
+↓
nst (kz )

w
−↑
nst (kz )

w
−↓
nst (kz )

⎞
⎟⎟⎟⎠ = w̃nst (kz )

|w̃nst (kz )| . (A8)

APPENDIX B: HIGH-ENERGY CUTOFF INDEPENDENCE
OF OBSERVABLES

Here, we explain why the ultrasound properties are effec-
tively independent of the high-energy cutoff �. This is not
obvious from the outset: the phonon-velocity renormalization
from Eq. (24) depends explicitly on the high-energy cutoff,
and the sound attenuation depends implicitly on � via the
chemical potential. As we show in Fig. 7(a), however, the
chemical potential can be made essentially cutoff indepen-
dent up to the quantum limit if one adjusts the charge-carrier
density n0 such that μ(B = 0) is kept at a fixed value (all
other system parameters remain unchanged). Using this in
combination with Eq. (24) to calculate the phonon-velocity

renormalization �vs(B) = �vs(Bref ) + δvs(B), we observe
numerically [see Fig. 7(b)] that the cutoff dependence only
enters the offset �vs(Bref ), around which �vs(B) oscillates at
small fields compared to the quantum-limit field and not the
magnetic-field-dependent part δvs(B). The oscillating term,
which, as explained in the main text, is the only quantity that
follows from experiments, is thus essentially cutoff indepen-
dent, which is shown in Fig. 7(c). For the sound attenuation,
the almost perfect cutoff independence holds even on the level
of the absolute values αq(B), as we show in Fig. 7(d).

APPENDIX C: ELECTRON-PHONON-COUPLING
MATRIX ELEMENTS

Here, we calculate the electron-phonon-coupling matrix el-
ements from Eq. (16). Assuming a local deformation potential
and a trivial action on the orbital and spin degree of freedom,
these become

γνν ′ (q) = ieD

√
h̄q

2ρV vs
〈ν|eiqr̂|ν ′〉, (C1)

with the form factor

〈kxkznst |eiqr̂|k′
xk′

zn
′s′t ′〉

= δkx,k′
x+qx δkz,k′

z+qz [w+↑
nst (kz )w+↑

n′s′t ′ (k′
z )Mnn′ (qx, qy)

+ w
+↓
nst (kz )w+↓

n′s′t ′ (k′
z )Mn−1,n′−1(qx, qy)

+ w
−↑
nst (kz )w−↑

n′s′t ′ (k′
z )Mn−1,n′−1(qx, qy)

+ w
−↓
nst (kz )w−↓

n′s′t ′ (k′
z )Mnn′ (qx, qy)], (C2)

and where

Mnn′ (qx, qy) =
∫ ∞

−∞
dy{eiqyyϕn[y − y0(kx )]

× ϕn′[y − y0(kx − qx )]}

= (−1)max {0,n−n′}eiφ(n′−n)

√
nmin!

nmax!

×
( |Q|√

2

)|n′−n|
L|n−n′|

nmin

( |Q|2
2

)
, (C3)

with nmin = min{n, n′} and nmax = max{n, n′} being the min-
imal and maximal Landau-band index, respectively, the norm
square of the effective phonon momentum

|Q|2 = �2
B

( |vx|
vy

q2
x + vy

|vx|q2
y

)
, (C4)

and the corresponding polar angle tan φ = vyqy/(|vx|qx ). We
observe that the form factor from Eq. (C2) implements the
conservation of the momentum components in the x and
z directions. The leading-order contribution to the long-
wavelength expansion is given in Eq. (17).
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FIG. 7. (a) Chemical potential μ(B), (b) absolute and (c) relative phonon-velocity renormalization �vs(B) and δvs(B) = �vs(B) −
�vs(Bref ), respectively, and (d) absolute sound attenuation αq(B) as a function of the magnetic field for different values of the high-energy
cutoff � at T = 0. The particle density has been chosen such that μ(B = 0) = 14.246 meV. Other parameters are as in Figs. 2–4.
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