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Counterdiabatic route for preparation of state with long-range topological order
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We propose here a counterdiabatic (CD) strategy for the fast preparation of a state with long-range topological
order by magnetic field tuning of an initial separable state. For concreteness, we consider the ground state of the
honeycomb Kitaev model whose long-range topological order together with the anyonic excitations make it an
interesting candidate for fault-tolerant universal quantum computation and storage. We implement an approxi-
mate local CD perturbation having the form of the off-diagonal exchange interactions in Kitaev Hamiltonians.
The counterdiabatically produced state is found to have a high fidelity (�0.5) and retains numerous desired
entanglement properties while giving a speed-up of the order of 106. In our study of up to 24-spin clusters we
found the fidelity is constrained by the spectral gap rather than the system size.
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I. INTRODUCTION

The usefulness of a quantum computer depends on the
ability to exploit the quantum entanglement and linear su-
perposition absent in their classical counterparts. How well
the entanglement property of a quantum many-body state
can be utilized in applications depends on the purity of the
state, the details of entanglement [1,2], and how feasibly it
can be prepared in a short time since long duration prepara-
tion protocols may lead to environment-induced decoherence
[3–7]. Ideally one should be able to prepare such states from
an easily accessible initial quantum state through adiabatic
tuning of a suitable Hamiltonian. The quantum adiabatic the-
orem is a no-go theorem for fast protocols as they would
result in nonadiabatic excitations. In systems with a finite
gap, shortcuts to adiabaticity (STA) or counterdiabatic (CD)
strategies are transitionless driving protocols and a means
for quantitatively speeding up the usual adiabatic evolution
without compromising the purity of the desired final state
[7–10]. CD driving suppresses these nonadiabatic excitations
by adding an auxiliary field Ĥ1(t ) to the system Hamiltonian
Ĥ0(t ). With this auxiliary field, even for a very rapid protocol
(as compared to its adiabatic counterpart), the system always
traverses the adiabatic manifold of Ĥ0(t ) and certainly not of
Ĥ0(t ) + Ĥ1(t ). The explicit expression for the counterdiabatic
perturbation [11–13] is given by

Ĥ1(t ) = ih̄
∑
m �=n

|m〉〈m|∂t Ĥ0(t )|n〉〈n|
En − Em

, (1)

where |m〉 denotes the instantaneous eigenstate of Ĥ0(t ) with
eigenvalue Em. Physically, the CD assistance does not work
through increasing the spectral gap (thereby reducing the
Landau-Zener transitions) but through a suppression of the
matrix elements that would connect the states in the adiabatic
manifold to those outside. Expression (1) is reminiscent of

the Berry curvature. Indeed, the transitionless CD driving
compensates for the Berry curvature [14] resulting in a higher
fidelity at the end of the protocol. The entire spectrum as well
as the wave functions of Ĥ0(t ) are required to construct Ĥ1(t ).
Moreover, the denominators En − Em could vanish, or more
generally become exponentially small, in many-body systems.
The nonlocality of the CD term and exponential sensitivity
to any perturbation in the many-body Hamiltonian [15] is a
consequence of constraining the large number of degrees of
freedom of the system to the transitionless manifold. This
limits the applicability of fast protocols to small few-level
systems and the thermodynamic limit is out of question [16].
The perturbation Ĥ1(t ) suppresses excitations for all |m〉’s
and not just for some special state, for, e.g., a well-separated
ground state of the system.

As was pointed out in Ref. [15], a restriction of the expo-
nentially large degrees of freedom in many-body dynamics is
not always the goal. Practically, the exact and formal rigidness
of Eq. (1) is relaxed by focusing on a specific state only
and considering some local operators as an approximation for
transitionless driving. Here, we focus on the fast preparation
of the ground state of the Kitaev Hamiltonian using the CD
protocol. The Kitaev model is an integrable two-dimensional
(2D) system of spin-1/2 particles on the honeycomb lattice
interacting with peculiar Ising-like direction-dependent local
interactions [17]. The model exhibits the spin fractionaliza-
tion phenomenon with no magnetic order, and elementary
excitations consisting of free Majorana fermions and gapped,
quantized half vortices (visons). Depending on the interac-
tion parameters, the half vortices are Abelian or non-Abelian
anyons [17]. For isotropic Kitaev interactions, the Majorana
fermions are linearly dispersing and massless, but they be-
come massive above a small characteristic magnetic field. The
ground state has long-range topological order [17,18], signi-
fied by a finite topological entanglement entropy γ = ln 2,
which is not destroyed by small magnetic fields. Owing to the
nonlocal entanglement and long-range topological order, both
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FIG. 1. Schematic of the honeycomb lattice with nearest-
neighbor Kitaev interactions described in Eq. (3). Exact diago-
nalization calculations have been performed with a 24-site cluster
with toroidal boundary conditions, and benchmarked with density
matrix renormalization group calculations on larger sizes (see Ap-
pendix B). For computation of topological entanglement entropy
using the Preskill-Kitaev construction (see Sec. III), a partition of
a cluster into subsystems A = {1, 2, 5, 6}, B = {17, 18, 20, 21}, C =
{10, 13, 14, 19, 22}, and D is shown where D encloses the lattice sites
not in A, B, and C.

types of anyons are useful resources for universal quantum
computation, providing fault-tolerant quantum memory and
quantum gate realization: The Abelian ones are likely to be
easily accessible in experiments [19] while the non-Abelian
kind is more useful (although less readily realizable) for quan-
tum computation purposes [17].

Even in the presence of a small Zeeman field (smaller than
the vison gap), the ground state retains nontrivial topological
order [20,21] but opens up a small bulk gap allowing the use of
the CD protocol. Cooling down to the ground state is hindered
by its complexity: Kitaev states have exponentially small (in

system size) overlaps with low-energy magnons (typically
responsible for the thermal relaxation of magnets through spin
diffusion to a bath) [20] which are excitations of separable
states with magnetic order. A recent study also reveals that
long thermalization times are expected in Kitaev systems in
the absence of a finite density of visons [22]. The adiabatic
preparation of highly entangled quantum states is typically
hard to implement owing to the problem of exponentially
small (in system size N) spectral gaps near the ground state
(see, e.g., Ref. [23]). However, the excitation gap near the
ground state of the isotropic Kitaev model vanishes only as
1/poly[N], and, upon the introduction of a magnetic field
above a certain small threshold, a finite (Majorana) gap sepa-
rates its ground state from the rest of the spectrum [17,21],
while the vison gap is essentially unchanged. This will be
our regime of interest. Since the vison excitations tend to
destroy the long-range topological order, the finite vison gap
is a desirable feature.

We present a local CD protocol for the high-fidelity prepa-
ration of the Kitaev ground state, on timescales significantly
shorter than that permitted by the quantum adiabatic theorem.
The topological entanglement entropy γ and the (half-vortex)
plaquette fluxes W at the end of the protocol are found to
be much closer to the equilibrium values compared to that
obtained in the same time without the CD protocol. The CD
interactions in our model have the form of certain off-diagonal
exchange interactions [24–26] in Kitaev systems commonly
associated with trigonal deformations. Besides their physical
realization in Kitaev materials, such interactions in addition to
the Kitaev coupling can be implemented using superconduct-
ing quantum circuits [27,28].

The rest of the paper is organized as follows. In Sec. II we
introduce our model Hamiltonian and CD protocol. Section III
presents our calculations of the state fidelity and other prop-
erties such as the topological entanglement entropy and the
plaquette flux expectation value. This highlights the difference
between our protocol and the naive unassisted protocol in
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FIG. 2. Plots showing the time evolution of the fidelity F (t ) for various duration-of-protocol values τ . In (a) we show the results for the
unassisted protocol, i.e., parametric evolution of the Hamiltonian without the CD term, while (b) shows results using the CD assisted protocol.
In both cases, we choose an initial large Zeeman field, B = 50, which decreases to a small value, δB = 0.05, at the end of the protocol.
Durations varying from τ = 0.01 to τ = 20 are shown, spanning both sides of the validity condition for the adiabatic theorem. For smaller
values of τ , CD greatly aids in suppressing the transitions to excited states, resulting in much larger fidelities compared to the unassisted case.
For τ = 20, it can be seen that there is no significant difference in the fidelities obtained. The inset in (a) shows the dimensionless smooth ramp
λ(t ) = cos2[ π

2 sin2( πt
2τ

)] used in our calculations. The inset in (b) shows the energy gap between the ground state and the first excited state in
the two protocols as a function of time t . Clearly, CD does not assist in reducing the minimum energy gap.
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the results section. Section IV summarizes our findings and
contains a discussion.

II. MODEL AND COUNTERDIABATIC PERTURBATION

In our study, we consider the following Hamiltonian,

Ĥ0(λ) = Ĥk + (λ + δ)Ĥm, (2)

where Ĥk the Kitaev Hamiltonian on the honeycomb lattice is
given by

Ĥk = −J
∑

〈i j〉γ -link

σ
(γ )
i σ

(γ )
j . (3)

Here, i labels the sites and 〈i j〉γ -link denotes the nearest
neighbors i, j on a link γ = x, y, z as shown in Fig. 1. Ĥm

corresponds to an external Zeeman field,

Ĥm = B
∑

i

(
σ x

i + σ
y
i + σ z

i

)
, (4)

and λ(t ) ∈ [0, 1] parametrizes the protocol for the Hamilto-
nian evolution. We set the Kitaev interaction scale J = 1. The
system is initiated in a high external magnetic field, B � 1,
such that the ground state is a product state, and gapped. The
time-dependent part λ(t ) is a smooth yet fast ramp evolving
from 1 to 0 in a time τ , and δ is a small positive constant such
that the magnetic field at the end of our protocol is finite, but
small, Bδ � 1. The spectrum remains gapped throughout the
parametric evolution (see below), decreasing monotonously
as λ decreases.

For a transitionless evolution, we now introduce the CD
perturbation to Ĥ0. The CD term of Eq. (1) is expressed
through a gauge potential Âλ such that Ĥ1(λ) = λ̇Âλ:

ĤCD = Ĥ0 + λ̇Âλ. (5)

We require the prefactor λ̇ to vanish at the end points of
the protocol; this condition ensures we begin and end in the

ground state manifold of Ĥ0. The gauge potential can be
expressed as a sum of nested commutators [29],

Âλ = i
∞∑

k=1

αk [Ĥ0, Ĥ0, . . . , [Ĥ0︸ ︷︷ ︸
2k−1

, ∂λĤ0]]], (6)

where we have suppressed h̄. The above series expan-
sion gives the exact gauge potential for a gapped system,
and higher-order commutators generate increasingly nonlocal
contributions. As an approximation, Eq. (6) is truncated after
a certain order of expansion k = l to ensure local interactions,
while still suppressing excitations to give a reasonable fidelity
of a quantum state, which in this paper is set at �0.5. The
set of variational parameters α1, α2, . . . , αl is determined by
minimizing the quantity S = 〈Ĝ2〉 − 〈Ĝ〉2, where

Ĝ = ∂λĤ0 − i[Ĥ0, Âλ], (7)

and 〈 〉 denotes averaging with respect to the Boltzmann
weight exp(−βĤ0). The minimization condition ensures
transitions due to nonzero off-diagonal elements in the in-
stantaneous Hamiltonian are suppressed [8]. For ease of
calculation we focus on the infinite temperature limit (β →
0), where the problem reduces to minimizing S = Tr[Ĝ2].
For a detailed derivation, we refer the reader to Ref. [29].
Note the infinite temperature is not ideal for ground state
preparation as it treats the excited states on the same footing.
We show the CD assistance produces desirable results even in
this worst scenario limit. It has been shown that for the one-
dimensional Kitaev model, the CD Hamiltonian is of M-body
interaction type, thus limiting its practicality [30] for cluster
state generation. Limiting ourselves to two-body interactions
only, we retain in Eq. (6) only the leading term and obtain (see
Appendix A for details)

Â(1)
λ = B/J

18(λ + δ)2(B/J )2 + 10

⎧⎨
⎩

∑
〈i j〉x-link

(
σ x

i σ
y
j − σ x

i σ z
j

) +
∑

〈i j〉y-link

(
σ

y
i σ z

j − σ
y
i σ x

j

) +
∑

〈i j〉z-link

(
σ z

i σ
y
j − σ z

i σ x
j

) + i ↔ j

⎫⎬
⎭. (8)

The above gauge potential Â(1)
λ resembles the �′ interaction

in Kitaev systems with the difference that Eq. (8) has asym-
metric terms while the �′ interaction has symmetric ones
[24–26], and is associated with trigonal distortions in the
lattice. Using Eq. (8) in Eq. (5) gives the CD Hamiltonian
which we use in the rest of the paper. Numerical calculations
are performed by exact diagonalization of a 24-site cluster
(see Fig. 1) using QUSPIN [31,32]. For benchmarking, we
compare the energy gap in our system with that of a larger
144-site cluster [obtained via density matrix renormalization
group (DMRG)—see Appendix B], and find that the two are
in agreement. We thus conclude that the system is gapped
throughout the range of magnetic fields we study—this is in
contrast with some calculations [33] in the recent literature
(based on an apparent power-law decay of ground state spin
correlators obtained using DMRG) that claim the existence of

a gapless phase in the range 0.2 � B � 0.3. The finite spectral
gap even in the thermodynamic limit is of relevance to our
problem since a vanishing gap at intermediate magnetic fields
would invalidate the counterdiabatic protocol.

III. RESULTS

Below we show the numerical results for the overlap of
the time evolved state, |ψ[λ(t )]〉 = U (t )|ψ[λ(0)]〉, with the
ground state |φGS[λ(t )]〉 of the instantaneous Hamiltonian.
The fidelity F is defined as F = |〈ψ | φGS〉|2. A smooth
ramp with a vanishing time derivative at the end points en-
sures the initial and final Hamiltonians are the same in the
unassisted and CD protocols. For concreteness we choose
λ(t ) = cos2[π

2 sin2( πt
2τ

)] for t ∈ [0, τ ] as shown in the inset of
Fig. 2(a). Figure 2 shows the fidelity of the evolving quantum
state in the unassisted [Fig. 2(a)] and CD assisted [Fig. 2(b)]
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FIG. 3. Plots showing the fidelity (F ), entanglement entropy (γ ), and expectation value of the Ŵ (plaquette flux) operator (W ) calculated
for the quantum state obtained via the CD assisted and the naive, unassisted protocol. In (a) these quantities are shown as a function of a wide
range of protocol time duration τ spanning both sides of the validity condition of the adiabatic theorem. The dashed line shows the pure ground
state value corresponding to δĤm + Ĥk. The unassisted protocol yields close to zero values for γ and W owing to a lesser fidelity as compared
with the CD assisted protocol. γ values smaller than 10−6 are suppressed to zero by switching from log scale to linear scale. (b) shows the
same quantities as a variation of the final magnetic field in the system Bδ. The quantity measures start converging for τ = 10.

protocols for various time durations τ . We note that for τ � 1,
the fidelity in the CD assisted protocol falls sharply around
t � τ/2 (even falling to zero for the shorter durations) before
jumping to values significantly larger than the unassisted case
towards the end of the protocol. The vanishing fidelity during
intermediate times is not on account of any closure of the
spectral gap [see the inset of Fig. 2(b)] but rather shows that
the time evolved state in the CD protocol overlaps poorly with
the ground state of the instantaneous Hamiltonian for these
intermediate times. However, for τ � 1, the two protocols
do not show a significant difference. This is in accordance
with the fact that for a slow variation of the system pa-
rameters, the CD Hamiltonian approaches the adiabatically
varying Hamiltonian. From Fig. 2, we see that the fidelity
remains approximately unity even for times near the middle
of the protocol owing to the still large Zeeman gap. This
implies one can start from an initial product state and yet

attain large fidelities for the Kitaev ground state at the end of
protocol.

We next compare the usefulness of the quantum state
obtained via the two protocols by studying their entangle-
ment entropy and plaquette fluxes. The Kitaev ground state
is associated with a finite topological entanglement entropy,
which is the part of the von Neumann bipartite entropy, SA =
Tr ρA log ρA = αL − γ , remaining after subtracting the area
law contribution. Here, L is the perimeter of a 2D subsystem
A whose bipartite entanglement entropy is SA. For the Kitaev
ground state, γ = ln 2. Appropriately choosing four partitions
of the lattice (see Fig. 1) and taking a linear combination of
entropies of three of the partitions yields γ , which is free from
the boundary term [18]:

−γ = SA + SB + SC − SAB − SBC − SAC + SABC . (9)
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FIG. 4. Support size ξ and change in the energy of the evolved
state from the ground state energy �E = 〈E〉 − EGS are plotted as a
function of (a) protocol duration τ and (b) final Zeeman field Bδ. In
(a) the CD assisted support size, ξCD ∼ 1, while for the naive proto-
col, ξ ∼ 10, for a wide stretch of τ values. The CD assisted quantum
state obtained is localized in the bottom part of the energy spectrum
is confirmed by the energy difference �E . Again as in Fig. 3(a), the
naive driving of Hamiltonian parameters starts coinciding with the
transitionless driving at τ ∼ 10. Even for very small Zeeman fields,
(b) shows the support size ξCD is still localized to ∼10 states only in a
many-body Hilbert space of dimension 224 while ξ for the unassisted
case shows a very rapid variation.

Finite topological entanglement entropy ensures the quantum
state is fault tolerant to local disturbances. In addition to the
entanglement entropy, the plaquette flux operator Ŵ is another
characteristic quantity in pure Kitaev systems. With reference
to Fig. 1, we choose the plaquette p = {1, 4, 9, 13, 10, 5} for
computing the expectation value of the flux operator defined
as Ŵp = σ z

1σ x
4 σ

y
9 σ z

13σ
x
10σ

y
5 . The flux operator commutes with

the Kitaev Hamiltonian Ĥk and has eigenvalues W = ±1. The
ground state is characterized by W = 1. In Fig. 3 we show
the dependence of these quantities on τ [Fig. 3(a)] and the
final Zeeman field Bδ [Fig. 3(b)]. The green colored line in
Fig. 3 shows the value of these quantities corresponding to the
ground state of the final Hamiltonian for comparison. We find
that for τ � 1, the topological entanglement entropy of the
quantum state evolved using transitionless driving is an order
of magnitude higher than that of the state evolved without
it. A finite nonzero γ implies the state is useful for quantum
computation. Similarly, the CD assisted protocol yields values
of W closer to unity compared to unassisted driving. Because

of better fidelity through the counterdiabatic approach, the
final time-evolved quantum state stays close to the true ground
state. Quantitatively, this can be expressed in terms of the
support size ξ of the quantum state (obtained at the end of
the protocol) in the many-body Hilbert space of the exact
eigenstates of the final Hamiltonian. The support size ξ is
defined as ξ−1 = ∑

i |ai|4, where ai is the overlap of the quan-
tum state with the many-body eigenstates |i〉. We observe in
Fig. 4(a) support sizes of 2.5 states or less when CD assisted
for a wide range of protocol durations while unassisted driving
gives support sizes of the order of ten states or more. In the CD
protocol, ξ shows a relatively slower variation on changing
the final Zeeman field as opposed to the unassisted protocol
where ξ rapidly rises for decreasing Bδ as shown in Fig. 4(b).
Along with ξ in Fig. 4 we have plotted the energy difference
of the obtained quantum state with the pure ground state. We
find the energy difference is small for the CD case. We thus
claim that the CD aided approach yields the quantum state
with high localization (the dimensionality of the many-body
Hilbert space for our 24-spin cluster is 224) near the ground
state, with the ground state having the maximum share equal
to its fidelity.

IV. DISCUSSION

The Kitaev ground state is useful for universal quantum
computing and storage due to its long-range topological or-
der and anyonic excitations. We demonstrated, by using a
counterdiabatic strategy, the feasibility of preparing the Kitaev
ground state (in the presence of a small Zeeman field sufficient
for introducing a bulk spectral gap) with high fidelity on
timescales significantly (around 106 times) smaller than that
permitted by the adiabatic theorem even though the enhance-
ment is still O(1) in a system size as other CD protocols.
Although not unique in having a ground state topological
order, the Kitaev model works well with the CD protocol
because thermalization of this state requires a finite vison
density, which is suppressed by the appreciable vison gap in
the Kitaev model. Its extreme anisotropic limit, the Kitaev
model, reduces to the more well-studied toric code model
that also has this topological order. However, because of the
very small energies associated with vison excitations in the
anisotropic Kitaev model (toric code limit), the topological
order is rather fragile [34] unless some way can be found to
suppress the visons. Our proposed method relies on limiting
the CD expansion to local two-body interactions which makes
it practicable for implementation. Despite the local approxi-
mation, features such as topological entanglement entropy and
nonzero flux expectation were shown to be preserved much
better than unassisted protocols in the same time duration.
To further increase the fidelity and other topological features
it is necessary to include higher-order (and more nonlocal)
terms neglected in our approximate CD protocol. Our calcu-
lations have been performed on 24-spin clusters, and it is not
a priori evident how the neglected nonlocal CD terms will
affect the fidelity for larger system sizes. Nevertheless we do
have some understanding of the trend. In the Appendix B
we show the fidelities attained for three different system
sizes N = 12, 18, 24. We observed that comparable (and even
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better) fidelities are obtained with increasing system size with
our CD protocol. Together with Fig. 3(b), this suggests the
fidelity is limited much more by the size of the spectral gap
than the size of the system. Further studies should improve
our understanding of the scaling of fidelity with larger system
sizes.
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APPENDIX A: GAUGE POTENTIAL Âλ

We sketch the steps involved to obtain the counterdiabatic
perturbation to the Hamiltonian Ĥ0. For a two-body local
interaction, we expand Eq. (6) to leading order:

Â(1)
λ = iα1[Ĥ0, ∂λĤ0] = iα1[Ĥk, Ĥm]. (A1)

Let the Zeeman field coupling constant B = (Bx, By, Bz ). In
our analysis, we considered the field along the [111] direction
with Bx = By = Bz = B. The commutator in Eq. (8) can be

written as a sum of three terms [Ĥk, Ĥm] = X̂ + Ŷ + Ẑ which
are given by

X̂ = 2iBxJ

⎧⎨
⎩

∑
〈 jk〉z-link

(
σ

y
j σ

z
k + σ z

j σ
y
k

) −
∑

〈 jk〉y-link

(
σ

y
j σ

z
k + σ z

j σ
y
k

)
⎫⎬
⎭,

(A2)

Ŷ = 2iByJ

⎧⎨
⎩

∑
〈 jk〉x-link

(
σ z

j σ
x
k + σ x

j σ
z
k

) −
∑

〈 jk〉z-link

(
σ z

j σ
x
k + σ x

j σ
z
k

)
⎫⎬
⎭,

(A3)

Ẑ = 2iBzJ

⎧⎨
⎩

∑
〈 jk〉y-link

(
σ x

j σ
y
k + σ

y
j σ

x
k

) −
∑

〈 jk〉x-link

(
σ x

j σ
y
k + σ

y
j σ

x
k

)
⎫⎬
⎭.

(A4)

The variational parameter α1 is found by constructing the
operator Ĝ as defined in Eq. (7) and minimizing S = Tr Ĝ2.
The leading order of Ĝ can be expressed as

Ĝ(1) = ∂λĤ0 − i
[
Ĥ0, Â(1)

λ

]
= Ĥm − α1(λ + δ)[Ĥm, [Ĥm, Ĥk]] − α1[Ĥk, [Ĥm, Ĥk]].

(A5)

The minimization condition δS/δα1 = 0 yields

α1 = (λ + δ)Tr(Ĥm[Ĥm, [Ĥm, Ĥk]]) + Tr(Ĥm[Ĥk, [Ĥm, Ĥk]])

(λ + δ)2Tr([Ĥm, [Ĥm, Ĥk]]2) + Tr([Ĥk, [Ĥm, Ĥk]]2) + 2(λ + δ)Tr([Ĥm, [Ĥm, Ĥk]][Ĥk, [Ĥm, Ĥk]])
. (A6)

The traces are evaluated numerically resulting in

α1 = −1/4

9(λ + δ)2B2 + 5J2
. (A7)

Substituting α1 in Eq. (A1) gives the gauge potential Â(1)
λ .
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FIG. 5. Ground state energy gap for the Hamiltonian Ĥ = Ĥm +
Ĥk as calculated for 24 sites using exact diagonalization and 144
sites via DMRG as a function of Zeeman field coupling B is shown.
The two cases coincide for a wide range of magnetic field values
encountered in the naive as well as CD assisted protocol [see the
inset of Fig. 2(b)].

APPENDIX B: ENERGY GAP AND FINITE SIZE
DEPENDENCE OF FIDELITY

Higher fidelities in CD assisted protocols are aided by the
mass gap present in the Kitaev system in the presence of
a Zeeman field. Here, we illustrate this gap is not a finite
size effect. Figure 5 shows the comparison of the energy

FIG. 6. Fidelities obtained for three different system sizes up to
N = 24 are shown. Solid lines depict the CD assisted protocol while
the dotted lines correspond to the unassisted protocol. The fidelity
shows an increasing trend with system size, suggesting that in our
model it is limited primarily by the size of the spectral gap (finite
even in the thermodynamic limit) and less so by the system size.
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gap between the ground state and first excited state for the
Hamiltonian Ĥ = Ĥm + Ĥk in 24-site and 144-site lattices.
All 24-site calculations are performed via exact diagonaliza-
tion in QUSPIN while the larger 144-site energy gap calculation
is done using the finite size DMRG. We note the gap coincides

for the two cases for a wide range of magnetic fields encoun-
tered in the protocol [see the inset of Fig. 2(b)].

In Fig. 6 we show the dependence of the fidelity on the
system size of up to 24-spin clusters. We see the fidelities are
comparable (and even better) for the increasing system sizes.
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