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Tilted Dirac cone effects and chiral symmetry breaking in a planar four-fermion model
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We analyze the chiral symmetry breaking in a planar four-fermion model with non-null chemical potential,
temperature, and including the effect of the tilt of the Dirac cone. The system is modeled with a (2 + 1)-
dimensional Gross-Neveu-like interaction model in the context of the generalized Weyl Hamiltonian and its
phase structure is studied in the mean-field and large-N approximations. Possible applications of the results
obtained, e.g., in connection to graphene, are discussed. We also discuss the effect of an external magnetic field
applied to the system, which can give rise to the appearance of the anomalous Hall effect and that is expected to
arise in connection with two-dimensional Weyl and Dirac semimetals.
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I. INTRODUCTION

Condensed-matter systems, in particular, those with lin-
early dispersing fermionic excitations, have been serving as
perfect platforms for testing predictions made by quantum
field theories. This interplay between high-energy physics and
condensed matter has been producing new insights about the
quantum phenomena. This includes the parallel between the
Ginzburg-Landau model of superconductivity and the sponta-
neous symmetry breaking in the Higgs sector of the standard
model of particle physics to the relation between topological
insulators and axion electrodynamics, with applications, e.g.,
in two-dimensional systems [1–7]. The physics of graphene
[8] is of particular relevance in this context, where the elec-
trons can be treated in a quasirelativistic way through the
Dirac equation in (2 + 1) dimensions.

Although the relativistic character of the electrons in
graphene is intrinsically connected with the Lorentz symme-
try, this is not the case in most materials in condensed matter.
There are condensed-matter systems where the dispersion in
the vicinity of band touching points, even though they can be
generically linear and resemble the Weyl equation, they lack
Lorentz invariance. Despite the fact that Lorentz symmetry
breaking in high-energy physics may emerge in specific con-
texts [9–15], they face strong constraints in general [15–17].
Despite this, models exhibiting Lorentz symmetry breaking
have been recently applied in the condensed-matter area,
e.g., as a path to model three-dimensional Weyl semimetals
[18–21], quasiplanar organic materials, and heterostructures
made of a combination of topological and normal insulators
[22–25].

These systems are described by Weyl-like Hamiltonians
and, therefore, these systems have quasiparticles that behave
like Weyl fermions [26]. These quasiparticles are by construc-
tion massless and are more stable against gap formation in
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comparison to Dirac ones. After several theoretical predic-
tions, the first experimental measurement related to this kind
of material [27] shed light on the properties of the first de-
tected Weyl semimetal (for reviews, see, e.g., Refs. [28,29]).

In the present paper, we study how the gapless property
associated with Weyl fermions would hold against possible
chiral symmetry breaking. Here, the usual Weyl Hamiltonian
used in the description of Weyl semimetals [22,23] is extended
by the introduction of a four-fermion interaction. The proper-
ties of this system are then studied under the effects of both a
finite chemical potential and temperature.

Let us recall that four-fermion interacting models, par-
ticularly Gross-Neveu (GN)-type models [30] in (2 + 1)
dimensions, are of particular interest. This is because of their
simplicity and ability to capture the relevant physics of planar
fermionic systems in general and, thus, these types of models
have been extensively considered in the literature. These mod-
els can have either a discrete chiral symmetry, ψ → γ5ψ , or
a continuous one, ψ → exp(iαγ5)ψ . These types of models
have been employed to study, e.g., low-energy excitations
of high-temperature superconductors [31], while analogous
models with four-fermion interactions have also been used
to study the quantum properties of graphene [32]. Taken as
an effective low-energy description of the intrinsic physics
of many relevant condensed matter systems of interest, the
four-fermion models of the GN type have then served as mo-
tivation for many previous studies (see, e.g., Refs. [33–41] for
different examples of applications). In particular, these models
can play a role in understanding the possibility of dynamical
gap generation in planar condensed matter systems, e.g., in
graphene [32,42–44].

The aim of this paper is then to study a Weyl-like Hamil-
tonian when it is augmented by a four-fermion interaction of
the GN type. We study the interplay between the characteristic
anisotropy and tilting of the Dirac cone, as typically consid-
ered in these models, with both temperature and chemical
potential (i.e., the effects of doping) in the phase structure
of the resulting system. This study is performed in the con-
text of the effective potential in the mean-field and large-N
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FIG. 1. Illustration of a generic Dirac cone for an isotropic
Dirac semimetal (a), type-I Weyl semimetal (b), and type-II Weyl
semimetal (c).

approximation. It is expected that this paper will be of inter-
est for learning some of the analogous effects that might be
important when considering fermionic quasiparticles and ex-
citonic bound states in planar fermionic systems of relevance.

The remainder of this paper is organized as follows. In
Sec. II, we show the relevant properties of two-dimensional
Dirac and Weyl semimetal systems. In Sec. III, we extend the
model by considering a four-fermion interaction and analyze
the effective potential for the averaged value for the chiral op-
erator. The effective potential is derived at the mean-field and
large-N level when taking into account the effects of both the
anisotropy, tilting of the Dirac cone, chemical potential, and
temperature. We dedicate Sec. IV to discuss our results and
also some possible applications. In Sec. V, we discuss some
expected features for this Weyl-type model when an external
magnetic field is applied to the system. Finally, in Sec. VI, we
give some additional discussions concerning our results and
also our concluding remarks. Throughout this paper, we will
be considering the natural units where h̄ = kB = c = 1.

II. TWO-DIMENSIONAL WEYL SEMIMETALS

The generalized Hamiltonian which describes the electrons
in the two-dimensional Weyl semimetal (2D WSM) is given
by [22,23],

Ht (p) = vF [(t · p)τ 0 + (ξx px )τ x + (ξy py)τ y], (2.1)

where vF is the Fermi velocity, τ 0 = I the 2 × 2 identity
matrix, τ x and τ y are the Pauli matrices, t is the vector defining
the tilt of the Dirac cone, and ξ = (ξx, ξy) is the vector that
describes the anisotropic character of the crystalline structure.
The tilt vector t is related to the separation between the Dirac
cones in the Weyl semimetal. A consequence of the non-null
tilt term in Eq. (2.1) is that the Dirac points, denoted by D and
D′, no longer coincide with the Brillouin corners K and K ′
(see, e.g., Ref. [23] for details and a review). In particular,
type-I Weyl semimetals are characterized by |t| < 1, while
type-II ones by |t| > 1 (see Fig. 1 for an illustration). Al-
though |t| is not restricted, to maintain the physical meaning

of the Hamiltonian Eq. (2.1), it is imposed that√(
tx
ξx

)2

+
(

ty
ξy

)2

= |t̃| < 1, (2.2)

where |t̃| is called the effective tilt parameter. When the condi-
tion given by Eq. (2.2) is not respected, the isoenergetic lines
are no longer ellipses but instead they are hyperboles [22,23].
The above condition on the effective tilt parameter will also
become evident when we give our results for the critical points
associated with the chiral symmetry restoration later on. One
should also notice that while |t̃| is restricted to be smaller than
unity, we can still have either the type-I or type-II Weyl cases,
|t| < 1 or |t| > 1, respectively, depending on the values for
the the anisotropies ξx and ξy. The value of |t̃| depends on
the material. For example, in quinoid-type deformed graphene
[22], it is of order of 0.6ε, with the relative strain parameter
ε < 0.1 for moderate deformations. The degree of freedom
described by the Hamiltonian Eq. (2.1) is that of a (massless)
Weyl fermion.

The Hamiltonian spectrum obtained from Eq. (2.1) is given
by

E (p) = vF [t · p + λ

√
(ξx px )2 + (ξy py)2], (2.3)

where λ = ±1 define the conduction and valence bands,
respectively. Note that the condition Eq. (2.2) ensures the
association of λ = +1 to a positive and λ = −1 to a neg-
ative energy state [22,23]. In the untilted case tx = ty = 0
and isotropic one, ξx = ξy = 1, we recover the spectrum of
isotropic graphene. The Hamiltonian Eq. (2.1) commutes with
the chirality operator given by

C = (ξx px )τx + (ξy py)τy√
(ξx px )2 + (ξy py)2

(2.4)

and the eigenvalues of C are given by α = ±1. Due to the
twofold degeneracy of the Dirac cones D and D′, with rep-
resentative index ρ = ±1, the band index can be properly
identified as λ = ρα. Taking these degeneracies into account,
we can write a four-component Weyl spinor ψ and a Dirac-
like Lagrangian density can be written as

L0 = iψ̄

[
(∂t − vF t · ∂)γ 0 − vF

∑
i

(ξi∂i )γ
i

]
ψ

= iψ̄Mμνγμ∂νψ, (2.5)

where

γ μ = τμ ⊗
(

1 0
0 −1

)
, (2.6)

τμ = (τ3, iτx, iτy), and ψ̄ = ψ†γ 0. The γ -matrices respect
the algebra {γ μ, γ ν} = 2ημν (for details of this representation
for fermions in (2 + 1)-dimensions see, e.g., Ref. [45]). We
also have that

Mμν =

⎛
⎜⎝

1 −vFtx −vFty

0 −vF ξx 0

0 0 −vF ξy

⎞
⎟⎠. (2.7)

One should note that Mμν contains the parameters that ex-
plicitly break the Lorentz symmetry. Note also that we do not
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introduce the twofold spin degeneracy here and, in case of
interest, we have to double the spinors ψ → ψs for s = ±1.
It is easy to show that the Lagrangian density Eq. (2.5) has a
discrete chiral symmetry given by ψ → γ5ψ and ψ̄ → −ψ̄γ5

with [45]

iγ5 =
(

0 I

−I 0

)
. (2.8)

Though there are some different ways for adding a mass
term in the Lagrangian density Eq. (2.5) breaking the chiral
symmetry [45], the simplest one is the mass term ψ̄ψ . In par-
ticular, this mass term can be generated dynamically once the
model given by Eq. (2.5) is extended to include a four-fermion
interaction of the GN type. This extension is considered next.

III. EXTENDING THE MODEL WITH A FOUR-FERMION
INTERACTION

As already mentioned in the Introduction, the use of local
four-fermion interactions is well motivated in the literature.
These interactions can, for example, describe in an effective
way the interaction between electron and phonons in materi-
als [46]. Four-fermion-type interactions can also describe the
effects of impurity/disorder [47,48] and, in the case of the GN
type of model, it has also been used in the honeycomb lattice
searching for the possibility of gap opening [42,49–53]. In ad-
dition, these local interactions can be seen as an extension of
the BCS theory, effectively describing s-wave low-energy in-
teractions, for example. For graphene, for example, in addition
to the Coulomb interaction, the effective continuum model for
quasiparticles is also expected to contain contact four-fermion
interaction terms, which arise from the original lattice tight-
binding model [50,54–57]. All these possible interactions,
which might be important in opening a gap in 2D systems,
are in addition to the long-range Coulomb interaction. There
have also been some works modeling the long-range Coulomb
interaction in an effective way (see, e.g., Ref. [37]), valid at
low energies, through a four-fermion interaction. This could
be the case in superconducting materials where the mediating
photon for the electron-electron interaction acquires an effec-
tive mass. In this case, for momentum less than the effective
photon mass, the long-range Coulomb interaction could be
effectively approximated by a local contact interaction. In the
present paper, we avoid attaching to the interaction any of the
above possibilities and use the four-fermion interaction solely
as an effective interaction which can work in producing a gap
in the system.

For the purpose of analyzing the metal-insulator phase
transition in the 2D WSM, the Lagrangian density Eq. (2.5)

is extended to include a four-fermion interaction,

L = iψ̄Mμνγμ∂νψ + λvF

2N
(ψ̄ψ )2, (3.1)

where ψ is a fermionic field with N flavors (the sum over
the flavors implicit) and λ is the coupling constant. Note that
the Lagrangian density Eq. (3.1) is still invariant under the
discrete chiral symmetry, unless 〈ψ̄ψ〉 �= 0. Introducing an
auxiliary field σ , the Lagrangian density Eq. (3.1) can be
equivalently rewritten as

L = ψ̄ (iMμνγμ∂ν − σ )ψ − N

2vF λ
σ 2. (3.2)

The Lagrangian densities Eqs. (3.1) and (3.2) are completely
equivalent. This becomes evident by noticing that the Euler-
Lagrange equation of motion for σ and which is obtained
from Eq. (3.2) is simply σ = −vF λ/Nψ̄ψ . When this is sub-
stituted back in Eq. (3.2), we recover exactly Eq. (3.1). The
GN Lagrangian density expressed in the form of Eq. (3.2)
makes evident the chiral operator in terms of the scalar field σ

and it is better suitable to study the dynamical fermion mass
generation in the model [45].

By integration of the fermionic degree of freedom in the
mean-field approximation, where σc ≡ 〈σ 〉 is a constant back-
ground field, the effective potential for σc, at one-loop order,
is given by

Veff = N

2vF λ
σ 2

c + tr ln (iMμνγμ∂ν − σc). (3.3)

Writing Eq. (3.3) in Euclidean momentum space-time and
taking the trace, we find that

Veff = N

2vF λ
σ 2

c − 2NT
+∞∑

n=−∞

∫
d2 p

(2π )2

× ln
[
(ωn + ivF t · p + iμ)2 + v2

F (ξ · p)2 + σ 2
c

]
,(3.4)

where ωn = (2n + 1)π/β (with n ∈ Z, β = 1/T and T is the
temperature of the system) are the Matsubara’s frequencies
for fermions and μ is the chemical potential. Note that the
chemical potential can be interpreted as to account for the
extra density of electrons that is supplied to the system by
the dopants and, hence, is directly related to the doping con-
centration. It is also worth pointing out that Eq. (3.4) is an
exact result in the large-N approximation [45]. Even though
for practical purposes N is finite (e.g., in graphene N = 2),
we will assume that Eq. (3.4) still provides a sufficiently good
approximation as generally assumed in these four-fermion
type models [34–37]. We will comment more on the validity
of the large-N approximation used here when we discuss our
results in the next section.

After summing over the Matsubara’s frequencies in
Eq. (3.4), we find that the effective potential is given by

Veff (σc, μ, T ) = N

2vF λ
σ 2

c − 2N
∫

d2 p

(2π )2

{
Eσ + 1

β
ln

[
1 + e−β(Eσ +μ)

] + 1

β
ln

[
1 + e−β(Eσ −μ)

]}
, (3.5)
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where

Eσ = vF t · p +
√

v2
F p̃2 + σ 2

c , (3.6)

with p̃2 = p̃2
x + p̃2

y ≡ (ξ · p)2.
The so-called gap equation is given by

∂Veff

∂σc

∣∣∣
σc=σ̄c

= 0, (3.7)

which gives

1 = 2λvF

∫
d2 p

(2π )2

1√
v2

F p̃2 + σ̄ 2
c

×
[

1 − 1

eβ(Eσ +μ) + 1
− 1

eβ(Eσ −μ) + 1

]∣∣∣∣
σc=σ̄c

, (3.8)

along with the trivial solution σ̄c = 0.
Special cases of the above equations will be analyzed next.

A. The T = μ = 0 case

Note that the effective potential Eq. (3.5) is divergent.
Considering the limit β → ∞ and μ → 0 in Eq. (3.5) and
performing the (divergent) momentum integral with a cutoff
�, we can define the renormalization condition for the four-
fermion interaction λR as [35,58]

1

λR(m)
= vF

N

d2Veff (σc)

dσ 2
c

∣∣∣
σc=m

= 1

λ
+ 2m

πξxξyvF
− �

πξxξyvF
, (3.9)

where m is a regularization scale. Next, defining the renormal-
ization invariant coupling λR as

1

λR
= 1

λR(m)
− 2m

πξxξyvF
, (3.10)

we arrive at the renormalized effective potential as given by

Veff,R(σc) = N

2vF λR
σ 2

c + N

3πξxξyv
2
F

|σc|3. (3.11)

When λR < 0, the nontrivial vacuum solution of Eq. (3.11) is
given by

σ̄c = σ0 ≡ vF πξxξy

|λR| , (3.12)

while for λR > 0 we have that σ̄c = 0. Note that

Veff,R(σc = σ0) = N (πξxξy)2vF

6λ3
R

(3.13)

and, hence, Eq. (3.12) corresponds to the true minimum of
the system. We can also see that the value of σ0 is modified
by the dependence on the anisotropy constants, ξx, ξy, and we
recover the usual result [34,35] in the isotropic limit: ξx, ξy →
1. One can further notice here, in the zero temperature and
zero chemical potential limits, that the tilt parameter t does
not contribute to the effective potential.

B. The T = 0 and μ �= 0 case

At zero temperature but with a non-null chemical poten-
tial, from the effective potential Eq. (3.5) and considering
Eq. (2.2), one obtains that

Veff,R(σc, μ)

= Veff,R(σc) − 2N
∫

d2 p

(2π )2
(μ − Eσ )�(μ − Eσ ), (3.14)

where �(x) is the standard Heaviside function. Even though
we cannot explicitly make the integration in the momentum
in Eq. (3.14) analytically, we can analyze it when the effective
tilt parameter |t̃| is small. This is useful to obtain an under-
standing of the effect of |t̃|. For a small effective tilt parameter,
|t̃| � 1, we can find for Eq. (3.14) the approximated result

Veff,R(σc, μ)

= Veff,R(σc) − N

2πξxξyv
2
F

�(μ2 − σ 2
c )

×
[

1

3

(
μ3 − 3σ 2

c μ + 2|σc|3
) + 1

2
|t̃|2μ(

μ2 − σ 2
c

)]

+ O(|t̃|4). (3.15)

Equation (3.15) shows that the effect of the effective tilt pa-
rameter is to enhance the chemical potential. This is confirmed
by the results shown in Fig. 2. Figure 2 shows the effective
potential as a function of σc obtained from the numerical
integration of Eq. (3.14) and for some representative values
of μ and |t̃|. By comparing the Figs. 2(a) and 2(b), we can
see that the effect of the effective tilt parameter is to lower
the point of chiral symmetry restoration. In the presence of
the tilt, the chiral symmetry is restored at a lower value for
the chemical potential, which is in accordance to what we
find from the approximated expression Eq. (3.15). This can
be confirmed by determining the critical point μc for which
the chiral symmetry gets restored.

To derive the critical point μc, let us first recall that at a
vanishing effective tilt parameter, |t̃| = 0, the chiral symmetry
is restored through a first-order phase transition as has been
shown in many previous references (see, e.g., Refs. [59–61]).
We can see this explicitly happening in Fig. 2(a). In the ab-
sence of the tilt parameter, at μ = 0 the effective potential
displays a maximum at σc = 0 and a minimum at σc = σ0.
As the chemical potential increases, the minimum remains
located at σc = σ0 and with an unchanged value for the ef-
fective potential. However, the value of the effective potential
at the maximum decreases. This continues to happen un-
til the value μ = σ0 is considered. When μ = σ0, we have
that Veff,R(σc = σ0, μ = σ0) = Veff,R(σc = 0, μ = σ0) and the
minimum and maximum of the effective potential become
degenerate. In fact, at μ = σ0 the whole range 0 � σc � σ0

becomes degenerate and are minimum points of the effective
potential. As the chemical potential increases further, μ > σ0,
there will be only one minimum for the effective potential and
which is located at σc = 0. The chiral symmetry then becomes
restored for μ > σ0. The chiral order parameter, which is rep-
resented by the minimum of the effective potential, will then
jump discontinuously from σc = σ0 to σc = 0 as we change
the chemical potential from μ < σ0 to μ > σ0, with μ = σ0
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FIG. 2. Normalized plot of the renormalized effective potential
at zero temperature, Eq. (3.14), in units of V0 ≡ Nσ 3

0 /(6πv2
F ξxξy ).

Panel (a) shows the effective potential when |t̃| = 0 and for different
values for the chemical potential. Panel (b) shows the effect a nonva-
nishing |t̃| in the shape of the effective potential for the chiral order
parameter.

representing the critical value for the chemical potential. The
discontinuous behavior for the order parameter characterizes
the transition as a first-order one. In the presence of the effec-
tive tilt parameter, i.e., |t̃| �= 0, we can see from Fig. 2(b) that
the same trend remains. However, in this case we have that the
first-order transition happens at a lower value for the chemical
potential. In this sense, we can say that the presence of the
nonvanishing tilt parameter facilitates the chiral symmetry
restoration.

According to the above discussion, the critical point can
then be determined by the condition Veff,R(σc = 0, μc) =
Veff,R(σc = σ0, μc). Using Eq. (3.14), we then find that the
critical chemical potential as a function of the effective tilt
parameter is given by

μc = (1 − |t̃|2)1/2σ0. (3.16)

At the critical value μc, the potential losses its nontrivial
minimum, i.e., σ̄c(μ = μc) = 0. The critical value μc as a
function of the effective tilt parameter is shown in Fig. 3.
For |t̃| = 0, we recover the known result μc = σ0 for the GN
model in (2+1) dimensions. The result for the critical μc

shown in Eq. (3.16) clearly shows that in the presence of a
non-null tilt parameter, the gap σ̄c will vanish at a smaller dop-
ing and, hence, facilitating the chiral symmetry restoration.

FIG. 3. The critical chemical potential μc (in units of σ0) as a
function of |t̃|.

Note that the tilt parameter also affects the Fermi momen-
tum, which is now given by

p̃F =
√

μ2 − [1 − |t̃|2 cos2(θ )]σ 2
c − μ|t̃| cos(θ )

vF [1 − |t̃|2 cos2(θ )]
, (3.17)

where θ is the angle between pF and the tilt vector t. We
see that for −π/2 < θ < π/2, the tilt parameter acts toward
increasing the Fermi surface. This is also reflected on the
behavior of the charge density n, which is defined as

n = −∂Veff,R

∂μ

∣∣∣
σc=σ̄c

, (3.18)

and, using Eq. (3.14), it gives the result

n(σc, μ) = N
μ2 − (1 − |t̃|2)σ̄ 2

c

2πξxξyv
2
F (1 − |t̃|2)3/2 �

[
μ2 − (1 − |t̃|2)σ̄ 2

c

]
.

(3.19)

At the critical value μc given by Eq. (3.16), we have that
n(σ̄c = 0, μc) = Nσ 2

0 /(2πξxξyv
2
F

√
1 − |t̃|2), which is always

larger than in the absence of the tilt parameter. This is explic-
itly seen also in Fig. 4, where Eq. (3.19) is shown as a function
of the chemical potential, for a nontilted Dirac cone case and

FIG. 4. Density at zero temperature [in units of
n0 ≡ Nσ 2

0 /(2πv2
F ξxξy )] as a function of the chemical potential

for |t̃| = 0 (solid line) and for |t̃| = 0.6 (dashed line).
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FIG. 5. The chiral order parameter σ̄c as a function of the tem-
perature and for different values for the effective tilt parameter |t̃|
when μ = 0.

also for a tilted one. The discontinuity in the density here is
a consequence of the first-order phase transition happening at
the critical point μc, where the chiral order parameter jumps
discontinuously from σ̄c = σ0 to σ̄c = 0 when going from
μ < μc to μ > μc.

C. T �= 0, μ = 0

Let us now analyze the case of the chiral symmetry restora-
tion at finite temperature but in the absence of the chemical
potential. Taking μ = 0 in Eq. (3.5) and using Eq. (3.11), we
then obtain that the renormalized effective potential at finite
temperature is given by

Veff (σc, μ = 0, T ) = N

2vF λR
σ 2

c + N

3πξxξyv
2
F

|σc|3

− 4N

β

∫
d2 p

(2π )2
ln(1 + e−βEσ ). (3.20)

The situation in this case can again be compared to the tran-
sition pattern in the GN model in (2+1) dimensions when
the tilt effect is absent [59–61]. In that case, the chiral order
parameter σ̄c is shown to change continuously from the value
σ0 at T = 0 to σ̄c = 0 at a critical temperature Tc, which
then characterizes the phase transition to be second order. The
presence of the tilt does not change this transition pattern, but
as in the previous case of T = 0 and μ �= 0, it will lower the
critical Tc with respect to the case when |t̃ | = 0 as we now
show.

The chiral order parameter is obtained from the solution of
the saddle point equation

∂Veff,R

∂σc

∣∣∣
σc=σ̄c

= 0, (3.21)

obtained from the renormalized effective potential. The result
is explicitly shown in Fig. 5. In Fig. 5, it is shown the chiral
order parameter σ̄c as a function of the temperature and for
different values for the effective tilt parameter. We note that
σ̄c changes continuously with the temperature. The larger is
the effective tilt parameter, the smaller is Tc. The dependence
of the critical temperature with the effective tilt parameter is
analytical and can be derived directly from Eq. (3.21) when
setting σ̄c = 0 in that equation. The solution obtained for Tc is

FIG. 6. The critical temperature as a function of |t̃| for μ = 0.

then found to be given by

Tc =
√

1 − |t̃|2 σ0

2 ln 2
. (3.22)

The behavior of Tc at μ = 0 and as a function of the tilt
parameter is shown in Fig. 6.

When |t̃| = 0, we get the known result for the GN model
in (2+1) dimensions [59–61], where Tc = σ0/(2 ln 2). Just
like for the previous result for the critical chemical potential,
Eq. (3.16), we also see here that the larger the effective tilt
parameter, the lower the critical temperature. Once again we
see that the effect of the tilt is to facilitate the chiral symmetry
restoration, i.e., it can be reached at a lower temperature than
in the absence of the tilt.

D. T �= 0, μ �= 0

Finally, let us consider the case where both temperature
and chemical potential effects are included. The effective po-
tential in this case is given by Eq. (3.5). The critical curve for
which σ̄c(Tc, μc) = 0 is obtained again from the saddle point
equation derived from the renormalized effective potential. In
this case, by setting σ̄c = 0 in the gap Eq. (3.8), we explicitly
find

σ0 + μc − 2Tc ln (eμc/Tc + 1)

(1 − |t̃|2)1/2 = 0, (3.23)

which reproduces the result Eq. (3.16) in the zero temperature
limit, while at zero chemical potential it leads to the critical
temperature as given by Eq. (3.22).

The overall behavior of the critical curve obtained from
Eq. (3.23) is shown in Fig. 7. One sees from this figure that
the larger the effective tilt parameter, the smaller the region
for chiral symmetry breaking. The critical curve in the (T, μ)
plane corresponds to a second-order chiral phase transition
line. As T → 0, we reach the critical point μc as given by
Eq. (3.16), which as already discussed above, corresponds to
a first-order chiral transition point.

IV. SOME DISCUSSIONS OF THE RESULTS
AND APPLICATIONS

As shown from the previous section, in particular, when
considering Eqs. (3.16) and (3.22), the results depend di-
rectly on the chiral order parameter σ0. At the same time,
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FIG. 7. Critical curve σ̄c(μc, Tc ) = 0 for |t̃| = 0 (solid line) and
for |t̃| = 0.6 (dashed line) and |t̃| = 0.8 (dotted line).

σ0, which introduces a mass gap in the system, is affected
by the anisotropy through the geometric mean Fermi velocity,
v∗

F = √
ξxξyvF . The difference between the effective Fermi

velocity v∗
F and the usual one in fully isotropic materials

(considering the case of, e.g., graphene, where vF ≈ c/300)
can alter significantly the critical temperature and critical
chemical potential. This is because the dependence of v∗

F on
the anisotropies does not have a strong physical bound, such
as the one observed by the effective tilt parameter |t̃| and given
by Eq. (2.2).

It is worth providing some estimates, even though they
might be rough ones, based on results obtained from some
current planar systems of interest, particularly organic con-
ductors. For illustration purposes, let us consider the case
of the recent study [62,63] for the two-dimensional organic
conductor α − (BEDT-TTF)2I3. From the data provided in
Refs. [62,63], the tilt vector t and anisotropy ξ vector can
be estimated to be given (when converted to our notation),
respectively, by t � (−1.7, 0.3) × 10−4 and ξ � (2.3, 2.4) ×
10−4, where we have assumed a graphenelike Fermi velocity
as a base one (i.e., in the isotropic case). Thus, the effective
Fermi velocity is v∗

F ≈ 0.02vF and the effective tilt parameter
can be estimated as |t̃| ≈ 0.76. Therefore, from Eqs. (3.16)
and (3.22), the critical chemical potential and critical temper-
ature both get reduced by a factor

√
1 − |t̃|2ξxξy ≈ 3.6 × 10−8

with respect to the untilted and isotropic critical values. This
is quite a substantial reduction. This is to be contrasted with
the case of quinoid-type graphene under uniaxial strain [22],
where v∗

F ≈ vF and the critical temperature and chemical
potential of this system can be estimated to decrease by a
factor (1 − 0.02ε2), where ε is the relative strain. Given that
ε < 1 for moderate strain, this leads to a much smaller sup-
pression of μc and Tc. Thus, our results indicate that planar
organic conductors can remain gapless down to very small
temperatures and dopings as a result of the combined effects
of anisotropy and the Dirac cone tilt.

There can also be other possible effects of the tilt
and anisotropy of the model. Since both the tilt and the
anisotropies break the rotational symmetry, there is a possibil-
ity that the gap generated is anisotropic in momentum space.
The study of such anisotropic solutions and how they would

contribute to the problem we have studied would require,
however, a study going beyond the proposed methods that we
have used in the present paper. In our paper, we have focused
on the effects of the tilt and anisotropy in the chiral symmetry
breaking and restoration. The use of the effective potential,
by definition, only considers field configurations (represented
here by the chiral symmetry breaking order parameter σc) that
are space and time independent. There can be, nevertheless,
other contributions to the functional partition function that
could contribute and that are solutions of the (nonhomoge-
neous) field equations. We expect, at least for the present
model, those sorts of solutions would cost more energy though
(e.g., due to the gradient energy terms) when compared to
the constant (homogeneous) field solution contributing to the
partition function (and, hence, to the effective potential). It
would, of course, be important to explore such solutions,
perhaps looking for perturbations to the homogeneous back-
ground field solution we have considered. This, of course,
would also require a calculation departing from the mean-field
approximation we have considered.

Finally, let us comment on the reliability of the large-N
expansion used here when applied at the end for systems with
as small N . Extending our analysis such as to compute the
next order terms in the 1/N-expansion is generally a diffi-
culty task. But we can take as a basis of the reliability of
our results by making a comparison with other works that
have already studied the phase diagram of the GN model
using alternative approaches to the large-N expansion. For
example, in Ref. [64], the phase structure of the GN model
in (2+1)-dimensions was studied in the context of the op-
timized perturbation theory method and which effectively
produces results going beyond the large-N expansion. The
results obtained in that reference show that both the critical
temperature and critical chemical potential are enhanced by
a factor 4N/(4N − 1), which for N = 2 means a difference
of around 14% percent with respect to the large-N results.
Most importantly, those results also have shown that the phase
diagram as a whole is qualitatively similar to the one ob-
tained in the large-N limit, except by a small dislocation of
the tricritical point to the (T, μ) plane, while in the large-N
limit it is located at (T = 0, μ = μc). Even though we do not
expect the large-N approximation to produce precise results
for such small values of N , like N = 2 as in most of the phys-
ical systems of interest, it still produces results of sufficient
qualitative agreement and that can provide useful insights on
the physics of these systems. This qualitative agreement of
the large-N approximation is also seen in other works (e.g.,
Refs. [65,66]).

V. THE EFFECT OF AN EXTERNAL MAGNETIC FIELD

Let us now discuss some expected effects of coupling
the model we have studied to the electromagnetic field. The
photon gauge field Aμ couples to the fermions through the
standard quantum electrodynamics interaction, eψ̄γ μψAμ.
The photon gauge field, when integrated out, produces the
Coulomb interaction between the fermions. Note that at the
fundamental level, the electromagnetic gauge field can con-
tribute to our results for the effective potential through the
fermion polarization term coming from the photon gauge
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field and fermion interaction. These fermion polarization
contributions are, however, subleading in the large-N approx-
imation. However, the electromagnetic field can (and will be
in general) important when acting as an external source. In
particular, this can be the case of an external magnetic field
applied to the system.

Let us now briefly discuss some possible consequences of
adding an external magnetic field to the system. Since the
electrons in the 2D Dirac (Weyl) semimetal are charged, we
can add a coupling with the electromagnetic sector through
the minimal coupling, i.e., ∂μ → ∇μ = ∂μ − ieAμ. The La-
grangian density Eq. (2.5) is then modified as follows:

L0 = ψ̄ (iMμνγμ∇ν )ψ

= ψ̄ (iMμνγμ∂ν )ψ + eψ̄γμψÃμ, (5.1)

where we have defined an effective electromagnetic potential
Ãμ with components

Ã0 = A0 − vF t · A, Ãi = ξi jA j, i = x, y, (5.2)

where ξi j = ξiδi j . Thus, by considering the 2D system in the
(x, y) plane and in the presence of an external and constant
magnetic field B, we can, without loss of generality, choose
a gauge such that the external four-vector potential is given
by A0 = 0 and A3D = − 1

2 xx̂ × B. This leads to a magnetic-
field component perpendicular to the system’s plane, B⊥ ≡ Bz

and another component that is parallel to the plane, B‖ ≡ By.
Hence, from the tilt vector defined by t = (tx, ty, 0), it is easy
to see that Eq. (5.2) can be expressed in the form

Ã0 = − 1
2vF xx̂ · (B × t) = 1

2vF xtxB⊥. (5.3)

Therefore, B⊥ generates a non-null contribution to the time
component of the effective vector potential Ã0 and, thus, the
magnetic field will act analogous to an effective external elec-
tric field, with magnitude Ẽi = 1

2vF ξi j (B × t) j . Besides this,
the anisotropy in the spatial direction modifies the magnetic
field in the perpendicular direction, B̃⊥ = ξxξyB⊥, while in
the parallel direction, B̃‖ = ξyB‖. Thus, the external magnetic
field generates an electrochemical potential given by

μ̃s = μ + e

2
vF xx̂ · (B × t) + s

2
gμB|B̃|, (5.4)

where g is the spectroscopic Landé factor of the electrons (g ≈
2 in graphene), s = ±1, and μB is the Bohr magneton.

We can then see that the tilting of the Dirac cone and the
anisotropy generates two effects. First, the combination of an
external magnetic field and the tilt vector t generates a non-
null chemical affinity Ai ∝ −∇iμs = e(Ẽ)i = e

2vF B⊥ξi jε
jktk

and, therefore, by Onsager reciprocal relations, it will generate
a current perpendicular to t. This current will be proportional
to � = ∫

d2xB⊥. Hence, one can affirm that the 2D Dirac
(Weyl) semimetal will have an anomalous Hall effect [67].

Second, the magnetic-field coupling generates an anisotropic
Zeeman effect and, therefore, it can be interpreted as an effec-
tive giromagnetic term dependent on the direction of the B‖
field. It would be worthwhile to further explore these effects in
applications of these type of planar models when subjected to
an external magnetic field and which we leave as future work.

VI. CONCLUSIONS

In this paper, we have analyzed the problem of chiral
symmetry breaking in a planar four-fermion model when
considered in the context of the generalized Weyl Hamilto-
nian. The GN-like four-fermion interaction provides a way to
study the chiral symmetry breaking in the model. The free
Hamiltonian that we have employed in this paper was the
generalized Weyl one, which includes the anisotropies and the
explicit tilting of the Dirac cone. We have then studied how
the tilting of the Dirac cone, parameterized by the so-called
effective tilt parameter |t̃|, affects the chiral phase transition
as a function of both chemical potential (e.g., doping) and
finite temperature. Both the critical temperature and critical
chemical potential decrease by a factor

√
1 − |t̃|2 with respect

to the untilted case. Thus, the tilt parameter suppresses the
chiral symmetry breaking, easing its restoration.

Finally, we have shown that the planar fermion system that
we have studied will respond to an external magnetic field
differently when in the absence or in the presence of the Dirac
cone tilt. In the anisotropic and tilted case, there will be an
anomalous Hall effect and its magnitude is proportional to
the Lorentz-violating parameters ξ and t. This effect changes
the effective chemical potential and a current perpendicular
to t appears. The anomalous Hall effect [67] is related to the
emergence of this unusual current j ∝ t × B. In the model
case we have studied, this effect comes from the explicit
Lorentz-violating structure of the matrix Mμν in Eq. (5.1). It
generates a nonconstant contribution to the chemical poten-
tial, which is an explicit character of nonequilibrium systems
and which can lead to interesting features in the study of
transport phenomena. These and other features found here as
a consequence of this paper will be analyzed in more detail in
a future work.
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