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Dzyaloshinskii-Moriya anisotropy effect on field-induced magnon condensation
in the kagome antiferromagnet α-Cu3.26Mg0.74(OH)6Br2
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We performed a comprehensive electron spin resonance, magnetization, and heat capacity study on the
field-induced magnetic phase transitions in the kagome antiferromagnet α-Cu3.26Mg0.74(OH)6Br2. With the
successful preparation of single crystals, we mapped out the magnetic phase diagrams under the c axis and
ab-plane directional magnetic fields B. For B‖c, three-dimensional (3D) magnon Bose-Einstein condensation
(BEC) is evidenced by the power law scaling of the transition temperature, Tc ∝ (Bc − B)2/3. For B‖ab, the
transition from the canted-antiferromagnetic state to the fully polarized state is a crossover rather than a phase
transition, and the characteristic temperature has a significant deviation from 3D BEC scaling. The different
behaviors of the field-induced magnetic transitions for B‖c and B‖ab could result from the Dzyaloshinkii-Moriya
(DM) interaction with the DM vector along the c axis, which preserves the c-axis directional spin rotation
symmetry and breaks the spin rotation symmetry when B‖ab. Our findings have the potential to shed light on the
investigations of magnetic anisotropy on the field-induced magnon BEC in a quantum antiferromagnet.
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I. INTRODUCTION

At vanishing chemical potential and temperature, interact-
ing bosons undergo the Bose-Einstein condensation (BEC)
transition, which has been realized in ultracold dilute gases
[1] and field-induced magnons in quantum antiferromagnets
[2–4]. Previous intense investigation of BEC in quantum
magnets has been focused on dimerized materials such as
TlCuCl3 [5], BaCuSi2O6 [6,7], and Sr3Cr2O8 [8], along
with NiCl2-4SC(NH2)2 holding three-dimensional coupled
S = 1 ion chains [9]. Typically, quantum critical points
(QCPs) of transverse magnons that have developed into three-
dimensional (3D) BEC show universal evidence Tc(B) ∝
(Bc − B)2/3 [8–11]. The BEC transition corresponds to the
U (1) symmetry spontaneous breaking. In the Bose gas sys-
tem, the particle conservation guarantees continuous U (1)
symmetry whose breaking corresponds to the transition to
the BEC state. Without the magnetic anisotropic interactions,
a quantum antiferromagnet with magnetic fields above the
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saturation field Bc has U (1)spin rotation symmetry along
the field direction, and the elementary magnetic excitation,
i.e., the magnon, has a gap that is controlled by the field
strength. With decreasing magnetic fields, the gap vanishes at
the saturation field Bc, and the magnon undergoes the BEC
transition with U (1) symmetry breaking. In real materials,
spin-orbit coupling gives rise to the magnetic anisotropic
term in the quantum magnetism that breaks the U (1) sym-
metry and modifies the spontaneous transition to a BEC
state for the magnon condensation [4]. Since the symmetry-
breaking terms are usually small enough, their effect on the
magnon condensation near the saturation field is scarcely
investigated.

In this paper, we study the magnetic anisotropy effect on
field-induced magnon condensations in the kagome antifer-
romagnet α-Cu3.26Mg0.74(OH)6Br2. From a previous study
on powder samples [12], α-Cu3Mg(OH)6Br2 has a predom-
inant intralayer ferromagnetic interaction characterized by a
Curie-Weiss temperature θ = 34 K and a moderate interlayer
antiferromagnetic interaction corresponding to a saturated
field of 2 T. The magnetic structure is analogous to the
kagome ferromagnet Cu(1,3-benzenedicarboxylate) [Cu(1,3-
bdc)] [13], with in-plane ferromagnetically ordered spins,
oriented parallel to the b axis, and interplane (c-axis direction)
antiferromagnetic order.
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As discussed theoretically in Ref. [14], ferromagnetic (FM)
spins in a kagome lattice are not frustrated and yield a
flat-band magnon, which is a high-energy mode and can
be affected by an out-of-plane Dzyaloshinskii-Moriya (DM)
interaction. The out-of-plane DM interaction gives rise to
topological magnon bands when the magnetization M is
parallel to the DM vector D, but results in anharmonic
particle-nonconserving magnon couplings when M ⊥ D, and
can also serve as a U (1) symmetry-breaking term for the spin
Hamiltonian. Since U (1) spin rotation symmetry is crucial
for the magnon BEC, the DM interacting term plays different
roles in the magnon condensations near the saturation field
for the c-axis directional and in-plane fields. Our main task
in this paper is to study the magnetic anisotropy effect on
the magnon condensation in α-Cu3.26Mg0.74(OH)6Br2. The
actual chemical formula α-Cu3.26Mg0.74(OH)6Br2 provides an
opportunity to discuss the off-stoichiometric disorder effect
on magnon condensations.

The rest of the paper is organized as fllows. We present the
results in the Sec. II. We summarize our experimental methods
for the sample growth and characterization, magnetization and
heat capacity measurements, and the electron spin resonance
(ESR) in Sec. II A. From a comprehensive understanding of
the magnetization and ESR measurements, we write down
the spin model as Eq. (1) for α-Cu3.26Mg0.74(OH)6Br2 in
Sec. II B, and the amplitudes of the interactions are justi-
fied. In Sec. II C, we map out the magnetic phase diagram
for B‖c from the magnetization and heat capacity measure-
ments in α-Cu3.26Mg0.74(OH)6Br2. The 3D magnon BEC
transition between the fully polarized state and the canted-
antiferromagnetic state has been evidenced by the power
law exponent in the transition temperature scaling Tc ∝
(Bc − B)2/3. We also discuss the magnetic off-stoichiometric
disorder effect in the magnon BEC in this section. The field-
induced phase diagram for the in-plane magnetic field is
presented in Sec. II D. At low temperatures, from the fully
polarized state to the canted-antiferromagnetic (canted-AFM)
state, it is a crossover rather than a sharp phase transition. The
phase boundary of the crossover characteristic temperature
near the saturation field has a significant deviation from the
3D BEC scaling. We present our conclusions in Sec. III.

II. RESULTS

A. Experimental methods

Single crystals of α-Cu3.26Mg0.74(OH)6Br2 were grown by
the hydrothermal method. A mixture of 15 mmol CuO, 6
mmol MgBr2, and 10.8 mmol NH4F was sealed in a 25-mL
Teflon-lined autoclave with 10 mL water. The autoclave was
heated to 270 ◦C and cooled to 140 ◦C at a rate of 0.5 ◦C/h.
After being washed with de-ionized water, blue-green and
millimeter-scale crystals were obtained as shown in the inset
of Fig. 1(c). The crystal structure was determined by a Super-
Nova Dual Wavelength diffractometer with monochromated
Cu Kα radiation (λ = 1.5418 Å) at room temperature, and the
programs of SHELXT [15] and SHELXL [16] were performed to
solve and refine the crystal structure. The ratio of Cu/Mg was
determined by inductively coupled plasma atomic emission

FIG. 1. (a) The crystal structure of α-Cu3Mg(OH)6Br2. (b)
α-Cu3Mg(OH)6Br2 has a predominant intralayer ferromagnetic
interaction (J1 < 0) and a moderate interlayer antiferromagnetic in-
teraction (J⊥ > 0). The DM interaction has the DM vector (D = Dzẑ)
along the c axis (illustrated as a yellow arrow). (c) Temperature-
dependent magnetic susceptibilities in α-Cu3.26Mg0.74(OH)6Br2 for
fields along different directions. The red line is the fitting curve
to magnetic susceptibilities by the Curie-Weiss law. The inset is a
photograph of the single-crystal α-Cu3.26Mg0.74(OH)6Br2. (d) Field-
dependent magnetization at 2 K of α-Cu3.26Mg0.74(OH)6Br2 with
fields along different directions.

spectrometry (ICP-AES) and the chemical composition was
confirmed to be α-Cu3.26Mg0.74(OH)6Br2.

The temperature-dependent magnetization at 0.3 T from
1.8 to 300 K and the field-dependent magnetization with
magnetic field increasing and decreasing at 1.8 K were
measured by a Quantum Design magnetic property mea-
surement system (MPMS). To study the spin anisotropy,
the temperature-dependent magnetization was accomplished
along different directions (B||b, B‖a∗, and B||c axes). Massive
magnetization curves from 0.4 to 10 K were collected on a
Hall sensor magnetometer equipped with a physical property
measurement system (PPMS) [17,18]. The temperature- and
field-dependent heat capacity measurements were performed
on PPMS. The pulsed-field ESR spectra were measured in
a field-increasing process along a frequency range of 54–
172 GHz at 2 K.

Density functional theory (DFT) [19] has been applied
to estimate the exchange parameters in α-Cu3Mg(OH)6Br2.
First-principles calculations were performed by the Vienna
ab initio simulation package (VASP) [20–22], choosing the
Perdew-Burke-Ernzerhoff revised for solids (PBEsol) func-
tional in a generalized gradient approximation (GGA) [23,24].
A cutoff energy of 620 eV and 6 × 6 × 4 Monkhorst-Pack
grids [25] have been used for all calculations. The valence
electron pseudopotential of Cu 3d has been fixed within
GGA + U (U3d = 6 eV) scheme [26]. The lattice constants
are fixed and the atomic positions are relaxed, with exchange
interactions including the nearest interaction J1, the second
nearest interaction J2, the third nearest interaction J3, out-of-
plane DM interaction D, and interlayer AFM interaction J⊥.
J1, J2, and J3 are determined from four different ground states,
FM, q = 0 AFM, cuboc1, and cuboc2 [27] on a 2 × 2 × 2
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TABLE I. Crystal data and structure refinement of
α-Cu3.26Mg0.74(OH)6Br2.

Formula Cu3.26Mg0.74(OH)6Br2

System, space group Trigonal, P3̄m1
Cell parameter a = 6.2865 Å, c = 6.0795 Å
Color Blue-green
Target, wavelength Mo Kα, 0.710 73 Å
Temperature (K) 173
μ (mm−1) 17.656
F (000) 225.8
θ range (deg) 4.97–30.36
R[F 2 > 2σ (F 2)], 0.042, 0.096, 1.32
wR(F 2), S

supercell. For the DM interaction, we compare the energies
for negative and positive chiral q = 0 AFM configurations.
For the interlayer, we double the unit cell along the c axis, and
compare the energies for the parallel and antiparallel aligned
spins.

B. Exchange interactions and spin anisotropy

As listed in Table I, α-Cu3.26Mg0.74(OH)6Br2 crystallizes
isostructurally to haydeeite [28], where the Cu ions form a
two-dimensional (2D) kagome lattice and the Mg ions settle
into the center of the hexagon. According to previous neutron
scattering experiments [12], we depict the magnetic structure
of α-Cu3Mg(OH)6Br2 as shown in Fig. 1(b).

Figure 1(c) shows the temperature-dependent magnetiza-
tion with fields of 0.3 T along different crystal directions.
From the Curie-Weiss fitting with the g factors extracted
from the ESR (gab = 1.99, and gc = 2.06 as shown in
Fig. 2), we obtain the Curie-Weiss temperatures θb = 25.3 K,
θa∗ = 27.6 K, and θc = 24.4 K, indicating the predominant
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FIG. 2. ESR spectra of α-Cu3.26Mg0.74(OH)6Br2 at 2 K for the
in-plane field (a) and the c-axis directional field (c). (b) and (d) are
the corresponding frequency-field relations obtained from the FMR
peaks in the ESR spectra.

ferromagnetic interactions in α-Cu3.26Mg0.74(OH)6Br2. The
Curie-Weiss temperatures are smaller than the previously
reported values on the powder samples [12], probably due
to the off-stoichiometric chemical formula of our samples.
There is a clear AFM ordering formed at 4.3 K, implying
the AFM interlayer interactions in α-Cu3.26Mg0.74(OH)6Br2.
We see that the in-plane magnetic susceptibility is larger than
the out-of-plane one at low temperatures, implying the easy-
plane magnetism in α-Cu3.26Mg0.74(OH)6Br2. Figure 1(d)
shows the field-dependent magnetization along different crys-
tal directions at T = 2 K. The easy-plane and the interlayer
AFM interaction can be also derived from the M-B curves for
fields along different crystal directions in Fig. 1(d). Despite
the zero-field spins orientating towards the b axis, no obvi-
ous difference was observed between B‖b and B‖a∗ in both
the temperature-dependent and field-dependent magnetization
measurements.

Figure 2 presents the ESR spectra collected at 2 K for
α-Cu3.26Mg0.74(OH)6Br2 with B‖ab and B‖c. The dip in the
spectra is the ferromagnetic resonance (FMR) mode. The
slopes of the field-frequency relations of the FMR modes
are the g factors with values of gab = 1.99 and gc = 2.06.
From the magnetization measurement in Fig. 1, we know
that the magnetism in α-Cu3.26Mg0.74(OH)6Br2 has the easy
plane of the kagome plane, accounting for the positive and
negative intercepts in the frequency-field-relation lines for the
FMR modes with the in-plane and c-axis directional fields,
respectively. The easy-plane anisotropic term has the order of
1 K, much smaller than the Curie-Weiss temperature with a
value of ∼25 K.

From the above measurements, we can write down the spin
Hamiltonian for α-Cu3Mg(OH)6Br2 as follows,

H = J
∑
n〈i, j〉

Sn,i · Sn, j + J⊥
∑
n,i

Sn,i · Sn+1,i

+ Dẑ ·
∑
n〈i, j〉

(Sn,i × Sn, j ) − gμBB ·
∑
n,i

Sn,i, (1)

where Sn,i is the spin operator on the ith site in the nth
kagome layers, and 〈i, j〉 indicates the nearest-neighbor bonds
in the kagome layers. With the help of the DFT calcula-
tion on α-Cu3Mg(OH)6Br2, we have obtained the intralayer
interactions as J1 
 −3.5 meV, J2 
 −0.18 meV, and J3 

1.12 meV. The interlayer AFM interaction J⊥ is 0.22 meV
and the DM interaction with the vector along the c axis is
1.9 meV. The theoretical values are slightly overestimated,
but can be reasonably accepted for a discussion of the
magnetic anisotropies. α-Cu3.26Mg0.74(OH)6Br2 has the easy-
plane anisotropy in the exchange terms, however, in this paper,
the DM interaction in α-Cu3.26Mg0.74(OH)6Br2 is the main
magnetic anisotropy, regarding previous reports on related
materials [13,29,30]. The DM interaction has the DM vector
D = Dẑ along the c axis and is similar to other kagome mag-
netic compounds with an energy scale of D 
 10 K [29,30].

The DM interaction cannot generate fluctuations in the
saturated ground state, however, the same is not true for
magnon excitations as discussed previously in Ref. [14].
The magnon excitation spectrum is sensitive to the DM
interaction and depends on the relative directions of the
ground state magnetization and the DM interaction vector.
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FIG. 3. Field-dependent magnetization M (a) and the corre-
sponding differential susceptibility dM/dB curves (b), at selected
temperatures for fields along the c axis.

α-Cu3.26Mg0.74(OH)6Br2 has the DM vector along the c axis.
For B‖c in the fully polarized state, the magnetization is
parallel to the DM vector, i.e., M‖D. The DM term provides
an imaginary component to the spin-flip hoppings, resulting in
the topological magnon bands as observed in neutron scatter-
ing studies on Cu[1,3-bdc] [13]. We stress that the DM vector
along the c axis preserves the U (1) spin rotation symmetry
in the fully polarized state. By contrast, for the in-plane field
applied in the fully polarized state, the magnetization is per-
pendicular to the DM vector, i.e., M ⊥ D, and the DM term
gives rise to an anharmonic interaction of magnons as it mixes
the transverse magnon excitations with the longitudinal ones.
The DM interaction here already breaks the U (1) spin rotation
symmetry in the fully polarized state.

C. Field-induced magnetic phase diagram for B‖c

To figure out the field-induced magnetic phases for fields
along the c axis, we sweep the magnetic field and measure the
magnetization and heat capacity for α-Cu3.26Mg0.74(OH)6Br2

as shown in Figs. 3 and 4, respectively, from which the tran-
sition from the canted-AFM state to the fully polarized state
can be resolved, particularly from the differential results of the
magnetization and heat capacity as shown in Fig. 4. Figure 5
summarizes the field-induced phase diagram with the phase
boundary between the canted-AFM and the fully polarized
states determined from the critical points as shown in Fig. 4.
The phase boundary agrees well with the 3D BEC scaling
behavior Tc ∝ (Bc − B)2/3, identifying the 3D BEC quantum
criticality of α-Cu3.26Mg0.74(OH)6Br2. The 3D magnon BEC
condensation behavior is consistent with the theoretical argu-
ment in Sec. II B that the DM interaction preserves the U (1)
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FIG. 4. (a) Second derivative magnetization curves d2M
dB2 at se-

lected temperatures. (b) Field-dependent specific heat coefficients
Cp/T at selected temperatures for fields along the c axis.

FIG. 5. The magnetic phase diagram for B||c. The phase bound-
aries are determined by critical points Bc from M(B), and Cp(B)/T .
The red line is a function of Tc ∝ (Bc − B)2/3, where Bc = 2.06 T.
The yellow arrow and red arrows are the out-of-plane DM vector and
polarized spins. CAFM is an abbreviation of canted-AFM.

spin rotation symmetry along the c axis and the magnon BEC
breaks the symmetry spontaneously.

Figure 3(a) shows the field-induced magnetization mea-
surements with fields along the c axis at selected temperatures
below the zero-field critical temperature 4.3 K. At the base
temperature 0.4 K, the magnetization increases as the field
increases and saturates above the saturation field Bc with the
fully polarized spins aligned along the c axis. The correspond-
ing differential susceptibility has a small bump at low fields
in Fig. 3(b), indicating a crossover from the AFM state to
the canted-AFM state. At high magnetic fields, the magne-
tization saturates and the differential susceptibility exhibits an
abrupt jump, implying the transition from the canted-AFM
state to the fully polarized state. We swept the fields up and
down in the magnetization measurements, and no obvious
field-dependent hysteresis behavior was observed. Figure 4(b)
is the field-dependent heat capacity at selected temperatures
and the magnetic phase transition from the canted-AFM state
to the fully polarized state was also resolved.

Figure 4(a) shows the second derivative magnetization
curves in α-Cu3.26Mg0.74(OH)6Br2 for B‖c. The peak posi-
tion also determines the saturation field Bc for the magnetic
phase transitions from the canted-AFM state to the fully
polarized state. Figure 5 shows the field-induced magnetic
phase diagram for B‖c. The intensity of the color code rep-
resents the values of the differential magnetic susceptibility
dM/dB(B, T ), and its boundary coincides with the satura-
tion fields Bc extracted from the peaks as shown in Fig. 4.
The phase boundary was well fit by Tc ∝ (Bc − B)2/3, where
Bc = 2.06 T, which is hallmark evidence for the 3D BEC of
the magnon condensation. It is worth noting that the boundary
of Tc ∝ (Bc − B)2/3 has extended up to 75% of T max

c = 4.3 K,
and up to 80% of T max

c = 6.25 K is also reported in the quasi-
two-dimensional ferromagnet K2CuF4 with critical exponent
δ = 1 [31], which is much higher than up to 40% of the
maximal ordering temperature in the quantum Monte Carlo
(QMC) prediction for spin-dimer systems [32] as well as a
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FIG. 6. Field-dependent magnetization M and corresponding
differential susceptibility dM/dB curves in (a) and (b), respectively,
at selected temperatures for the in-plane fields.

previous experiment on NiCl2-4SC(NH2)2 which shows the
critical exponent 2/3 functions up to 25% of Tc at 1.2 K [33].

For the fully polarized state in α-Cu3.26Mg0.74(OH)6Br2

with fields along the c axis, the DM interaction in Eq. (1)
modifies the spin-flip Hamiltonian as

H ||
DM = J̃

2

∑
n〈i, j〉

(S+
n,iS

−
n, je

iθ + S−
n,iS

+
n, je

−iθ )

+ J⊥
2

∑
n,i

(S+
n,iS

−
n+1,i + S−

n,iS
+
n+1,i ), (2)

with J̃ = −√
J2 + D2, and θ = arctan(D/|J|). The DM in-

teraction gives an imaginary phase for the spin-flip hopping
with the kagome plane and still preserves the U (1) spin
rotation symmetry along the c axis. The magnon excita-
tion for the spin-flip Hamiltonian in Eq. (2) gives rise to
exotic topological magnon bands [13,14] which deserve fu-
ture neutron scattering studies of α-Cu3.26Mg0.74(OH)6Br2.
The U (1) spin rotation symmetry breaking results in the
3D magnon BEC transition near the saturation field in
α-Cu3.26Mg0.74(OH)6Br2.

Having established the 3D magnon BEC in
α-Cu3.26Mg0.74(OH)6Br2, we can now use the compound
to check the disorder effect in BEC. Since the chemical
doping could bring about dirty bosons, the BEC phase
boundary may shift and the critical exponent can be further
changed [34–36]. The dimensionality of the magnon BEC
in α-Cu3Mg(OH)6Br2 is d = 3. The dynamical exponent
for the magnon excitation is z = 2 according to Eq. (2), and
then the critical scaling exponent for the correlation length
ν = 1/2 regarding νz = 1 due to the symmetry property [37].
Therefore, the BEC quantum criticality here satisfies the
Harris criterion dν < 2, implying the disorder is irrelevant
for the quantum phase transition [38]. The actual chemical
formula of our sample is α-Cu3.26Mg0.74(OH)6Br2, but
the off-stoichiometric magnetic disorder does not change
the critical behavior of the 3D magnon BEC as shown in
Fig. 5.

D. Field-induced phase diagram for B‖ab

To figure out the field-induced magnetic phases for the
in-plane fields, we performed magnetization and heat capacity
measurements for α-Cu3.26Mg0.74(OH)6Br2 with fields par-
allel to the b axis, as shown in Figs. 6 and 7, respectively.
Figure 6(a) shows the in-plane field-dependent magnetization
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FIG. 7. (a) Temperature-dependent heat capacity for B‖a∗ with
selected fields. (b) Field-dependent specific heat for B‖b at selected
temperatures.

curves at selected temperatures below TN of 4.3 K. At T =
0.4 K, a steep increase occurs at ∼0.5 T. By further increas-
ing the fields, the magnetization becomes saturated at Bc ∼
1 T. The corresponding differential susceptibility, as shown
in Fig. 6(b), has a peak at P1 and a smooth shoulder at Bc,
implying a possible spin-flip transition from the AFM state to
the canted-AFM state and a crossover from the canted-AFM
state to the fully polarized state, respectively.

Figure 7(a) is the temperature-dependent heat capacity for
B‖a∗ under low fields. A peaklike anomaly at about 4 K is
suppressed to low temperatures by the fields, corresponding to
the AFM phase transition. The peak is hardly resolved above
0.8 T and evolves into another broad peak that we attribute
as a crossover. Figure 7(b) is the field-dependent specific heat
for B‖b at selected temperatures, in which there is a sudden
drop and a smooth crossover at high and low temperatures,
respectively.

Figure 8 summarizes the in-plane field-induced mag-
netic phase diagram of α-Cu3.26Mg0.74(OH)6Br2. The color
intensity represents the value of the differential magnetic sus-
ceptibility dM/dB(B, T ) as a function of B and T . At high
temperatures and low fields, it is a phase transition from the
canted-AFM state to the paramagnetic/fully polarized state

FIG. 8. In-plane field-induced magnetic phase diagram. The red
solid and dashed line is fitted by Tc ∝ (Bc − B)δ , with δ = 0.33
and Bc = 1.06 T. The yellow arrow and red arrows are the out-of-
plane DM vector and polarized spins. Canted-AFM is abbreviated as
CAFM.
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as represented by the solid line. At low temperatures and
high fields, such a transition turns out to be a crossover as
represented by the dashed line. The solid and dashed line ex-
hibits a scaling behavior Tc ∝ (Bc − B)δ with δ = 0.33, Bc =
1.06, and a significant deviation from the 3D BEC scaling
as shown in Fig. 5. As we mentioned before, chemical dop-
ing could modify the critical exponent δ in Tc ∝ (Bc − B)δ ,
which has been reported in previous studies on Tl1−xKxCuCl3

[39] and Ni(Cl1−xBrx )2-4SC(NH2)2 [36] as well as a recent
doping experiment on BaCuSi2O6 [40,41], with δ deviating
from 2/3. However, in α-Cu3.26Mg0.74(OH)6Br2, the 3D BEC
critical exponent δ = 2/3 functions well for B‖c, as shown
in Fig. 5, suggesting the Harris criterion dν < 2 and pos-
sible immunity to chemical disorder for quantum criticality.
In fact, it can be ascribed to an out-of-plane DM interac-
tion which has broken the U (1) symmetry of the in-plane
Hamiltonian.

For the in-plane fully polarized state in α-Cu3.26Mg0.74
(OH)6Br2, the DM interaction vector is perpendicular to the
magnetization and gives rise to the term [14]

H⊥
DM = D

2

∑
n〈i, j〉

[
(S+

n,i + S−
n,i )S

z
n, j − Sz

n,i(S
+
n, j + S−

n, j )
]
, (3)

which is a cubic term if we rewrite the spin-flip operator in
terms of the Matsubara-Matsuda magnon representation [42].
H⊥

DM is the symmetry-breaking term of uniaxial symmetry
and its effect on the magnon spectrum has been carefully
studied in Ref. [14]. Such a symmetry-breaking term ac-
counts for the crossover between the canted-AFM state and
the fully polarized state in α-Cu3Mg(OH)6Br2 for the in-plane
fields, and we urge further theoretical investigations on this
point.

III. CONCLUSIONS

We have systematically studied the field-induced phase
transition in the kagome antiferromagnet α-Cu3.26Mg0.74
(OH)6Br2 and depicted the c-axis and ab-plane magnetic
phase diagrams based on the thermodynamic properties. With
the B‖c axis, a three-dimensional (3D) magnon Bose-Einstein
condensation (BEC) occurs at the saturation field Bc between
the fully polarized state and the canted antiferromagnetic state
and is demonstrated by the power law scaling of the transition
temperature, Tc ∝ (Bc − B)2/3. With the B‖ab plane, it is a
crossover rather than a phase transition, deviating from 3D
BEC scaling. The Dzyaloshinkii-Moriya interaction with the
DM vector along the c axis in α-Cu3.26Mg0.74(OH)6Br2 acts
as an “on/off” effect on the particle-conservation term for
M‖c and M ⊥ c, respectively, and accounts for the different
behaviors of the field-induced magnetic phase transitions with
the c axis and in-plane fields.
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