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We study third-harmonic generation (THG) in an excitonic insulator (EI) described in a two-band correlated
electron model. Employing the perturbative expansion with respect to the external electric field, we derive the
THG susceptibility taking into account the collective dynamics of the excitonic order parameter. In the inversion-
symmetric EI, the collective order parameter motion is activated at second order of the external field and its
effects arise in THG. We find three peaks in the THG susceptibility at energies hQ2 = A,/3, A, /2, and A,,
where A, is the band gap. While the THG response at A,/3 is caused by bare three-photon excitation of the
independent particle across the band gap, the latter two peaks involve the motion of the order parameter activated
at second order. The resulting resonant peaks are prominent in particular in the BCS regime but they become
less significant in the BEC regime. We demonstrate that the resonant peak originated by the collective excitation
is observable in the temperature profile of the THG intensity. Our study suggests that the THG measurement
should be promising for detecting the excitonic collective nature of materials.
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I. INTRODUCTION

Unveiling optical properties of collective phenomena is a
key issue for understanding electronic ordered states [1,2].
Among them, the ordered state of electron-hole pairs, the
so-called excitonic insulating (EI) state [3-9], attracts in-
terests stimulated by recent experiments [10-12]. The EI
states are characterized by the spontaneous band hybridization
driven by the interband Coulomb interaction in narrow-gap
semiconductors and semimetals, which can host ferroelec-
tricity [13—-17], magnetism [18-24], and topological physics
[25-30], depending on spin and orbital textures of valence
and conduction bands. In analogy with exciton conden-
sation, the EI is also concerned with the physics of the
BCS-BEC crossover by tuning the band gap from negative
(semimetal) to positive (semiconductor) [31-35]. Recently,
several transition-metal compounds, including TiSe, [11,36—
38], Tap;NiSes [10,39-44], and WTe, [12,45,46], are consid-
ered as candidates for the Els. In particular, the origin of the
ordered state in Ta,NiSes are actively debated by the Raman
and nonequilibrium pump-probe spectroscopies [47-61].

Dynamical properties of quantum coherent states are
characterized by collective excitations. When the symmetry
is broken spontaneously, a condensate possesses collective
modes, e.g., amplitude (Higgs) mode and phase (Goldstone)
mode, associated with fluctuations of an order parameter [62].
Recently, collective natures of materials are investigated by
nonlinear optical spectroscopies. For example, in BCS su-
perconductors, the amplitude (Higgs) mode, which is dark
in linear response regime (in the long-wavelength limit),
is activated by the nonlinear optical drive and the result-
ing resonance emerges in third-harmonic generation (THG)
[63—68]. Actually, the enhancement of the THG intensity at
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the resonant frequency has been observed by the terahertz
pump-probe experiments [69-73].

The collective excitations in the EI are also characterized
by the amplitude and phase modes of the order parameter
fluctuations [74-76]. When an EI state is ferroelectric or
breaks the spatial inversion symmetry, these two collective
modes can couple to light linearly [17]. However, most of the
EI candidates are centrosymmetric. The collective modes of
the inversion-symmetric EI are optically inactive in the linear
response regime unless the light couples to the specific dipole
[74-77], so that we expect that the collective properties of the
typical Els strongly appear in THG, as in the superconductors.
However, while the light-induced nonequilibrium dynamics in
the EI and its candidate materials are actively investigated, the
study of THG in the EI has not so far been well-developed
theoretically.

In this paper, to address this issue, we study THG in an
EI described by a two-band correlated electron model (see
Fig. 1). Employing the time-dependent mean-field theory and
the perturbative expansion with respect to the external electric
field, we derive the THG susceptibility taking into account the
collective order parameter dynamics. We show that the order
parameter in the inversion symmetric EI gets into motion at
second order of the external field and its effects are emergent
in THG. We find three peaks in the THG susceptibility at
energies Q2 = Ag/3, Ag/2, and A, where A, is the band
gap in equilibrium. While THG at Az/3 is simply originated
by bare three-photon excitation of the independent particle,
the latter two peaks are attributed to the motion of the order
parameter activated at second order. The collective excitonic
mode in the BCS (semimetallic) regime enhances the THG
intensity resonantly but the effect becomes less significant in
the BEC (semiconducting) regime. From the analysis of the
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FIG. 1. Schematic picture of THG in the excitonic insulator.

nonlinear response function of the excitonic order parameter,
we reveal the origin of the peaks at A,/2, and A,. We also
discuss the temperature dependence of THG and demonstrate
that the resonant peak originated by the collective motion is
observable in the temperature profile of THG.

The rest of this paper is organized as follows. In Sec. II
we introduce the model and time-dependent mean-field theory
for the EI. Then, in Sec. III, we estimate the order parameter
activated in the nonlinear regime and derive the THG suscep-
tibility taking into account the vertex corrections. We show
the calculated THG susceptibility in Sec. IV. Discussions and
summary are given in Sec. V.

II. MODEL
A. Two-band model

As a minimal theoretical model of the EI, we consider
the spinless two-band correlated model (or extended Falicov-
Kimball model) [33-35,78-82]. The Hamiltonian takes the
form

H = Hy + Hi, (1
with
Hy ==Y (tal]olja +He) + Y Aol ja (2)
i.j) « Ja
Ho =UY el o25080 871, 3)

J

where ¢; o (é;a) is the annihilation (creation) operator of an
electron at site j on orbital o« (=0, 1), and (i, j) indicates
a pair of nearest-neighbor sites. f,, A, and U are the hop-
ping integral, energy level of the orbital «, and interorbital
repulsive interaction, respectlvely Here we focus on the half-
filled case ny + n; = (¢ Ocjo) + (¢ jlc, 1) = 1 and consider
the model defined on the two-dimensional (2D) square lattice
(d = 2). The free electron part in the momentum (k) space is
given by

Hy =) ea(K)e, Crar )
k,a
eq(k) = —2t4[cos (kea) + cos (kya)] + Ag, (@)

where we use the

1 ik-R;
T 2k €
is the lattice constant. We take the particle-hole symmetric

Fourier transformation ¢;, =
iCxa (N is the number of lattice site), and a

band structure with 7y = —#; (direct-gap type) and assume
Ag + Ay = —U in order to set the Fermi energy to zero.

The external field A(¢) is introduced by the Peierls substi-
tution [83,84], and we use the time-dependent Hamiltonian
H(t) = Hy(t) + Hini, with

Aot) =) ealk+ ™' eA))E] ks (6)
k,a

where e (>0) is the elementary charge and 7 is the Plank
constant. In this paper we use the monochromatic continuous-
wave A(t) = A(Q)e ™ + c.c. unless otherwise noted. We
assume that the interorbital dipole coupling d [74-77] is zero
for simplicity because it depends on the parities of the two
orbitals.

B. Mean-field theory
In this paper we employ the time-dependent mean-field
(tdMF) theory [74-76]. We define the mean values of the
diagonal and off-diagonal densities as

na(t) = (€] (080, $@) = (& (O @), (D)

respectively, where the off-diagonal component ¢(¢) corre-
sponds to the order parameter of the EI in our two-band
model. Then, the MF Hamiltonian is given by

A@) — Aur(t) =Y Y Ko (kD a8

k o,
with
Wk, 1) = h(k + h'eA(r), 1), )
_ [eotl) + Uni(2) ~Ug¢*(t)
h(’”)—[ ~U(1) el(k>+Uno<r>]’ (1o

where h(k, t) is the matrix on the basis Ui = [ck 0 ck nE
In the pseudospin representation, the Hamiltonian o (k,1)
is described by
h\(k,t) = B(k,1) - ¢ + 3 Bo(k, t oy, (11)

where oy and o, (a = x, y, 7) are the identity and Pauli matri-
ces, respectively,

B, (k,t) = —2U Re ¢(1), (12)

By(k,t) = —2U Im ¢(1), (13)
B.(k,t) = go(k + h'eA(t)) — e, (k + h'eA(t))

= Ulno(t) — ni(1)], (14)

and By(k,t) =0 since we assume fy = —t; and Ay +

A; = —U. Note that By(k, 1) = so(k + h'eA(t)) + &1 (k +

“leA(t)) + U when fy # —t; and Ao+ A; # —U at half-
filling. In the pseudospin representation, the MF parameter is
given by

1 R N
Ga(t) = N Xk:(‘l’;(t)%‘l’k(l)), 15)
which composes the vector
¢ (1) Re ¢ (1)
()= | (1) | = Im ¢(7) . (16)
¢-(1) [no(7) — n1(2)]/2
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Then, the vector B(k, t) is given by
B(k,t) = —2U¢(t) + 26 (k + i 'eA(t))e., (17)

where we define

£ = go(k) ; 81(k)-

In the tdMF theory, the time-dependent current is determined
by

Ju(t) ==Y vk + ' eAONY (oW (1)), (19)
k

(18)

where

ity = 1 E®)
122

Note that, when #y # —t;, we need to include the oy com-
ponent in the current. When we perform the real-time
simulations, we solve the equation of motion 9,S(k,?) =
"Bk, t) x S(k,t) for S,(k,t) = (¥} ()o, Ue(@))/2 with
updating the MF parameter ¢, (¢ ) simultaneously. In this paper
we expand the nonequilibrium quantities and Green’s func-
tion with respect to the external field A(¢) and estimate the
photocurrent for THG.

In equilibrium [B,(k) = B,(k,t = —00)] we have the
eigenenergy

Ex(k) = hoy (k) = £5|BU)| + 3 Bo(k), ey

(20)

and the MF parameter is determined by

1 B, (k)
b=y Xk: 2B F ) = JEGNL e

where f(E) is the Fermi distribution function. We solve this
equation self-consistently and determine the MF parameters
in equilibrium. The bare lesser (<) and retarded/advanced
(R/A) Green’s functions are given by

G*<(k, 1) =i fE,()b,()e ™", (23)
v==+
Gk, 1) = Fif (£t) Y by (ke ®, (24)
==

respectively, where

(25)

b,(k) = %I:oo +v By i|

¥y
IB(k)|
In the following we also use the Fourier transformed Green'’s
function G°(k, w) = [ dtG°(k, t)e™".

III. NONLINEAR RESPONSES

A. Perturbative expansion

Using the nonequilibrium Green’s function G(k, ¢, t') un-
der the applied external field A(7) (see Appendix A), the MF
parameter and current are given by

! -
Galt) = i Xk:tr[aaG k,t,1)], (26)

Ju(t) =ie Y v,k + i eA®))rlo.G= (k. 1, 1)l (27)
k

respectively. In this section we expand the Green’s function
(and velocity) with respect to the external field A(7) and de-
rive the order parameter and current induced in the nonlinear
regime.

With respect to A(¢), we expand a quantity X as

o0 o0 1
X(A) = ZX(")(A) = Z Fs”xm), (28)
n=0 n=0

where X™(A) = §"X(A)/n! = O(A"). In this notation,
the nth order variation of the Hamiltonian A%(k, ) is
given by

Sk, 1) = —US"$(t) - o + (%) 3 )
M, M
XAy 0A,,@) A, @) o, 29)
where
d"E(k
Eppe (k) = # 30)

akﬂl ak/iz e akun

We expand the Green’s function G with respect to the de-
viation from equilibrium 8" given by §"h*(k, t). The details
of the nonequilibrium Green’s function and its expansion are
summarized in Appendix A. Expanding the Green’s function
up to the third order, we have

8G = G % 81 % G, (3D
82G=2G" % SH x G« SH «G* + G x 8*H « G°, (32)
83G = 6G" % 8H % G® % 8H % G % H % G°
+3G" % 6H % G % 8°H % G°
+3G% % 8°H % G® % 8H % G° + G® % 8*H = G°,
(33)

where X %Y indicates the product including the time-
integration [ dn X% (¢, Y9 (#,¢)  (see details in
Appendix A) [85].

In the following we estimate the MF parameter §%¢, at
second order and then derive the nonlinear current §3J, for
THG involving the collective dynamics of the order parameter
(i.e., vertex correction).

B. Order parameter

First, we derive the order parameter away from equilibrium
by expanding the Green’s function. Because of the symmetry
under inversion, e.g., §,(—k) = —&,(k), the MF parameters
at odd order [8¢)(¢), 8°@(z), ...] vanish (see Appendix B).
Hence, the lowest order of the activated order parameter is
of the second order;

1 p
82¢,(1) = —isy Xk:tr[aaézG (k,t,1)]. (34)

Under the monochromatic field A(t) = A(Q)e ¥ +
A(—Q)e’¥, the MF parameter at second order is characterized
by 82¢.(t) = 8%¢a(2Q)e™ 5 4 82¢,(—22)e* ¥ + §2¢,(0).
While 82¢,(0) [ox A(S2)A(—)] can be nonzero, it does not
contribute to THG given by 63J(3Q) [ox A(R2)*]. Here we
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o< OO e

FIG. 2. The diagrammatic representation of Eq. (41). The solid (with arrow), wavy, and dashed lines indicate the bare Green’s function G°,
external field A, and interaction U, respectively.

consider 62¢,(2R2) [ox A(2)?] because THG originated from by 83J7°(3Q) o §2¢,(22)A(£2). Combining Egs. (32) and
the dynamical order parameter (vertex correction) is described (34), 82¢,(2Q) is given by

J

1 2 (d
82¢,(2Q) = —iﬁ Z = / ﬁtr[aaGo(k, o+ 2Q)8h (k, Q)G (k, w + Q)sh (k, )G’ (k, w)]=

Z / —tr[o,GO(k, w + 2Q)8%h (k, 2Q2)G°(k, w)]=, (35)

where [---]° indicates the lesser component following the Langreth’s rule, e.g., [XY]~ = XRY< 4+ X<Y4 (see details in
Appendix A). While we can integrate the Green’s functions over @ as summarized in Appendix C, we retain the w integral
with the Green’s functions for the compact notation. Since §¢(¢) = 0 (see Appendix B), we have

Sh (k, Q) = % ;éul(k)Au](Q)azv (36)
but 52¢(2€2) can be nonzero and
8k, 2Q) = —US’$p2Q) - o + ( ) 3 i AL (DA, (Q) 0. (37)
M1,M42

Equation (35) corresponds to the self-consistent equation of §?¢(2) because 6244 (k, 282) in the right-hand side of Eq. (35)
includes 52¢(22).
Introducing the bare susceptibilities for coupling between the order parameter ¢ and the external field A, (£2),

X Q, Q) = rﬂ I Z / —tr[6 Gk, @ + 22)0.G (k, w + Q)0.G’(k, )<, (k)E,,, (k), (38)
X005 (2Q:2Q) = —ZENZ/ oGOk, @ + 22)0,G(k, )] &y, (K, (39)

and the bare ¢-¢ susceptibility (3 x 3 matrix)

(%22 2]y = —lﬁﬁ Z / 2?16, (k,  + 2Q)0, GOk, @)]°, (40)

the self-consistent Eq. (35) becomes

2
922 = (3) D a2 DA (DA @ + (7 ) 3 0% 2Q:29)4,, (DA,,(Q) — U 22)5°(2Q).

s 2 s 2
(41)
This equation may be described by the diagrams in Fig. 2 [63]. Then we obtain the solution
X098 (2Q: Q, Q) X098 (29;2Q)

2 _ (¢ M1z f 2 M2
Yo = (h) M% 1+Ux°*¢¢(2Q)A“'(Q)A“2(Q)+<Fz> ; 1+Ux°"’¢(2§2)Am(Q)AM(Q)’ @

i

indicating that the order parameter is activated at second order ~ with
of A when the corrected susceptibility is nonzero. For later
convenience we express the above relation as K055 0Q: Q. Q) X% 2Q;2Q)

r#lﬂz(zg; Q, Q) Hifta + .U«l/’~2
52%(29):( ) 3T, 202 QA (AL (Q),

1 +UF%2Q)  1+Ux%2Q)

141,14 (44)
43)
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(2b)

e

(3¢) (3d)

FIG. 3. The diagrams for the third-order photocurrent. The solid (with arrow), wavy, and dashed lines indicate the bare Green’s function
G, external field A, and interaction U, respectively. The cross indicates the one-photon output.

C. Current

Next, we derive the nonlinear current involving the dynam-
ics of the order parameter. Expanding J,,(¢) in Eq. (27), the
current at nth order is given by

8. ()= iez Z(;) 8"*’”vﬁ(k, Hitr[o,8"G=(k, t,1)],

k m=0
(45)

where (;’1) is binomial coefficient and
en
S”Uﬁ(k, t) = W Z Eppr o JOAL, (8) - Ay, (1), (46)

The linear response 8J,(¢) can be nonzero in the EI
state. However, because §¢(¢) = 0, the linear optical response

J

does not reflect the dynamical effect of the order parameter.
The second-order response 82JM (¢) vanishes in the inversion
symmetric system because the current has odd parity under
inversion. Hence, in order to see the dynamics of the excitonic
order parameter, we need to evaluate the optical response at
third order.

Combining Egs. (31)-(33), (45), and (46), we derive the
third-order current 83],“ which is comprised of the contri-
butions diagrammatically described in Fig. 3 [86]. Since the
order parameter 82¢(¢) is included only in 6244 (k,t), the
contributions 2b, 3b, and 3c are affected by the dynamical
order parameter, which leads to the vertex correction terms
(see Fig. 3). Here, as an example, we derive the contribution
from 3b but all the THG susceptibilities are summarized in
Appendix D. v, (k) and G*+§H G *8*H+G" in §°G gives
837,(3Q) of 3b,

d
8,(3Q)3, = 31( ) Z s,t(k)h2 / ﬁtr[UZGo(k, o+ 3Q)8h (k, Q)G (k, w + 2Q2)8* 1 (k, 2Q)G° (k, w)]=.  (47)

Dividing as §°J,(3Q) = §°J)(3R2) + §°J°(3R), the bare (0) and vertex correction (vc) terms are given by

8I10(3Q)3 = 31( ) Z Z rﬂ/ 2 1 0.G 'k, @ + 32)0.G°k,  + 22)5.G (k, )] <

Ki, 2,43k

X Eu (k)& (K)& iy, (KA, (Q)AM(Q)AM(Q) (48)

8T (3 = —31U( ) > ZZ = / 2P 0.6k, @ + 32)0. GOk, @ + 22)0,G0(k, )]~

K12, 43 a

x &, (k) ()T, (2920 €2, Q)A,, (Q)A,, (2)A,,,(82), (49)

respectively, where the vertex correction term 83JII°(3Q) arises from the order parameter §2¢(282) in Eq. (43). The THG

susceptibility may be defined as

1P3Q) = 8°1,(32)/3!

_gd 3)
=L Z Xt paps

M2, 143

(382, Q)A ., (2)A,, (DA, (2), (50)
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where XA(LB;x)uuzm (B Q) = X;(E;;)uuzm(?’g; Q, Q, Q) and L? is the volume. Dividing Xﬁ?ﬂuzm (3Q; Q) into X&Sl)ﬂ«zw (3Q; Q) and
X;C;f?;iz 15 (352; €2), the bare and vertex correction terms of 3b are given by

XH«W«II‘«ZIM

0:330) (3. Q) = %i<f)4i dk [ d—wtr[azGo(k,a)+352)azGO(k, w+292)0,GO(k, )], k)&, (k)& 1,0, (k). (51)

hz (27.[ )d

U e)4 1 dk

3(3,3b) . _ .
X;\tl;cmuszQ’ Q) = _El<ﬁ ﬁ Q)

X £,(k)&,, ()T, (229, Q),

h 21

respectively. In the same way, we can derive the other THG
susceptibilities and their formulas are summarized in Ap-
pendix D. Because of the vertex correction x50)  (3Q;Q),
the THG susceptibility can reflect the collective dynamics in

the EI

IV. THIRD-HARMONIC GENERATION

A. THG susceptibility in the EI

First, we show the THG susceptibility x I(fl)“ Lo (3525 Q) at
zero temperature. Here we assume that the order parameter
¢ is real in the ground state without loss of generality and
the external field is polarized along the x direction. The po-
larization direction of the incident light does not change the
main features of the THG susceptibility in the EI and the
polarization dependence is discussed in Appendix E. Here we
set f, as a unit of the energy and plot the THG susceptibility
XSQMBQ; Q) in units of (ea/h)*t,/a on the 2D square lattice
d=2).

In order to see the change of the THG susceptibility from
the BCS (small-U, semimetallic) regime to the BEC (large-U,
semiconducting) regime, we plot the data by changing the
Coulomb interaction U. Figure 4(a) shows the U dependence
of the band gap A, and order parameter ¢ in the ground state.
While A, = 2U ¢ in the BCS regime, A, > 2U ¢ in the BEC
semiconducting regime [34]. The order parameter vanishes
above the phase boundary U > U, where the band gap A,
is larger than the exciton binding energy Ep [75]. Figure 4(b)
is one of our main results, where we plot the magnitude
of the THG susceptibility x5 (322:; Q)| as a function of
U. x3).(32; Q) exhibits three peaks in the EI phase and
their positions correspond to i2 = A,/3, A,/2, and A, from
the bottom. The THG response is strong in the BCS regime
but it becomes less prominent with approaching the phase
boundary U,.

Figure 5 shows the THG susceptibility as a function of
hi2/ A in the BCS and BEC regimes. Here, in order to iden-
tify the contributions from the vertex correction, we plot the
bare susceptibility x3)(3Q; ) in Figs. 5(a)-5(c) and the

vertex corrections xv<G2”(3Q;Q) and X533V (32 Q) +

X XXX XXX

vei3.30)(3Q2; Q) in Figs. 5(d)-5(f). All components of the

Xx;xxx
bare THG susceptibilities and vertex corrections are presented

in Appendix D. As shown in Fig. 5, while the THG sus-
ceptibility at /€2 = A,/3 is mainly composed of the bare
part x%2)(392; Q), the magnitude at i2 = A,/2 and A, are

XXX

modified by the vertex part x <3 (3Q; Q). This indicates that,

E

while THG at /i2 = A,/3 is simply caused by bare three-

d
i > tr[o.G k. 0+3R)0.G° (k, 0+22)0,G° (k. )]
2 -

(52)

(

photon excitation of the independent particle across the band
gap A,, the order-parameter motions strongly contribute to
THG at iQ2 = A,/2 and A,.

In the BCS regime, the vertex correction enhances the THG
susceptibility at both /2 = Ag/2 and A,. In particular, the
peak at €2 = A, is outstanding. As shown in Figs. 5(d) and
5(e), while the vertex correction in 2b (see Fig. 3) is much
smaller than the bare susceptibility, the vertex corrections in

(a) 0.7

_Ag
0.61|--- 2U¢

< I
IS <
\ )

I
o
A

Ag/tm 2U¢/th

<
o

o
—
e - ————— "

108
102 o
S &
= jacs
= _§
10t =2

10°

. 1071

1 2 3 4 5
U/th

FIG. 4. (a) U dependence of the excitonic order parameter U ¢
and the band gap A, in the ground state. The energy level difference
is D = Ay — Ay = 3.8t, and the vertical dashed line indicates the
boundary of the EI phase (U,). (b) THG susceptibility | x5, (392; Q)|
in the plane of U and Q. |x£)..(32;Q)| is plotted in units of
(e/h)*a’t, and the damping factor n = 0.005¢, is used.
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a b) c
(a) 5000 » =1 (M) 40 = (©) 0.8 e
40001 | —__. 0(3)
N P 30 ~ 06
o o <}
& 3000 & &
< <20 04 :
252000 e e
= = = Y
10 0.2
1000 \/
0 J - 0 0.0 _/
00 02 04 06 08 10 12 14 L6 0.0 12 14 16 00 02 04 06 08 10 12 14 L6
hQ/A, hQ/A,
d e f
(@ 5000 - =30 © 40 =35, 008 T =131,
T Xwrar
4000 vei(3,26)
B Xrizir 30 0.6
= — B e =
& 3000 &
< €20 £ 04
=5 2000 o 55
= =
10 0.2
"M S PN
0 J ‘ 0 J 0.0 __J
00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16
hQ/A, hQ/A, hQ/A,

FIG. 5. THG susceptibility | X;f;gxx(m; Q)| at (a) and (d) U = 21, (BCS regime), (b) and (e) U = 3.5#, (intermediate regime), and (c) and
(f) U = 4.3t;, (BEC regime), where the horizontal axis is scaled by the band gap A,. For comparison, the bare susceptibility xg;gg;(m; Q) is
plotted in the upper panels [(a)—(c)] and the vertex corrections Xlﬁi*%)@ﬁ; Q) and )(;’gg'3b)(3§2; Q) + x)(v;iﬁ*}‘)@ﬁ; 2) (see Fig. 3) are plotted
in the lower panels [(d)—(f)]. The vertical dotted lines indicates 2 = A,/3, A,/2, and A,. Here n = 0.01A, is used while the other parameters

are the same as in Fig. 4.

3b and 3c (see Fig. 3) dominantly enhance THG at Q2 =
A,/2 and bring the significant peak at A2 = A,. Hence,
we can observe the strong THG response due to the order-
parameter motion, which is emergent in x53-*”(32; Q) and
XSS (32 Q).

In the BEC semiconducting regime, on the other hand,
the peaks at i2 = A,/2 and A, in the THG susceptibility
become less prominent. As shown in Fig. 5(c), |X§;3)2xx (32; Q)|
at iQ2 = A,/2 is suppressed from the value of the bare sus-
ceptibility | Xf;ﬁ}c(SQ; Q)|. The vertex correction in 3b and
3c is much smaller than its value in the BCS regime and
is comparable to the vertex correction in 2b [see Fig. 5(f)].
Since the vertex corrections are weak in the BEC regime,
the resulting THG susceptibility does not show the collective
excitonic nature strongly.

Since the collective order parameter dynamics is important
for THG in the EI, we show leMZ(ZQ;Q, Q) in Figs. 6
and 7, which is the response function of the MF parameter
at second order in A(S2) [see Eq. (43)]. Because we as-
sume the order parameter ¢ is real in the ground state, the
a = x and y components indicate the amplitude and phase
oscillations of the order parameter, respectively. The a = z
component I'}, || (2€2; €2, ©2) is zero when the hopping param-
eters satisfy #p + #; = 0 at half-filling. While the a = y (phase)
component is nonzero, the a = x (amplitude) component is
dominant in particular in the BCS regime and here we present
7, (292; 2, Q). Figure 6 shows '} (2€2; €2, ©2) in the plane of
U and 2, where we find two peaks at 712 = A,/2 and A,.
The response of the amplitude oscillation is strong in the BCS
regime but it becomes weaker with approaching the phase

boundary U..

In order to identify the origin of the two-peak structure,
we compare I'}, (2€2; 2, ) with the bare response functions
[x%9%6 (2Q; Q, Q)], and [x%%%(2Q;2Q)], in Eqgs. (38) and
(39), respectively. As shown in Fig. 7, while the contri-
bution from [x %% (2€2;2Q)], is minor, [x%%¢(2Q; Q, Q)],
exhibits the sharp peak at /i2 = A, which is enhanced by
the many-body correction in I'}, (2€2; €2, €2). The response at

102

10!

(29;0,0)|

T
T

T,

10°

107!

U/t

FIG. 6. Second-order response function for the order parameter
IT'7,.(222; 2, )| in the plane of U and . The vertical dashed line
indicates the boundary of the EI phase (U.). Here |I'},(2€2; 2, Q)| is
plotted in units of a® and the energy level difference D = Ay — A =
3.8, and the damping factor n = 0.005¢), are used.
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U = 3.5,

(2059, Q)]

T
T
w
f

‘F.'f

0 ? — ; T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

hQ/A,

FIG. 7. Second-order response function for the order parameter
T3, (292; 2, Q)| at U = 3.5¢t,, where the horizontal axis is scaled
by the band gap A,. For comparison, the bare response functions
[x 295 (2€2; Q, Q)] and [x29%(2€2;2Q)], are plotted. The vertical
dotted lines indicates 2 = A,/2, and A,. Here n = 0.01A, is used
while the other parameters are the same as in Fig. 6.

hQ = Az/2 is not prominent in the bare function, but the
many-body correction [1 + U ¥??]~! in 'Y (22; Q, Q) gives
rise to the resonant peak at /iQ2 = A,/2. Therefore, the ori-
gins of the peaks at i2 = A,/2 and A, are different, where
the response at i2 = A,/2 is originated by the many-body
correction in I'}, (2€2; €2, 2) while the response at i2 = A, is
mainly caused by the bare photon absorption described by the
loop triangle diagram in Fig. 2. Using Eq. (C8) for the loop tri-
angle diagram, we find that [X)9§¢5§(2§2; Q, Q)] includes the
contribution represented by (2/£2)~! > MK/ R — |B(k)|],
which arises when one of two photon absorptions is resonant.
This contribution gives rise to the prominent peak at iQ = A,
in Fig. 7.

Since I';, |, (2€2; €2, Q) gives the vertex corrections in the
THG susceptibility, two peaks observed in I'} (2€2; €2, 2)
bring the resonant enhancement of THG at iQ2 = A,/2 and
A,. In the BEC regime, the vertex correction is small as shown
in Fig. 6 and the resulting THG susceptibility does not exhibit
significant peaks in comparison with the BCS-type EI. This
is because the order parameter in the BEC-type EI is deeply
stabilized at the bottom of the energy and is hard to deviate
from its equilibrium value at second order in A(£2).

B. Temperature dependence of the THG intensity

In the discussions of the Higgs-mode resonance in su-
perconductors, the temperature profile of the THG intensity
is compared with experimental THG response [64,67,69,72].
Hence, we show the temperature dependence of the THG
intensity for the EI [87]. Here we plot |x %) (3€2; Q)|* as the
THG intensity Ity since Frug o |/ (3Q)[.

Figure 8 shows the results at U = 3.5¢,, where the strong
THG responses are anticipated at iQ2 = A,, Ag/2, and A,/3
as shown in Fig. 5(b). Actually, the temperature dependent
THG intensity in Fig. 8(b) exhibits three peaks at the tem-
peratures when /€2 = 0.3A,(T =0) crosses Ag(T), Ay(T)/2,

U = 3.5t

nQ = 1.1A,(0)

1.0 1

0.2 1

0.0

0.02

A0 = 1.14,(0)

0.01 4

0.00
2.01

1.01

0.0

Lo 7 =1044,(0)

IS (3% Q)2

0.51

0.0

10{72=10:34,(0)

0.0 . . = — 4
0.0 0.2 0.4 0.6 0.8 1.0 1.2
T/T.

FIG. 8. (a) Temperature dependence of the band gap A,(T) at
U = 3.5t;, where the dashed lines indicate A,(7T)/2 and A,(T)/3.
The vertical dotted line indicates the temperature at which the
order parameter and /2 cross. (b) Temperature dependence of
Ix (32 Q)% All intensities are normalized to the maximum
value at i2 = 0.3A,(T = 0). The energy level difference D = A, —
Ay = 3.8t;, and the damping factor n = 0.01A,(0) are used.

and A/(T)/3, respectively. Associated with the number of
the crossing points [see Fig. 8(a)], the THG intensities at
n2 = 0.4A,(0) and 0.9A,(0) show two peaks and one peak,
respectively, and the peak structure vanishes when A2 >
A,(0). Therefore, when the BCS-like relation A, = 2U ¢ is
well satisfied [see Fig. 4(a)], the number of the peaks in
the temperature profile of the THG intensity decreases with
increasing the light frequency 2.
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(8) 19

U=423t,

hQ = 1.1A,(0)

Ay(T)/24(0)

0.0

Wre=11a,0

0.51

{n = 0.4A,(0)

[r2=10.3A,(0)

0.5 1

0.0 T T — — ~r
0.0 0.2 0.4 0.6 0.8 1.0 1.2
T/T.

FIG. 9. Same as Fig. 8 but at U = 4.31, (BEC regime).

In the BEC semiconducting regime, on the other hand, the
resonant peaks become less prominent as shown in Fig. 5(c).
Correspondingly, the THG intensity does not exhibit the
strong resonant peak at the temperature when 72 crosses
A, (T) (see Fig. 9). While the THG intensity show the peak at
hQ = Ag(T)/2 when Q2 = 0.3A,(0) and 0.4A4(0), the peak
is not so sharp in comparison with THG in the BCS-type EIL

V. DISCUSSION AND SUMMARY

While we studied THG in the purely electronic model,
the low-temperature phases in the actual candidate materi-
als, Tap,NiSes and TiSe,, are associated with the structural
phase transitions [88-91]. Here we comment on effects of

electron-phonon couplings briefly. The energy scale of lattice
vibrations is usually much smaller than that of the band gap.
Actually, the phonon frequency /iwp, ~ 10-20 meV while the
band gap A, ~ 200-300 meV in Ta,;NiSes [53-55,92,93]. In
this condition, the phonon resonances appear at substantially
low energies below the band gap, and the vertex corrections
from phonons may be tiny (or negligible) in the region above
the band gap because of the energy-scale mismatch between
the phonon frequency 7wy, and the band gap A, [17]. If the
ordered state is purely phonon driven, the THG susceptibility
is expected to be x¥(3Q; Q) ~ x%3(3Q; Q) in the region
above the band gap (3/i2 > A,) and we may not observe the
resonant peaks shown in Figs. 5 and 8. Therefore, the resonant
peaks we find can be a smoking gun for the identification
of the excitonic order. If the THG intensities in experiments
exhibit the temperature profile as shown in Fig. 8, we may
conclude that the ordered state is a BCS-type EI. However, if it
is not observed, there may be two possibilities: (1) An ordered
state is dominantly phonon driven as speculated here or (2) an
ordered state is a BEC-type (strong-coupling) EI as shown in
Fig. 9 since x ¥ (3Q; Q) ~ x%*®(3Q; Q) [see, e.g., Fig. 5(c)].
If we can drive the collective motion more actively by a
strong electric field, we might observe the nonlinear excitonic
collective nature even in the BEC-type EI and distinguish it
from the phonon-driven case. In order to address the above
issue, one needs to make detailed analyses and calculations
of high-harmonic generation in an electron-phonon coupled
model or realistic models for the candidate materials, which
will be important extensions of the present study in the future.

To conclude, we have investigated THG in the EI state
described in the two-band spinless model. We have derived
the THG susceptibility taking into account the vertex cor-
rections and have shown that the order-parameter motion is
activated at second order of the external field and its effects
arise in THG. We have found that the THG susceptibility
exhibit three peaks at iQ2 = Az/3, Ag/2, and A,. While THG
at Ag/3 is simply caused by bare three-photon excitation
of the independent particle across the band gap, the latter
two peaks are attributed to the dynamical order parameter
82¢(292) activated at second order, where the resulting reso-
nant peaks are prominent in the BCS regime but they become
less prominent in the BEC regime. We have identified that
the motion of the order parameter at 2 = A, is mainly
caused by the bare photon absorption while the mode at A,/2
is originated from the many-body correction. We have also
demonstrated that the resonant peak caused by the collective
motion is observable in the temperature profile of the THG
intensity. Our finding suggests that the THG measurement
is promising for detecting the excitonic collective nature of
materials.
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APPENDIX A: GREEN’S FUNCTION
The nonequilibrium Green’s function is defined as

GT(k,t,t) G=(k.1, ﬂ)}

G (k. t.1') (AD)

Gk, t,t) = [ G (k.. 1)

Here each component is a 2 x 2 matrix and
[G" (ke 1,1)ap = =T [Exa()E ,O),  (A2)
(G (k. t,)]ap = —i(T[Cal®)e] ;0. (A3)
(G (k. 1, )]ap = i{¢) 5t )eka (D)), (A4)

[G™ (k, 1,1 lup = —i(Caa (D] 41, (AS)

where T (T') indicates the time(antitime)-ordered product.
For a general nonequilibrium correlation function [e.g.,
X, 1) = G(k,t,t")] defined as

XT , /
Xt = [X>Z i;

Xt )
X, )

Xf(t,t/)
XT@,t)

Xt=(,t)
X (, t’):|’ (A6)

the retarded/advanced component is given by
XRAG Yy=XT@, 0y = X</7(@,1). (A7)

The matrix multiplication between X (¢,¢") and Y (¢, ¢') is de-
fined by

X«V) @)=Y ;./ dnX O e, )Y (1, 1),

si=% -
(A8)
where ¢; = — (+) arises from the contour C™: t; = 00 —
tj=—-00 (C*: 1 = —00 — 1} = c0). The lesser compo-

nent of the product X; % X; * - - - x X, follows the Langreth’s
rule

XX % x X)), 1)
n 00
= Z/ dty - dt XF @, )Xt 1) - -
i=1 Y~

XX (tic1, 1) Xty 1), (A9)

The nonequilibrium Green’s function satisfies

(GG Yk, t,t)=1(t,1) = [(’00 _(;0}3(1 —1),
(A10)
where we find
(G (k, 1, 1)) = §|:i00%8(t —t') — %hA(k,t)Mt — t’)]
(A11)
and [G7U(k,t,t)]*~ =[G '(k,t,t')]"" = 0. Then the de-

viation from equilibrium is given by §"H = —8"G~'. The
variation of G~! x G = I with respect to A gives rise to the

equations
G %8G — sH*G® =0,
G % 82G — 26M %8G — 8*H x G* = 0,

sequentially. By multiplying G° from left, we obtain the
Green’s functions

8G =G’ % sH x G,

8°G = 2G° * SH x G* % SH + G* + G x 8*H x G,

Combining the above Green’s function and Langreth’s rule,
for example, the lesser component of G = G° * §H * G is
given by

8G=(k,t,t")

1
=7 / dtGOR(k, t — t))8h* (k, 1))G* < (k,t; —t")

1
+ E/dtho‘(k, t —1)8h k, )G (k, t; — ).
(A12)

In the same way we can derive the Green’s function §"G=
at + =1¢/, which is used for the estimation of the time-
dependent quantities 6"¢(¢) and 6"J,(¢) [e.g., Eqs. (34) and
(45)]. For A(t) = A(Q)e ™ + c.c., the Fourier coefficient of
8G=(k,t,t) is given by

3G=(k, Q)
1 [do o A 0,<
=— | —G"*(k,w + Q)sh"(k, Q)G (k, w)
hJ) 2n
1 [do A 0,4
+— | ==G"~(k, w + Q)8h" (k, Q)G"" (k, w).
hJ) 2m
(A13)
Following the Langreth’s rule, we summarize the terms in the
right-hand side as

8G<(k,Q) = %/;l—:[co(k, w+Q)8h (k, )G (k, )]~.

(Al4)

APPENDIX B: MF PARAMETER AT ODD ORDER

Here we show vanishing of the order parameter at the odd
order in the external field. For example, combining Egs. (26)
and (A14), the order parameter at the first order is given by

1 1 dw
8 () = —i— Y — | —tr[0,G (k, Q
$a(2) zzNijh/hr[a (k,  + Q)

x 8ht(k, )Gk, w)]~, B

where 8h' (k, Q) = —US$(Q) - 0 + (e/h) ), &4, (K)A,, (R)
o,. However, because G*(—k, w) = G°(k, w) and &,(—k) =
—&,.(k), the term originated from &, (k)A, (R2) is an odd func-
tion for k and vanishes due to the k summation in Eq. (B1).
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Then we find
3P(2) =

where %%9¢(Q) is the same function with Eq. (40). Since the
solution of this equation is §¢)(€2) = 0, the order parameter at
the first order vanishes. In the same way, the order parameters
at higher odd orders also vanish.

—U " (Q)5¢(%), (B2)

APPENDIX C: » INTEGRAL

Here we consider the w integral in
d
f z—wtr[adGO(k, o+ 210Gk, w0 + ) ---15. (C1)
b4
Using the bare Green’s functions

G (k. w) =Y by(k)F, (k. ), (C2)
v=+

GORA (k. ) = Z b, (k)ERA(k, w), (C3)

v=x% |

where
F(k, ) =2mif(E,(k))d[w — o, k)], (C4)
1
FfAk, 0) = ——n—, C5
k) = o £ i ©)
we can divide the integrand into the trace part

tr[crabvl (k)opb,, (k) - -] and  the
fz’”[Ful(k o+ QDE,k, 0+ Q)]
function we have

w-integral ~ part
For one Green’s

/ d—tr[aaG k, w)]~ Ztr[aabvl k)] / —F7(k, ©)

=iy trlogby, (k)1f (E,, (k). (C6)

Vi

For two Green’s functions we have

/ 0 .Gk, @+ )0y GOk, )] Ztr[aabvl (K)opby, (k)] f [F,, (k, 0+Q1)F,, (k, ©)]<

_ f(Em ) = (k)
i Z tr{ouby, (K)opby, (k)] ol (C7)
where QT = Q +i0" and w,, (k) = w, (k) — w, (k). For three Green’s functions we have
f Z—:tr[aac"(k, ® + Q1 + 2)0Gk, 0 + )0.G (k, )]
= Z tI‘[Uab\,] (k)abbvz (k)UcbV3 (3 / g_:[Fvl k, 0+ Q1 + Q2)sz (k, w + QZ)F\)} (k, w)]<
. 1 J(E,, (k) — f(E, (k)  f(E),(K) — f(E\,K))
=i Z tr[oyby, (k)opb,, (k)ocb,, (k)] QT n Q;' — (k)[ QT AT Q;' — i| (C8)

Vi,V2,V3

In the same way we can integrate products of n > 3 Green’s
functions with respect to w. In our actual numerical calcu-
lations we introduce a finite damping factor n by replacing
each frequency 72 with A2 + in [e.g., for Q| = mQ, Q] —
m(h2 + in)], which may correspond to the scheme consider-
ing the adiabatic switching of the external field [86,95,96].

J

APPENDIX D: THG SUSCEPTIBILITY

Here we summarize the THG susceptibilities correspond-
ing to the diagrams in Fig. 3. The bare THG susceptibilities
are given by

022 = i(5) [ [ oG )6 o)
K 022 = 5i(5) 5 [ s [ Gt GP k. @ 20,60, 0010081, 6, (D2)
K32 (30;Q) = (% ‘1 (2?)5! / 0 1. GOk, 04+22)0.G e, 0+ Q)0 GOk, )], (), KV, k), (D3)
KIS0 (3Q;Q) = % (£)41 (;Z‘)d / 2 [0k, 0+ 22)0. GO, )] &y, s K. (D4)
K000 (30;Q) = i(%)4 ! (;Z‘)dfdwtr[a,co(k 0+32)0,G(k, 0+29)0,G0(k, w+2)0,G° (k, »)]~

X &, (k)& (k)§ ), (K)§ 1, (k), (D5)
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1./e dw
X (3 Q) = 51(E> / (Zn)d / tr[o. G (k, 0+3R)0.G" (k, 0+22)0.G" (k, )17, (k)& 1, (k)& 1,0, (k). (D6)
0630 (30 Q) = +i( % 90 16, GOk, 0+ 32)0.G e, -+ Q)0 Gk, k k)&, (k), (D7
K, 022 = 5i(5) - (271)‘, tr{o G (k, 0+32)0. G (k, 0+ 2)0: G (k, )16, ()81, ()8, (). (DT)
1. sen*l [ dk
X, B = ¢ (ﬁ) / o / 2 tt[0.G ke, w+32)0, GO (K, )] £, k)&, s s (KO, (D8)
and the vertex correction terms are given by
U . /e\*1 dk dw
XSG (30: Q) = 21<ﬁ> 7| Gy f ZZtr[azco(k,w+2sz)aaco(k, )], OTE 292,2,Q), (DY)
U e\t [ dk [do
X (22 = —3 (ﬁ) oy f 23 oGk, 0+32)0.G° k, 0+22)0, 6"k, )]
U 4 1
X058 3,Q) = _El(h (27[)"/ Y tr[0.GOk, 0+3R2)0,G° (k, 0+2)0.G (k. )]~
x &, ()T, (292, Q)& (k). (DI11)

In Fig. 10 we present all components of the bare THG sus-
ceptibility %) (3Q; ©2) and vertex correction X;’;ﬁ?@ﬂ Q).
Among the bare susceptibilities, the component 3a is the
largest and mainly contributes to THG at 72 = A,z/3. Cor-
responding to Fig. 5(e), the vertex correction 3b + 3c is the
largest at iQ2 = Ag/2 and A,.

APPENDIX E: POLARIZATION DEPENDENCE

Here we show the polarization dependence of the THG
susceptibility. When the external field

A(Q)

= A(Q)(cosO e, +sinfe,) = A(Q)a® (ED)

0:(3,2a)
Xawrx )

0:(3,3a
Xziwza )

Xi (,‘.3”

FIG. 10. THG susceptibility decomposed into the bare suscep-
tibilities and vertex corrections, where U = 3.5t;,, D = Ay — A| =
3.8t, and n = 0.01 A, are assumed. The vertical dotted lines indicate
hQ = Ag/3, Ag/2,and A,.

(

is applied, the THG susceptibility parallel to the polarization
direction 2 is given by

3) ©)y, (0) n®p®
Z X//-;//-lll«zm(:igz Q)n Mz Mz’
Hsers 2, 43

X ) =
(E2)

where 6 is the angle with respect to the x axis, and n'¥) = cos 6
and n{") = sin 6.

Figure 11 shows the polarization dependence of the THG
susceptibility | X‘(%)(3Q' 2)|. Even when the incident light is

polarized along the 6 = 7 /4 direction, Xl(%)(?aSZ 2) retains the

40 s z —
1.04 : . : U = 3.5t
3541029  onll T — 9=
1.00 4msZ=m———— =S 0= /4
3040.98 1 — =4,
0.96 1 ——— B = A2
= 2510944 e R =A,/3
- 092 . .
S 204 0 w/8 w/4l 31/8 w2
s= 0 ‘
= 151 I
g NJ k 218
0 : g : : - —
00 02 04 06 08 1.0 12 14 16
hQ/A,

FIG. 11. THG susceptibility |x,})(32: Q)| at 6 =0 and 7 /4,
where U = 3.5t,, D = Ay — A} = 3.8t;, and n = 0.01A, are used.
The vertical dotted lines indicate 12 = A,/3, A,/2, and A,. Inset:
Polarization dependence of the normalized |X‘f9) (3R2; Q)| at I =
A,/3, Ag/2, and A,, where the susceptibilities are normalized to
their values at 6 = 0.
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main features of the THG susceptibility observed at 6 = 0.
The difference in | x|} (3Q: Q)| at iQ = A,/3 is less than 4%
and the others are smaller than that (see the inset of Fig. 11).

In particular, |X|(|?9)(39; Q)| at iQ2 = A, is almost flat with
respect to 6. Therefore, the polarization dependence of THG
is small in the EIL
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