
PHYSICAL REVIEW B 104, 245103 (2021)
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We study third-harmonic generation (THG) in an excitonic insulator (EI) described in a two-band correlated
electron model. Employing the perturbative expansion with respect to the external electric field, we derive the
THG susceptibility taking into account the collective dynamics of the excitonic order parameter. In the inversion-
symmetric EI, the collective order parameter motion is activated at second order of the external field and its
effects arise in THG. We find three peaks in the THG susceptibility at energies h̄� = �g/3, �g/2, and �g,
where �g is the band gap. While the THG response at �g/3 is caused by bare three-photon excitation of the
independent particle across the band gap, the latter two peaks involve the motion of the order parameter activated
at second order. The resulting resonant peaks are prominent in particular in the BCS regime but they become
less significant in the BEC regime. We demonstrate that the resonant peak originated by the collective excitation
is observable in the temperature profile of the THG intensity. Our study suggests that the THG measurement
should be promising for detecting the excitonic collective nature of materials.
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I. INTRODUCTION

Unveiling optical properties of collective phenomena is a
key issue for understanding electronic ordered states [1,2].
Among them, the ordered state of electron-hole pairs, the
so-called excitonic insulating (EI) state [3–9], attracts in-
terests stimulated by recent experiments [10–12]. The EI
states are characterized by the spontaneous band hybridization
driven by the interband Coulomb interaction in narrow-gap
semiconductors and semimetals, which can host ferroelec-
tricity [13–17], magnetism [18–24], and topological physics
[25–30], depending on spin and orbital textures of valence
and conduction bands. In analogy with exciton conden-
sation, the EI is also concerned with the physics of the
BCS-BEC crossover by tuning the band gap from negative
(semimetal) to positive (semiconductor) [31–35]. Recently,
several transition-metal compounds, including TiSe2 [11,36–
38], Ta2NiSe5 [10,39–44], and WTe2 [12,45,46], are consid-
ered as candidates for the EIs. In particular, the origin of the
ordered state in Ta2NiSe5 are actively debated by the Raman
and nonequilibrium pump-probe spectroscopies [47–61].

Dynamical properties of quantum coherent states are
characterized by collective excitations. When the symmetry
is broken spontaneously, a condensate possesses collective
modes, e.g., amplitude (Higgs) mode and phase (Goldstone)
mode, associated with fluctuations of an order parameter [62].
Recently, collective natures of materials are investigated by
nonlinear optical spectroscopies. For example, in BCS su-
perconductors, the amplitude (Higgs) mode, which is dark
in linear response regime (in the long-wavelength limit),
is activated by the nonlinear optical drive and the result-
ing resonance emerges in third-harmonic generation (THG)
[63–68]. Actually, the enhancement of the THG intensity at

the resonant frequency has been observed by the terahertz
pump-probe experiments [69–73].

The collective excitations in the EI are also characterized
by the amplitude and phase modes of the order parameter
fluctuations [74–76]. When an EI state is ferroelectric or
breaks the spatial inversion symmetry, these two collective
modes can couple to light linearly [17]. However, most of the
EI candidates are centrosymmetric. The collective modes of
the inversion-symmetric EI are optically inactive in the linear
response regime unless the light couples to the specific dipole
[74–77], so that we expect that the collective properties of the
typical EIs strongly appear in THG, as in the superconductors.
However, while the light-induced nonequilibrium dynamics in
the EI and its candidate materials are actively investigated, the
study of THG in the EI has not so far been well-developed
theoretically.

In this paper, to address this issue, we study THG in an
EI described by a two-band correlated electron model (see
Fig. 1). Employing the time-dependent mean-field theory and
the perturbative expansion with respect to the external electric
field, we derive the THG susceptibility taking into account the
collective order parameter dynamics. We show that the order
parameter in the inversion symmetric EI gets into motion at
second order of the external field and its effects are emergent
in THG. We find three peaks in the THG susceptibility at
energies h̄� = �g/3, �g/2, and �g, where �g is the band
gap in equilibrium. While THG at �g/3 is simply originated
by bare three-photon excitation of the independent particle,
the latter two peaks are attributed to the motion of the order
parameter activated at second order. The collective excitonic
mode in the BCS (semimetallic) regime enhances the THG
intensity resonantly but the effect becomes less significant in
the BEC (semiconducting) regime. From the analysis of the
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FIG. 1. Schematic picture of THG in the excitonic insulator.

nonlinear response function of the excitonic order parameter,
we reveal the origin of the peaks at �g/2, and �g. We also
discuss the temperature dependence of THG and demonstrate
that the resonant peak originated by the collective motion is
observable in the temperature profile of THG.

The rest of this paper is organized as follows. In Sec. II
we introduce the model and time-dependent mean-field theory
for the EI. Then, in Sec. III, we estimate the order parameter
activated in the nonlinear regime and derive the THG suscep-
tibility taking into account the vertex corrections. We show
the calculated THG susceptibility in Sec. IV. Discussions and
summary are given in Sec. V.

II. MODEL

A. Two-band model

As a minimal theoretical model of the EI, we consider
the spinless two-band correlated model (or extended Falicov-
Kimball model) [33–35,78–82]. The Hamiltonian takes the
form

Ĥ = Ĥ0 + Ĥint, (1)

with

Ĥ0 = −
∑
〈i, j〉

∑
α

(tα ĉ†
i,α ĉ j,α + H.c.) +

∑
j,α

�α ĉ†
j,α ĉ j,α, (2)

Ĥint = U
∑

j

ĉ†
j,0ĉ j,0ĉ†

j,1ĉ j,1, (3)

where ĉ j,α (ĉ†
j,α) is the annihilation (creation) operator of an

electron at site j on orbital α (= 0, 1), and 〈i, j〉 indicates
a pair of nearest-neighbor sites. tα , �α , and U are the hop-
ping integral, energy level of the orbital α, and interorbital
repulsive interaction, respectively. Here we focus on the half-
filled case n0 + n1 = 〈ĉ†

j,0ĉ j,0〉 + 〈ĉ†
j,1ĉ j,1〉 = 1 and consider

the model defined on the two-dimensional (2D) square lattice
(d = 2). The free electron part in the momentum (k) space is
given by

Ĥ0 =
∑
k,α

εα (k)ĉ†
k,α

ĉk,α, (4)

εα (k) ≡ −2tα[cos (kxa) + cos (kya)] + �α, (5)

where we use the Fourier transformation ĉ j,α =
1√
N

∑
k eik·R j ĉk,α (N is the number of lattice site), and a

is the lattice constant. We take the particle-hole symmetric

band structure with t0 = −t1 (direct-gap type) and assume
�0 + �1 = −U in order to set the Fermi energy to zero.

The external field A(t ) is introduced by the Peierls substi-
tution [83,84], and we use the time-dependent Hamiltonian
Ĥ (t ) = Ĥ0(t ) + Ĥint, with

Ĥ0(t ) =
∑
k,α

εα (k + h̄−1eA(t ))ĉ†
k,α

ĉk,α, (6)

where e (>0) is the elementary charge and h̄ is the Plank
constant. In this paper we use the monochromatic continuous-
wave A(t ) = A(�)e−i�t + c.c. unless otherwise noted. We
assume that the interorbital dipole coupling d [74–77] is zero
for simplicity because it depends on the parities of the two
orbitals.

B. Mean-field theory

In this paper we employ the time-dependent mean-field
(tdMF) theory [74–76]. We define the mean values of the
diagonal and off-diagonal densities as

nα (t ) = 〈ĉ†
j,α (t )ĉ j,α (t )〉, φ(t ) = 〈ĉ†

j,0(t )ĉ j,1(t )〉, (7)

respectively, where the off-diagonal component φ(t ) corre-
sponds to the order parameter of the EI in our two-band
model. Then, the MF Hamiltonian is given by

Ĥ (t ) −→ ĤMF(t ) =
∑

k

∑
α,α′

hA
αα′ (k, t )ĉ†

k,α
ĉk,α′ , (8)

with

hA(k, t ) = h(k + h̄−1eA(t ), t ), (9)

h(k, t ) =
[
ε0(k) + Un1(t ) −Uφ∗(t )

−Uφ(t ) ε1(k) + Un0(t )

]
, (10)

where hA(k, t ) is the matrix on the basis �̂
†
k = [ĉ†

k,0 ĉ†
k,1].

In the pseudospin representation, the Hamiltonian hA(k, t )
is described by

hA(k, t ) = 1
2 B(k, t ) · σ + 1

2 B0(k, t )σ0, (11)

where σ0 and σa (a = x, y, z) are the identity and Pauli matri-
ces, respectively,

Bx(k, t ) = −2U Re φ(t ), (12)

By(k, t ) = −2U Im φ(t ), (13)

Bz(k, t ) = ε0(k + h̄−1eA(t )) − ε1(k + h̄−1eA(t ))

−U [n0(t ) − n1(t )], (14)

and B0(k, t ) = 0 since we assume t0 = −t1 and �0 +
�1 = −U . Note that B0(k, t ) = ε0(k + h̄−1eA(t )) + ε1(k +
h̄−1eA(t )) + U when t0 	= −t1 and �0 + �1 	= −U at half-
filling. In the pseudospin representation, the MF parameter is
given by

φa(t ) = 1

2N

∑
k

〈�̂†
k (t )σa�̂k(t )〉, (15)

which composes the vector

φ(t ) =
⎡
⎣φx(t )

φy(t )
φz(t )

⎤
⎦ =

⎡
⎣ Re φ(t )

Im φ(t )
[n0(t ) − n1(t )]/2

⎤
⎦. (16)
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Then, the vector B(k, t ) is given by

B(k, t ) = −2Uφ(t ) + 2ξ (k + h̄−1eA(t ))ez, (17)

where we define

ξ (k) ≡ ε0(k) − ε1(k)

2
. (18)

In the tdMF theory, the time-dependent current is determined
by

Jμ(t ) = −e
∑

k

vμ(k + h̄−1eA(t ))〈�̂†
k (t )σz�̂k(t )〉, (19)

where

vμ(k) ≡ 1

h̄

∂ξ (k)

∂kμ

. (20)

Note that, when t0 	= −t1, we need to include the σ0 com-
ponent in the current. When we perform the real-time
simulations, we solve the equation of motion ∂t S(k, t ) =
h̄−1B(k, t ) × S(k, t ) for Sa(k, t ) ≡ 〈�̂†

k (t )σa�̂k(t )〉/2 with
updating the MF parameter φa(t ) simultaneously. In this paper
we expand the nonequilibrium quantities and Green’s func-
tion with respect to the external field A(t ) and estimate the
photocurrent for THG.

In equilibrium [Ba(k) = Ba(k, t = −∞)] we have the
eigenenergy

E±(k) = h̄ω±(k) = ± 1
2 |B(k)| + 1

2 B0(k), (21)

and the MF parameter is determined by

φa = 1

N

∑
k

Ba(k)

2|B(k)| [ f (E+(k)) − f (E−(k))], (22)

where f (E ) is the Fermi distribution function. We solve this
equation self-consistently and determine the MF parameters
in equilibrium. The bare lesser (<) and retarded/advanced
(R/A) Green’s functions are given by

G0,<(k, t ) = i
∑
ν=±

f (Eν (k))bν (k)e−iων (k)t , (23)

G0,R/A(k, t ) = ∓iθ (±t )
∑
ν=±

bν (k)e−iων (k)t , (24)

respectively, where

bν (k) = 1

2

[
σ0 + ν

B(k)

|B(k)| · σ

]
. (25)

In the following we also use the Fourier transformed Green’s
function G0(k, ω) = ∫

dtG0(k, t )eiωt .

III. NONLINEAR RESPONSES

A. Perturbative expansion

Using the nonequilibrium Green’s function G(k, t, t ′) un-
der the applied external field A(t ) (see Appendix A), the MF
parameter and current are given by

φa(t ) = −i
1

2N

∑
k

tr[σaG<(k, t, t )], (26)

Jμ(t ) = ie
∑

k

vμ(k + h̄−1eA(t ))tr[σzG
<(k, t, t )], (27)

respectively. In this section we expand the Green’s function
(and velocity) with respect to the external field A(t ) and de-
rive the order parameter and current induced in the nonlinear
regime.

With respect to A(t ), we expand a quantity X as

X (A) =
∞∑

n=0

X (n)(A) =
∞∑

n=0

1

n!
δnX (A), (28)

where X (n)(A) = δnX (A)/n! = O(An). In this notation,
the nth order variation of the Hamiltonian hA(k, t ) is
given by

δnhA(k, t ) = −Uδnφ(t ) · σ +
( e

h̄

)n ∑
μ1,··· ,μn

ξμ1μ2···μn (k)

× Aμ1 (t )Aμ2 (t ) · · · Aμn (t ) σz, (29)

where

ξμ1···μn (k) ≡ ∂nξ (k)

∂kμ1∂kμ2 · · · ∂kμn

. (30)

We expand the Green’s function G with respect to the de-
viation from equilibrium δnH given by δnhA(k, t ). The details
of the nonequilibrium Green’s function and its expansion are
summarized in Appendix A. Expanding the Green’s function
up to the third order, we have

δG = G0 ∗ δH ∗ G0, (31)

δ2G = 2G0 ∗ δH ∗ G0 ∗ δH ∗ G0 + G0 ∗ δ2H ∗ G0, (32)

δ3G = 6G0 ∗ δH ∗ G0 ∗ δH ∗ G0 ∗ δH ∗ G0

+ 3G0 ∗ δH ∗ G0 ∗ δ2H ∗ G0

+ 3G0 ∗ δ2H ∗ G0 ∗ δH ∗ G0 + G0 ∗ δ3H ∗ G0,

(33)

where X ∗ Y indicates the product including the time-
integration

∫
dt1X ζ ζ1 (t, t1)Y ζ1ζ

′
(t1, t ′) (see details in

Appendix A) [85].
In the following we estimate the MF parameter δ2φa at

second order and then derive the nonlinear current δ3Jμ for
THG involving the collective dynamics of the order parameter
(i.e., vertex correction).

B. Order parameter

First, we derive the order parameter away from equilibrium
by expanding the Green’s function. Because of the symmetry
under inversion, e.g., ξμ(−k) = −ξμ(k), the MF parameters
at odd order [δφ(t ), δ3φ(t ), . . . ] vanish (see Appendix B).
Hence, the lowest order of the activated order parameter is
of the second order;

δ2φa(t ) = −i
1

2N

∑
k

tr[σaδ
2G<(k, t, t )]. (34)

Under the monochromatic field A(t ) = A(�)e−i�t +
A(−�)ei�t , the MF parameter at second order is characterized
by δ2φa(t ) = δ2φa(2�)e−2i�t + δ2φa(−2�)e2i�t + δ2φa(0).
While δ2φa(0) [∝ A(�)A(−�)] can be nonzero, it does not
contribute to THG given by δ3J (3�) [∝ A(�)3]. Here we
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FIG. 2. The diagrammatic representation of Eq. (41). The solid (with arrow), wavy, and dashed lines indicate the bare Green’s function G0,
external field A, and interaction U , respectively.

consider δ2φa(2�) [∝ A(�)2] because THG originated from
the dynamical order parameter (vertex correction) is described

by δ3Jvc(3�) ∝ δ2φa(2�)A(�). Combining Eqs. (32) and
(34), δ2φa(2�) is given by

δ2φa(2�) = −i
1

2N

∑
k

2

h̄2

∫
dω

2π
tr[σaG0(k, ω + 2�)δhA(k,�)G0(k, ω + �)δhA(k,�)G0(k, ω)]<

− i
1

2N

∑
k

1

h̄

∫
dω

2π
tr[σaG0(k, ω + 2�)δ2hA(k, 2�)G0(k, ω)]<, (35)

where [· · · ]< indicates the lesser component following the Langreth’s rule, e.g., [XY ]< = X RY < + X <Y A (see details in
Appendix A). While we can integrate the Green’s functions over ω as summarized in Appendix C, we retain the ω integral
with the Green’s functions for the compact notation. Since δφ(t ) = 0 (see Appendix B), we have

δhA(k,�) = e

h̄

∑
μ1

ξμ1 (k)Aμ1 (�) σz, (36)

but δ2φ(2�) can be nonzero and

δ2hA(k, 2�) = −Uδ2φ(2�) · σ +
( e

h̄

)2 ∑
μ1,μ2

ξμ1μ2 (k)Aμ1 (�)Aμ2 (�) σz. (37)

Equation (35) corresponds to the self-consistent equation of δ2φ(2�) because δ2hA(k, 2�) in the right-hand side of Eq. (35)
includes δ2φ(2�).

Introducing the bare susceptibilities for coupling between the order parameter φ and the external field Aμ(�),

χ0;φξξ
μ1μ2

(2�; �,�) = −i
1

h̄2

1

N

∑
k

∫
dω

2π
tr[σG0(k, ω + 2�)σzG

0(k, ω + �)σzG
0(k, ω)]<ξμ1 (k)ξμ2 (k), (38)

χ0;φξ
μ1μ2

(2�; 2�) = −i
1

2h̄

1

N

∑
k

∫
dω

2π
tr[σG0(k, ω + 2�)σzG

0(k, ω)]<ξμ1μ2 (k), (39)

and the bare φ-φ susceptibility (3 × 3 matrix)

[χ̃0;φφ (2�)]ab = −i
1

2h̄

1

N

∑
k

∫
dω

2π
tr[σaG0(k, ω + 2�)σbG0(k, ω)]<, (40)

the self-consistent Eq. (35) becomes

δ2φ(2�) =
( e

h̄

)2 ∑
μ1,μ2

χ0;φξξ
μ1μ2

(2�; �,�)Aμ1 (�)Aμ2 (�) +
( e

h̄

)2 ∑
μ1,μ2

χ0;φξ
μ1μ2

(2�; 2�)Aμ1 (�)Aμ2 (�) − U χ̃0;φφ (2�)δ2φ(2�).

(41)

This equation may be described by the diagrams in Fig. 2 [63]. Then we obtain the solution

δ2φ(2�) =
( e

h̄

)2 ∑
μ1,μ2

χ0;φξξ
μ1μ2

(2�; �,�)

1 + U χ̃0;φφ (2�)
Aμ1 (�)Aμ2 (�) +

( e

h̄

)2 ∑
μ1,μ2

χ0;φξ
μ1μ2

(2�; 2�)

1 + U χ̃0;φφ (2�)
Aμ1 (�)Aμ2 (�), (42)

indicating that the order parameter is activated at second order
of A when the corrected susceptibility is nonzero. For later
convenience we express the above relation as

δ2φa(2�) =
( e

h̄

)2 ∑
μ1,μ2

�a
μ1μ2

(2�; �,�)Aμ1 (�)Aμ2 (�),

(43)

with

�μ1μ2 (2�; �,�) = χ0;φξξ
μ1μ2

(2�; �,�)

1 + U χ̃0;φφ (2�)
+ χ0;φξ

μ1μ2
(2�; 2�)

1 + U χ̃0;φφ (2�)
.

(44)
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FIG. 3. The diagrams for the third-order photocurrent. The solid (with arrow), wavy, and dashed lines indicate the bare Green’s function
G0, external field A, and interaction U , respectively. The cross indicates the one-photon output.

C. Current

Next, we derive the nonlinear current involving the dynam-
ics of the order parameter. Expanding Jμ(t ) in Eq. (27), the
current at nth order is given by

δnJμ(t )= ie
∑

k

n∑
m=0

(
n

m

)
δn−mvA

μ(k, t )tr[σzδ
mG<(k, t, t )],

(45)

where
(n

m

)
is binomial coefficient and

δnvA
μ(k, t ) = en

h̄n+1

∑
μ1,...,μn

ξμμ1···μn (k)Aμ1 (t ) · · · Aμn (t ). (46)

The linear response δJμ(t ) can be nonzero in the EI
state. However, because δφ(t ) = 0, the linear optical response

does not reflect the dynamical effect of the order parameter.
The second-order response δ2Jμ(t ) vanishes in the inversion
symmetric system because the current has odd parity under
inversion. Hence, in order to see the dynamics of the excitonic
order parameter, we need to evaluate the optical response at
third order.

Combining Eqs. (31)–(33), (45), and (46), we derive the
third-order current δ3Jμ, which is comprised of the contri-
butions diagrammatically described in Fig. 3 [86]. Since the
order parameter δ2φ(t ) is included only in δ2hA(k, t ), the
contributions 2b, 3b, and 3c are affected by the dynamical
order parameter, which leads to the vertex correction terms
(see Fig. 3). Here, as an example, we derive the contribution
from 3b but all the THG susceptibilities are summarized in
Appendix D. vμ(k) and G0∗δH∗G0∗δ2H∗G0 in δ3G gives
δ3Jμ(3�) of 3b,

δ3Jμ(3�)3b = 3i
( e

h̄

) ∑
k

ξμ(k)
1

h̄2

∫
dω

2π
tr[σzG

0(k, ω + 3�)δhA(k,�)G0(k, ω + 2�)δ2hA(k, 2�)G0(k, ω)]<. (47)

Dividing as δ3Jμ(3�) = δ3J0
μ(3�) + δ3Jvc

μ (3�), the bare (0) and vertex correction (vc) terms are given by

δ3J0
μ(3�)3b = 3i

( e

h̄

)4 ∑
μ1,μ2,μ3

∑
k

1

h̄2

∫
dω

2π
tr[σzG

0(k, ω + 3�)σzG
0(k, ω + 2�)σzG

0(k, ω)]<

× ξμ(k)ξμ1 (k)ξμ2μ3 (k)Aμ1 (�)Aμ2 (�)Aμ3 (�), (48)

δ3Jvc
μ (3�)3b = −3iU

( e

h̄

)4 ∑
μ1,μ2,μ3

∑
a

∑
k

1

h̄2

∫
dω

2π
tr[σzG

0(k, ω + 3�)σzG
0(k, ω + 2�)σaG0(k, ω)]<

× ξμ(k)ξμ1 (k)�a
μ2μ3

(2�; �,�)Aμ1 (�)Aμ2 (�)Aμ3 (�), (49)

respectively, where the vertex correction term δ3Jvc
μ (3�) arises from the order parameter δ2φ(2�) in Eq. (43). The THG

susceptibility may be defined as

J (3)
μ (3�) = δ3Jμ(3�)/3!

= Ld
∑

μ1,μ2,μ3

χ (3)
μ;μ1μ2μ3

(3�; �)Aμ1 (�)Aμ2 (�)Aμ3 (�), (50)
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where χ (3)
μ;μ1μ2μ3

(3�; �) = χ (3)
μ;μ1μ2μ3

(3�; �,�,�) and Ld is the volume. Dividing χ (3)
μ;μ1μ2μ3

(3�; �) into χ0;(3)
μ;μ1μ2μ3

(3�; �) and
χvc;(3)

μ;μ1μ2μ3
(3�; �), the bare and vertex correction terms of 3b are given by

χ0;(3,3b)
μ;μ1μ2μ3

(3�; �) = 1

2
i
( e

h̄

)4 1

h̄2

∫
dk

(2π )d

∫
dω

2π
tr[σzG

0(k, ω+3�)σzG
0(k, ω+2�)σzG

0(k, ω)]<ξμ(k)ξμ1 (k)ξμ2μ3 (k), (51)

χvc;(3,3b)
μ;μ1μ2μ3

(3�; �) = −U

2
i
( e

h̄

)4 1

h̄2

∫
dk

(2π )d

∫
dω

2π

∑
a

tr[σzG
0(k, ω+3�)σzG

0(k, ω+2�)σaG0(k, ω)]<

× ξμ(k)ξμ1 (k)�a
μ2μ3

(2�; �,�), (52)

respectively. In the same way, we can derive the other THG
susceptibilities and their formulas are summarized in Ap-
pendix D. Because of the vertex correction χvc;(3)

μ;μ1μ2μ3
(3�; �),

the THG susceptibility can reflect the collective dynamics in
the EI.

IV. THIRD-HARMONIC GENERATION

A. THG susceptibility in the EI

First, we show the THG susceptibility χ (3)
μ;μ1μ2μ3

(3�; �) at
zero temperature. Here we assume that the order parameter
φ is real in the ground state without loss of generality and
the external field is polarized along the x direction. The po-
larization direction of the incident light does not change the
main features of the THG susceptibility in the EI and the
polarization dependence is discussed in Appendix E. Here we
set th as a unit of the energy and plot the THG susceptibility
χ (3)

x;xxx(3�; �) in units of (ea/h̄)4th/ad on the 2D square lattice
(d = 2).

In order to see the change of the THG susceptibility from
the BCS (small-U , semimetallic) regime to the BEC (large-U ,
semiconducting) regime, we plot the data by changing the
Coulomb interaction U . Figure 4(a) shows the U dependence
of the band gap �g and order parameter φ in the ground state.
While �g = 2Uφ in the BCS regime, �g > 2Uφ in the BEC
semiconducting regime [34]. The order parameter vanishes
above the phase boundary U > Uc, where the band gap �g

is larger than the exciton binding energy EB [75]. Figure 4(b)
is one of our main results, where we plot the magnitude
of the THG susceptibility |χ (3)

x;xxx(3�; �)| as a function of
U . χ (3)

x;xxx(3�; �) exhibits three peaks in the EI phase and
their positions correspond to h̄� = �g/3, �g/2, and �g from
the bottom. The THG response is strong in the BCS regime
but it becomes less prominent with approaching the phase
boundary Uc.

Figure 5 shows the THG susceptibility as a function of
h̄�/�g in the BCS and BEC regimes. Here, in order to iden-
tify the contributions from the vertex correction, we plot the
bare susceptibility χ0;(3)

x;xxx(3�; �) in Figs. 5(a)–5(c) and the
vertex corrections χvc;(3,2b)

x;xxx (3�; �) and χvc;(3,3b)
x;xxx (3�; �) +

χvc;(3,3c)
x;xxx (3�; �) in Figs. 5(d)–5(f). All components of the

bare THG susceptibilities and vertex corrections are presented
in Appendix D. As shown in Fig. 5, while the THG sus-
ceptibility at h̄� = �g/3 is mainly composed of the bare
part χ0;(3)

x;xxx(3�; �), the magnitude at h̄� = �g/2 and �g are
modified by the vertex part χvc;(3)

x;xxx (3�; �). This indicates that,
while THG at h̄� = �g/3 is simply caused by bare three-

photon excitation of the independent particle across the band
gap �g, the order-parameter motions strongly contribute to
THG at h̄� = �g/2 and �g.

In the BCS regime, the vertex correction enhances the THG
susceptibility at both h̄� = �g/2 and �g. In particular, the
peak at h̄� = �g is outstanding. As shown in Figs. 5(d) and
5(e), while the vertex correction in 2b (see Fig. 3) is much
smaller than the bare susceptibility, the vertex corrections in

FIG. 4. (a) U dependence of the excitonic order parameter Uφ

and the band gap �g in the ground state. The energy level difference
is D = �0 − �1 = 3.8th and the vertical dashed line indicates the
boundary of the EI phase (Uc). (b) THG susceptibility |χ (3)

x;xxx (3�; �)|
in the plane of U and �. |χ (3)

x;xxx (3�; �)| is plotted in units of
(e/h̄)4a2th and the damping factor η = 0.005th is used.
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FIG. 5. THG susceptibility |χ (3)
x;xxx (3�; �)| at (a) and (d) U = 2th (BCS regime), (b) and (e) U = 3.5th (intermediate regime), and (c) and

(f) U = 4.3th (BEC regime), where the horizontal axis is scaled by the band gap �g. For comparison, the bare susceptibility χ0;(3)
x;xxx (3�; �) is

plotted in the upper panels [(a)–(c)] and the vertex corrections χvc;(3,2b)
x;xxx (3�; �) and χ vc;(3,3b)

x;xxx (3�; �) + χ vc;(3,3c)
x;xxx (3�; �) (see Fig. 3) are plotted

in the lower panels [(d)–(f)]. The vertical dotted lines indicates h̄� = �g/3, �g/2, and �g. Here η = 0.01�g is used while the other parameters
are the same as in Fig. 4.

3b and 3c (see Fig. 3) dominantly enhance THG at h̄� =
�g/2 and bring the significant peak at h̄� = �g. Hence,
we can observe the strong THG response due to the order-
parameter motion, which is emergent in χvc;(3,3b)

x;xxx (3�; �) and
χvc;(3,3c)

x;xxx (3�; �).
In the BEC semiconducting regime, on the other hand,

the peaks at h̄� = �g/2 and �g in the THG susceptibility
become less prominent. As shown in Fig. 5(c), |χ (3)

x;xxx(3�; �)|
at h̄� = �g/2 is suppressed from the value of the bare sus-
ceptibility |χ0;(3)

x;xxx(3�; �)|. The vertex correction in 3b and
3c is much smaller than its value in the BCS regime and
is comparable to the vertex correction in 2b [see Fig. 5(f)].
Since the vertex corrections are weak in the BEC regime,
the resulting THG susceptibility does not show the collective
excitonic nature strongly.

Since the collective order parameter dynamics is important
for THG in the EI, we show �a

μ1μ2
(2�; �,�) in Figs. 6

and 7, which is the response function of the MF parameter
at second order in A(�) [see Eq. (43)]. Because we as-
sume the order parameter φ is real in the ground state, the
a = x and y components indicate the amplitude and phase
oscillations of the order parameter, respectively. The a = z
component �z

μ1μ2
(2�; �,�) is zero when the hopping param-

eters satisfy t0 + t1 = 0 at half-filling. While the a = y (phase)
component is nonzero, the a = x (amplitude) component is
dominant in particular in the BCS regime and here we present
�x

xx(2�; �,�). Figure 6 shows �x
xx(2�; �,�) in the plane of

U and �, where we find two peaks at h̄� = �g/2 and �g.
The response of the amplitude oscillation is strong in the BCS
regime but it becomes weaker with approaching the phase
boundary Uc.

In order to identify the origin of the two-peak structure,
we compare �x

xx(2�; �,�) with the bare response functions
[χ0;φξξ

xx (2�; �,�)]x and [χ0;φξ
xx (2�; 2�)]x in Eqs. (38) and

(39), respectively. As shown in Fig. 7, while the contri-
bution from [χ0;φξ

xx (2�; 2�)]x is minor, [χ0;φξξ
xx (2�; �,�)]x

exhibits the sharp peak at h̄� = �g, which is enhanced by
the many-body correction in �x

xx(2�; �,�). The response at

FIG. 6. Second-order response function for the order parameter
|�x

xx (2�; �,�)| in the plane of U and �. The vertical dashed line
indicates the boundary of the EI phase (Uc). Here |�x

xx (2�; �,�)| is
plotted in units of a2 and the energy level difference D = �0 − �1 =
3.8th and the damping factor η = 0.005th are used.
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FIG. 7. Second-order response function for the order parameter
|�x

xx (2�; �, �)| at U = 3.5th, where the horizontal axis is scaled
by the band gap �g. For comparison, the bare response functions
[χ 0;φξξ

xx (2�; �, �)]x and [χ 0;φξ
xx (2�; 2�)]x are plotted. The vertical

dotted lines indicates h̄� = �g/2, and �g. Here η = 0.01�g is used
while the other parameters are the same as in Fig. 6.

h̄� = �g/2 is not prominent in the bare function, but the
many-body correction [1 + U χ̃φφ]−1 in �x

xx(2�; �,�) gives
rise to the resonant peak at h̄� = �g/2. Therefore, the ori-
gins of the peaks at h̄� = �g/2 and �g are different, where
the response at h̄� = �g/2 is originated by the many-body
correction in �x

xx(2�; �,�) while the response at h̄� = �g is
mainly caused by the bare photon absorption described by the
loop triangle diagram in Fig. 2. Using Eq. (C8) for the loop tri-
angle diagram, we find that [χ0;φξξ

xx (2�; �,�)]x includes the
contribution represented by (2h̄�)−1 ∑

k λ(k)/[h̄� − |B(k)|],
which arises when one of two photon absorptions is resonant.
This contribution gives rise to the prominent peak at h̄� = �g

in Fig. 7.
Since �a

μ1μ2
(2�; �,�) gives the vertex corrections in the

THG susceptibility, two peaks observed in �x
xx(2�; �,�)

bring the resonant enhancement of THG at h̄� = �g/2 and
�g. In the BEC regime, the vertex correction is small as shown
in Fig. 6 and the resulting THG susceptibility does not exhibit
significant peaks in comparison with the BCS-type EI. This
is because the order parameter in the BEC-type EI is deeply
stabilized at the bottom of the energy and is hard to deviate
from its equilibrium value at second order in A(�).

B. Temperature dependence of the THG intensity

In the discussions of the Higgs-mode resonance in su-
perconductors, the temperature profile of the THG intensity
is compared with experimental THG response [64,67,69,72].
Hence, we show the temperature dependence of the THG
intensity for the EI [87]. Here we plot |χ (3)

x;xxx(3�; �)|2 as the
THG intensity ITHG since ITHG ∝ |J (3)

μ (3�)|2.
Figure 8 shows the results at U = 3.5th, where the strong

THG responses are anticipated at h̄� = �g, �g/2, and �g/3
as shown in Fig. 5(b). Actually, the temperature dependent
THG intensity in Fig. 8(b) exhibits three peaks at the tem-
peratures when h̄� = 0.3�g(T =0) crosses �g(T ), �g(T )/2,

FIG. 8. (a) Temperature dependence of the band gap �g(T ) at
U = 3.5th, where the dashed lines indicate �g(T )/2 and �g(T )/3.
The vertical dotted line indicates the temperature at which the
order parameter and h̄� cross. (b) Temperature dependence of
|χ (3)

x;xxx (3�; �)|2. All intensities are normalized to the maximum
value at h̄� = 0.3�g(T = 0). The energy level difference D = �0 −
�1 = 3.8th and the damping factor η = 0.01�g(0) are used.

and �g(T )/3, respectively. Associated with the number of
the crossing points [see Fig. 8(a)], the THG intensities at
h̄� = 0.4�g(0) and 0.9�g(0) show two peaks and one peak,
respectively, and the peak structure vanishes when h̄� >

�g(0). Therefore, when the BCS-like relation �g = 2Uφ is
well satisfied [see Fig. 4(a)], the number of the peaks in
the temperature profile of the THG intensity decreases with
increasing the light frequency �.
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FIG. 9. Same as Fig. 8 but at U = 4.3th (BEC regime).

In the BEC semiconducting regime, on the other hand, the
resonant peaks become less prominent as shown in Fig. 5(c).
Correspondingly, the THG intensity does not exhibit the
strong resonant peak at the temperature when h̄� crosses
�g(T ) (see Fig. 9). While the THG intensity show the peak at
h̄� = �g(T )/2 when h̄� = 0.3�g(0) and 0.4�g(0), the peak
is not so sharp in comparison with THG in the BCS-type EI.

V. DISCUSSION AND SUMMARY

While we studied THG in the purely electronic model,
the low-temperature phases in the actual candidate materi-
als, Ta2NiSe5 and TiSe2, are associated with the structural
phase transitions [88–91]. Here we comment on effects of

electron-phonon couplings briefly. The energy scale of lattice
vibrations is usually much smaller than that of the band gap.
Actually, the phonon frequency h̄ωph ∼ 10–20 meV while the
band gap �g ∼ 200–300 meV in Ta2NiSe5 [53–55,92,93]. In
this condition, the phonon resonances appear at substantially
low energies below the band gap, and the vertex corrections
from phonons may be tiny (or negligible) in the region above
the band gap because of the energy-scale mismatch between
the phonon frequency h̄ωph and the band gap �g [17]. If the
ordered state is purely phonon driven, the THG susceptibility
is expected to be χ (3)(3�; �) ∼ χ0;(3)(3�; �) in the region
above the band gap (3h̄� > �g) and we may not observe the
resonant peaks shown in Figs. 5 and 8. Therefore, the resonant
peaks we find can be a smoking gun for the identification
of the excitonic order. If the THG intensities in experiments
exhibit the temperature profile as shown in Fig. 8, we may
conclude that the ordered state is a BCS-type EI. However, if it
is not observed, there may be two possibilities: (1) An ordered
state is dominantly phonon driven as speculated here or (2) an
ordered state is a BEC-type (strong-coupling) EI as shown in
Fig. 9 since χ (3)(3�; �) ∼ χ0;(3)(3�; �) [see, e.g., Fig. 5(c)].
If we can drive the collective motion more actively by a
strong electric field, we might observe the nonlinear excitonic
collective nature even in the BEC-type EI and distinguish it
from the phonon-driven case. In order to address the above
issue, one needs to make detailed analyses and calculations
of high-harmonic generation in an electron-phonon coupled
model or realistic models for the candidate materials, which
will be important extensions of the present study in the future.

To conclude, we have investigated THG in the EI state
described in the two-band spinless model. We have derived
the THG susceptibility taking into account the vertex cor-
rections and have shown that the order-parameter motion is
activated at second order of the external field and its effects
arise in THG. We have found that the THG susceptibility
exhibit three peaks at h̄� = �g/3, �g/2, and �g. While THG
at �g/3 is simply caused by bare three-photon excitation
of the independent particle across the band gap, the latter
two peaks are attributed to the dynamical order parameter
δ2φ(2�) activated at second order, where the resulting reso-
nant peaks are prominent in the BCS regime but they become
less prominent in the BEC regime. We have identified that
the motion of the order parameter at h̄� = �g is mainly
caused by the bare photon absorption while the mode at �g/2
is originated from the many-body correction. We have also
demonstrated that the resonant peak caused by the collective
motion is observable in the temperature profile of the THG
intensity. Our finding suggests that the THG measurement
is promising for detecting the excitonic collective nature of
materials.
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APPENDIX A: GREEN’S FUNCTION

The nonequilibrium Green’s function is defined as

G(k, t, t ′) =
[

GT (k, t, t ′) G<(k, t, t ′)
G>(k, t, t ′) GT̃ (k, t, t ′)

]
. (A1)

Here each component is a 2 × 2 matrix and

[GT (k, t, t ′)]αβ = −i〈T [ĉk,α (t )ĉ†
k,β

(t ′)]〉, (A2)

[GT̃ (k, t, t ′)]αβ = −i〈T̃ [ĉk,α (t )ĉ†
k,β

(t ′)]〉, (A3)

[G<(k, t, t ′)]αβ = i〈ĉ†
k,β

(t ′)ĉk,α (t )〉, (A4)

[G>(k, t, t ′)]αβ = −i〈ĉk,α (t )ĉ†
k,β

(t ′)〉, (A5)

where T (T̃ ) indicates the time(antitime)-ordered product.
For a general nonequilibrium correlation function [e.g.,

X (t, t ′) = G(k, t, t ′)] defined as

X (t, t ′) =
[

X T (t, t ′) X <(t, t ′)
X >(t, t ′) X T̃ (t, t ′)

]

=
[

X ++(t, t ′) X +−(t, t ′)
X −+(t, t ′) X −−(t, t ′)

]
, (A6)

the retarded/advanced component is given by

X R/A(t, t ′) ≡ X T (t, t ′) − X </>(t, t ′). (A7)

The matrix multiplication between X (t, t ′) and Y (t, t ′) is de-
fined by

(X ∗ Y )ζ ζ ′
(t, t ′) ≡

∑
ζ1=±

ζ1

∫ ∞

−∞
dt1X ζ ζ1 (t, t1)Y ζ1ζ

′
(t1, t ′),

(A8)

where ζ1 = − (+) arises from the contour C−: t1 = ∞ →
t1 = −∞ (C+: t1 = −∞ → t1 = ∞). The lesser compo-
nent of the product X1 ∗ X2 ∗ · · · ∗ Xn follows the Langreth’s
rule

(X1 ∗ X2 ∗ · · · ∗ Xn)<(t, t ′)

=
n∑

i=1

∫ ∞

−∞
dt1 · · · dtn−1X R

1 (t, t1)X R
2 (t1, t2) · · ·

× X <
i (ti−1, ti ) · · · X A

n (tn−1, t ′). (A9)

The nonequilibrium Green’s function satisfies

(G ∗ G−1)(k, t, t ′) = I (t, t ′) ≡
[
σ0 0
0 −σ0

]
δ(t − t ′),

(A10)

where we find

[G−1(k, t, t ′)]ζ ζ = ζ

[
iσ0

∂

∂t
δ(t − t ′) − 1

h̄
hA(k, t )δ(t − t ′)

]

(A11)

and [G−1(k, t, t ′)]+− = [G−1(k, t, t ′)]−+ = 0. Then the de-
viation from equilibrium is given by δnH = −δnG−1. The
variation of G−1 ∗ G = I with respect to A gives rise to the

equations

G0−1 ∗ δG − δH ∗ G0 = 0,

G0−1 ∗ δ2G − 2δH ∗ δG − δ2H ∗ G0 = 0,

...

sequentially. By multiplying G0 from left, we obtain the
Green’s functions

δG = G0 ∗ δH ∗ G0,

δ2G = 2G0 ∗ δH ∗ G0 ∗ δH ∗ G0 + G0 ∗ δ2H ∗ G0,

... .

Combining the above Green’s function and Langreth’s rule,
for example, the lesser component of δG = G0 ∗ δH ∗ G0 is
given by

δG<(k, t, t ′)

= 1

h̄

∫
dt1G0,R(k, t − t1)δhA(k, t1)G0,<(k, t1 − t ′)

+ 1

h̄

∫
dt1G0,<(k, t − t1)δhA(k, t1)G0,A(k, t1 − t ′).

(A12)

In the same way we can derive the Green’s function δnG<

at t = t ′, which is used for the estimation of the time-
dependent quantities δnφ(t ) and δnJμ(t ) [e.g., Eqs. (34) and
(45)]. For A(t ) = A(�)e−i�t + c.c., the Fourier coefficient of
δG<(k, t, t ) is given by

δG<(k,�)

= 1

h̄

∫
dω

2π
G0,R(k, ω + �)δhA(k,�)G0,<(k, ω)

+ 1

h̄

∫
dω

2π
G0,<(k, ω + �)δhA(k,�)G0,A(k, ω).

(A13)

Following the Langreth’s rule, we summarize the terms in the
right-hand side as

δG<(k,�) = 1

h̄

∫
dω

2π
[G0(k, ω+�)δhA(k,�)G0(k, ω)]<.

(A14)

APPENDIX B: MF PARAMETER AT ODD ORDER

Here we show vanishing of the order parameter at the odd
order in the external field. For example, combining Eqs. (26)
and (A14), the order parameter at the first order is given by

δφa(�) = −i
1

2N

∑
k

1

h̄

∫
dω

2π
tr[σaG0(k, ω + �)

× δhA(k,�)G0(k, ω)]<, (B1)

where δhA(k,�) = −Uδφ(�) · σ + (e/h̄)
∑

μ1
ξμ1 (k)Aμ1 (�)

σz. However, because G0(−k, ω) = G0(k, ω) and ξμ(−k) =
−ξμ(k), the term originated from ξμ(k)Aμ(�) is an odd func-
tion for k and vanishes due to the k summation in Eq. (B1).
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Then we find

δφ(�) = −U χ̃0;φφ (�)δφ(�), (B2)

where χ̃0;φφ (�) is the same function with Eq. (40). Since the
solution of this equation is δφ(�) = 0, the order parameter at
the first order vanishes. In the same way, the order parameters
at higher odd orders also vanish.

APPENDIX C: ω INTEGRAL

Here we consider the ω integral in∫
dω

2π
tr[σaG0(k, ω + �1)σbG0(k, ω + �2) · · · ]<. (C1)

Using the bare Green’s functions

G0,<(k, ω) =
∑
ν=±

bν (k)F<
ν (k, ω), (C2)

G0,R/A(k, ω) =
∑
ν=±

bν (k)F R/A
ν (k, ω), (C3)

where

F<
ν (k, ω) ≡ 2π i f (Eν (k))δ[ω − ων (k)], (C4)

F R/A
ν (k, ω) ≡ 1

ω − ων (k) ± i0+ , (C5)

we can divide the integrand into the trace part
tr[σabν1 (k)σbbν2 (k) · · · ] and the ω-integral part∫

dω
2π

[Fν1 (k, ω + �1)Fν2 (k, ω + �2) · · · ]<. For one Green’s
function we have

∫
dω

2π
tr[σaG0(k, ω)]< =

∑
ν1

tr[σabν1 (k)]
∫

dω

2π
F<

ν1
(k, ω)

= i
∑
ν1

tr[σabν1 (k)] f (Eν1 (k)). (C6)

For two Green’s functions we have

∫
dω

2π
tr[σaG0(k, ω + �1)σbG0(k, ω)]< =

∑
ν1,ν2

tr[σabν1 (k)σbbν2 (k)]
∫

dω

2π
[Fν1 (k, ω+�1)Fν2 (k, ω)]<

= − i
∑
ν1,ν2

tr[σabν1 (k)σbbν2 (k)]
f (Eν1 (k)) − f (Eν2 (k))

�+
1 − ων1ν2 (k)

, (C7)

where �+
1 ≡ �1 + i0+ and ωνν ′ (k) ≡ ων (k) − ων ′ (k). For three Green’s functions we have∫

dω

2π
tr[σaG0(k, ω + �1 + �2)σbG0(k, ω + �2)σcG0(k, ω)]<

=
∑

ν1,ν2,ν3

tr[σabν1 (k)σbbν2 (k)σcbν3 (k)]
∫

dω

2π
[Fν1 (k, ω + �1 + �2)Fν2 (k, ω + �2)Fν3 (k, ω)]<

= i
∑

ν1,ν2,ν3

tr[σabν1 (k)σbbν2 (k)σcbν3 (k)]
1

�+
1 + �+

2 − ων1ν3 (k)

[
f (Eν1 (k)) − f (Eν2 (k))

�+
1 − ων1ν2 (k)

− f (Eν2 (k)) − f (Eν3 (k))
�+

2 − ων2ν3 (k)

]
. (C8)

In the same way we can integrate products of n > 3 Green’s
functions with respect to ω. In our actual numerical calcu-
lations we introduce a finite damping factor η by replacing
each frequency h̄� with h̄� + iη [e.g., for �1 = m�, h̄�+

1 →
m(h̄� + iη)], which may correspond to the scheme consider-
ing the adiabatic switching of the external field [86,95,96].

APPENDIX D: THG SUSCEPTIBILITY

Here we summarize the THG susceptibilities correspond-
ing to the diagrams in Fig. 3. The bare THG susceptibilities
are given by

χ0;(3,0)
μ;μ1μ2μ3

(3�; �) = 1

6
i
( e

h̄

)4
∫

dk
(2π )d

∫
dω

2π
tr[σzG

0(k, ω)]<ξμμ1μ2μ3 (k), (D1)

χ0;(3,1)
μ;μ1μ2μ3

(3�; �) = 1

2
i
( e

h̄

)4 1

h̄

∫
dk

(2π )d

∫
dω

2π
tr[σzG

0(k, ω+�)σzG
0(k, ω)]<ξμμ1μ2 (k)ξμ3 (k), (D2)

χ0;(3,2a)
μ;μ1μ2μ3

(3�; �) = i
( e

h̄

)4 1

h̄2

∫
dk

(2π )d

∫
dω

2π
tr[σzG

0(k, ω+2�)σzG
0(k, ω+�)σzG

0(k, ω)]<ξμμ1 (k)ξμ2 (k)ξμ3 (k), (D3)

χ0;(3,2b)
μ;μ1μ2μ3

(3�; �) = 1

2
i
( e

h̄

)4 1

h̄

∫
dk

(2π )d

∫
dω

2π
tr
[
σzG

0(k, ω+2�)σzG
0(k, ω)

]<
ξμμ1 (k)ξμ2μ3 (k), (D4)

χ0;(3,3a)
μ;μ1μ2μ3

(3�; �) = i
( e

h̄

)4 1

h̄3

∫
dk

(2π )d

∫
dω

2π
tr[σzG

0(k, ω+3�)σzG
0(k, ω+2�)σzG

0(k, ω+�)σzG
0(k, ω)]<

× ξμ(k)ξμ1 (k)ξμ2 (k)ξμ3 (k), (D5)
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χ0;(3,3b)
μ;μ1μ2μ3

(3�; �) = 1

2
i
( e

h̄

)4 1

h̄2

∫
dk

(2π )d

∫
dω

2π
tr[σzG

0(k, ω+3�)σzG
0(k, ω+2�)σzG

0(k, ω)]<ξμ(k)ξμ1 (k)ξμ2μ3 (k), (D6)

χ0;(3,3c)
μ;μ1μ2μ3

(3�; �) = 1

2
i
( e

h̄

)4 1

h̄2

∫
dk

(2π )d

∫
dω

2π
tr[σzG

0(k, ω+3�)σzG
0(k, ω+�)σzG

0(k, ω)]<ξμ(k)ξμ1μ2 (k)ξμ3 (k), (D7)

χ0;(3,3d )
μ;μ1μ2μ3

(3�; �) = 1

6
i
( e

h̄

)4 1

h̄

∫
dk

(2π )d

∫
dω

2π
tr[σzG

0(k, ω+3�)σzG
0(k, ω)]<ξμ(k)ξμ1μ2μ3 (k), (D8)

and the vertex correction terms are given by

χvc;(3,2b)
μ;μ1μ2μ3

(3�; �) = −U

2
i
( e

h̄

)4 1

h̄

∫
dk

(2π )d

∫
dω

2π

∑
a

tr[σzG
0(k, ω+2�)σaG0(k, ω)]<ξμμ1 (k)�a

μ2μ3
(2�; �,�), (D9)

χvc;(3,3b)
μ;μ1μ2μ3

(3�; �) = −U

2
i
( e

h̄

)4 1

h̄2

∫
dk

(2π )d

∫
dω

2π

∑
a

tr[σzG
0(k, ω+3�)σzG

0(k, ω+2�)σaG0(k, ω)]<

× ξμ(k)ξμ1 (k)�a
μ2μ3

(2�; �,�), (D10)

χvc;(3,3c)
μ;μ1μ2μ3

(3�; �) = −U

2
i
( e

h̄

)4 1

h̄2

∫
dk

(2π )d

∫
dω

2π

∑
a

tr[σzG
0(k, ω+3�)σaG0(k, ω+�)σzG

0(k, ω)]<

× ξμ(k)�a
μ1μ2

(2�; �,�)ξμ3 (k). (D11)

In Fig. 10 we present all components of the bare THG sus-
ceptibility χ0;(3)

x;xxx(3�; �) and vertex correction χvc;(3)
x;xxx (3�; �).

Among the bare susceptibilities, the component 3a is the
largest and mainly contributes to THG at h̄� = �g/3. Cor-
responding to Fig. 5(e), the vertex correction 3b + 3c is the
largest at h̄� = �g/2 and �g.

APPENDIX E: POLARIZATION DEPENDENCE

Here we show the polarization dependence of the THG
susceptibility. When the external field

A(�) = A(�)(cos θ ex + sin θ ey) = A(�)n̂(θ ) (E1)

FIG. 10. THG susceptibility decomposed into the bare suscep-
tibilities and vertex corrections, where U = 3.5th, D = �0 − �1 =
3.8th, and η = 0.01�g are assumed. The vertical dotted lines indicate
h̄� = �g/3, �g/2, and �g.

is applied, the THG susceptibility parallel to the polarization
direction n̂(θ ) is given by

χ
(3)
‖,θ (3�; �) =

∑
μ,μ1,μ2,μ3

χ (3)
μ;μ1μ2μ3

(3�; �)n(θ )
μ n(θ )

μ1
n(θ )

μ2
n(θ )

μ3
,

(E2)

where θ is the angle with respect to the x axis, and n(θ )
x = cos θ

and n(θ )
y = sin θ .

Figure 11 shows the polarization dependence of the THG
susceptibility |χ (3)

‖,θ (3�; �)|. Even when the incident light is

polarized along the θ = π/4 direction, χ (3)
‖,θ (3�; �) retains the

FIG. 11. THG susceptibility |χ (3)
‖,θ (3�; �)| at θ = 0 and π/4,

where U = 3.5th, D = �0 − �1 = 3.8th, and η = 0.01�g are used.
The vertical dotted lines indicate h̄� = �g/3, �g/2, and �g. Inset:
Polarization dependence of the normalized |χ (3)

‖,θ (3�; �)| at h̄� =
�g/3, �g/2, and �g, where the susceptibilities are normalized to
their values at θ = 0.
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main features of the THG susceptibility observed at θ = 0.
The difference in |χ (3)

‖,θ (3�; �)| at h̄� = �g/3 is less than 4%
and the others are smaller than that (see the inset of Fig. 11).

In particular, |χ (3)
‖,θ (3�; �)| at h̄� = �g is almost flat with

respect to θ . Therefore, the polarization dependence of THG
is small in the EI.
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