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Random iron-nickel alloys: From first principles to dynamic spin fluctuation theory
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We provide a systematic analysis of finite-temperature magnetic properties of random alloys Fe,Ni,_, with
the face-centered-cubic structure over a broad concentration range x. By means of the spin-polarized relativistic
Korringa-Kohn-Rostoker method we calculate the electronic structure of disordered iron-nickel alloys and
discuss how a composition change affects magnetic moments of Fe and Ni and the density of states. We
investigate how the Curie temperature depends on Fe concentration using conventional approaches, such as
mean-field approximation or Monte Carlo simulations, and dynamic spin-fluctuation theory. Being devised to
account for spin fluctuations explicitly, the latter method shows the best fit to experimental results.
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I. INTRODUCTION

Transition metal binaries have seen a surge of interest for
many decades due to their unique magnetic characteristics
and disordered iron-nickel alloys are a typical example. In
practice, varying elemental composition serves as a means to
tune their magnetic properties and crystalline structure [1-5].
Among the most remarkable effects which iron-nickel alloys
are known to exhibit is the Invar effect that is manifested
in the lack of thermal expansion over a wide temperature
range [6—13]. Also noteworthy is a sharp drop of saturation
magnetization for Invar composition range [4,14—16]. Equally
noticeable is the studying of permalloy demonstrating very
high magnetic permeability and relatively small magnetocrys-
talline anisotropy and magnetostriction [17-24]. All these
factors stimulated the efforts in detailing the physical mecha-
nisms underlying Fe-Ni alloys.

From a theoretical viewpoint, a standard approach for
studying disordered systems relies on the Korringa-Kohn-
Rostoker method within the coherent potential approximation
(KKR-CPA) based on density functional theory in its local-
spin density approximation (LSDA) [25-30]. The CPA was
subsequently generalized to account for short-range effects—
the nonlocal coherent-potential approximation (NL-CPA)
[31]. For random alloys without short-range order, the lat-
ter yields the results close to the ones obtained within
standard CPA [32] (see a detailed review on NL-CPA in
Ref. [33]). To address a delicate interplay between many-
body effects and disorder, various schemes have been further
combined, including LSDA + U [34] and LSDA with dy-
namical mean-field theory (DMFT) [35-39]. It should be
noted that it is also possible to examine the random substitu-
tional alloy within a fully polymorphous supercell description
[40,41].

Despite the significant progress in developing various
numerical tools that allow one to describe magnetic prop-
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erties of alloys at finite temperatures, a reliable estimate of
the Curie temperature in these compounds still remains a
challenging problem. Most commonly, one adopts various
modifications of mean-field approximation (MFA) and Monte
Carlo simulations, where the structure features are introduced
via magnetic exchange parameters of a classical Heisenberg
model, as evaluated from first principles neglecting the fluctu-
ation contributions [42-47]. However, a proper treatment of
thermodynamic properties of a given compound should in-
evitably take into account many-body effects originating from
both local and long-wave spin fluctuations. Note that the effect
of finite temperature on magnetic fluctuations was discussed
in the framework of the disordered local moment (DLM)
method [48-50], giving relatively good agreement with ex-
perimentally accessible quantities [51,52]. In particular, the
importance of longitudinal spin fluctuations in describing
high temperature properties of selected iron- and nickel-based
systems within developed spin-fluctuation models had been
recently emphasized in Refs. [53—64]. This led thereafter to
the idea of accounting for combined contribution from the
spin fluctuations and thermal lattice vibrations on the basis
of the alloy analogy model [65].

In this paper, we aim to complement previous findings
by investigating magnetic properties of Fe,Ni;_, random al-
loys in dependence on specific iron concentration x, and by
taking account of on-site and nonlocal interactions. On first-
principles ground, we report on the concentration dependence
of disordered Fe,Ni,_, in face-centered structure, limiting our
consideration to 0.1 < x < 0.6. In iron-nickel alloys contain-
ing about 40% of Ni, instability of the magnetic moment with
respect to a volume change develops towards a martensitic
transition that brings the system to the body-centered-cubic
structure [4,14]. We evaluate the element-resolved and aver-
age spin magnetic moments of Fe,Ni;_, binary alloys along
with material spin-resolved densities of states. These results
are further used to benchmark a variety of numerical meth-
ods, including MFA, Monte Carlo simulations, and dynamic
spin-fluctuation theory (DSFT), against experimental mea-
surements of the Curie temperature. As opposed to other
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TABLE 1. Composition dependence of the Fermi energy Er and the element-resolved m™™ and total m, spin magnetic moments in
Fe,Ni,_, alloys calculated using the KKR-CPA formalism with the lattice parameter a as provided in Ref. [4] as well as the experimentally

. . t
available averaged magnetic moments m; '

moments are in Bohr magneton units

. All the lattice parameters are given in A and the energies are in eV, whereas all the magnetic

x a Er mNt mre my mg™

0.1 3.536 9.485 0.67 2.63 0.86 0.81 [91]

0.2 3.548 9.501 0.67 2.61 1.05 1.06 [1], 1.03 [91]
0.3 3.559 9.414 0.68 2.59 1.25 1.26 [91]

0.4 3.574 9.493 0.70 2.58 1.45 1.50 [1,91]
0.5 3.587 9.487 0.70 2.55 1.62 1.69 [1], 1.65 [91]
0.6 3.596 9.512 0.69 2.51 1.78 1.80[1], 1.78 [91]

methods, DSFT correctly reproduces the dependence of the
Curie temperature upon increasing x.

II. COMPUTATIONAL DETAILS

The numerical calculations are carried out for random
alloys of Fe,Ni;_, with face-centered-cubic structure corre-
sponding to the Fm3m space group with the lattice parameter
a increasing as a function of the alloy composition x [1,4].
The experimental alloy lattice constants utilized throughout
the paper are listed in Table 1.

We address the electronic structure of random binaries
within the spin-polarized relativistic Korringa-Kohn-Rostoker
Green’s function formalism as implemented in the Munich
SPR-KKR package [66,67], where the effect of substitutional
disorder is taken into account by using CPA. The presented
results are obtained in the spin-polarized scalar-relativistic
mode, where the atom magnetization is oriented along the z-
crystallographic axis. To achieve self-convergence, we apply
the BROYDEN?2 algorithm [68,69] and Vosko-Wilk-Nusair
parametrization for the exchange-correlation potential [70].
For transition metals, the angular momentum of the Green’s
function cutoff /,,x =2 is considered generally sufficient;
however, to validate the electronic structure that is subse-
quently utilized as an input in DSFT calculations we assess
the influence of increased cutoff value on electronic prop-
erties of the alloy by employing a cutoff up to /., =3
for each atom [65,71,72]. During the self-consistent poten-
tial study, we utilize 22 x 22 x 22 k-point mesh, while the
subsequent calculations of the density of states (DOS), mag-
netic moments, and Heisenberg exchange coupling strength
are performed with 57 x 57 x 57 mesh. The Liechtenstein-
Katsnelson- Antropov-Gubanov formalism [43] is adapted for
estimating the exchange coupling parameter by employing
a cluster with tripled lattice constant radius. Knowing the
exchange coupling parameters of the system as evaluated by
mapping the system onto the classical Heisenberg Hamil-
tonian, one can rather straightforwardly calculate the Curie
temperature by means of MFA [73-78]. Note, however, that
this simplified approach totally neglects fluctuations.

To evaluate the Curie temperature of a specific alloy be-
yond MFA, we also conduct the Monte Carlo simulations of
the net magnetization as a function of temperature using the
VAMPIRE atomistic spin dynamic program [47,79], where the
Curie temperature is extracted from the Curie-Bloch equation
in the classical limit [80]. The system is emulated by a cube

with side length 10 nm and periodic boundary conditions,
provided that some fraction of host atoms Ni are replaced
by alloy atoms Fe. Similar to MFA calculations, the unit cell
parameters are adjusted to experimental values (Table I). For
each temperature, we perform the spin thermalization of the
system using 5000 Monte Carlo steps and subsequently mea-
sure its thermal equilibrium magnetization by averaging of the
following 5000 steps. In our simulations, we emulate the clas-
sical Heisenberg model with exchange interaction between
atoms up to the third coordination shell extracted from ab
initio results, and no magnetocrystalline anisotropy is present.

Both MFA and Monte Carlo simulations do not respect the
transverse and longitudinal spin fluctuations that are of practi-
cal importance for the correct description of magnetism in Fe
and Ni [58,59]. In Ref. [59], the longitudinal spin fluctuations
(LSF) are included at the level of spin dynamics simulations,
revealing a better estimate of the Curie temperature for Fe.
The role of LSF is even more pronounced for Ni as demon-
strated in Ref. [58], where Monte Carlo simulations with the
effective classical Hamiltonian incorporate spin fluctuations.
The account of LSF results in a better agreement between
the predicted Curie temperature for Ni and the experimental
results in comparison to rigid spin calculations, such as MFA.
However, the methodology developed in Refs. [58,59] has its
own limitations stemming from a disregard of the quantum
character of spin fluctuations. For instance, the calculated
magnetization vs temperature curve in the spin dynamics sim-
ulations with LSF [59] clearly manifests that the reasonable
agreement of the Curie temperature is achieved by a too fast
decrease of magnetization at low temperatures.

In this paper, we examine iron-nickel alloys in the frame-
work of spin-fluctuation theory [81] that takes into account
the quantum character of spin fluctuations using the DSFT ap-
proach. The detailed description of DSFT formalism is given
in Ref. [64], and here we only briefly outline its key points.
The starting point of the DSFT is the multiband Hubbard
model with on-site repulsion between localized d electrons.
The pair interaction between electrons is replaced by the in-
teraction of each electron with the fluctuating field by means
of the Hubbard-Stratonovich transformation. Following that,
the magnetic properties of the system are evaluated within the
functional integral method by averaging over all possible con-
figurations of the field. For each temperature, the probability
density of this fluctuating field is calculated self-consistently
in the Gaussian approximation. The initial data for the DSFT
calculations are the averaged spin magnetic moment of the
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system myg at zero temperature and the nonmagnetic DOS
obtained from first principles.

We construct the nonmagnetic DOS of the Fe,Ni;_, alloy
from the spin-resolved DOS using the method elaborated in
Ref. [82]. First, we distinguish only the d band contribution to
the spin-resolved DOS of Fe and Ni sites (vge’Ni) and calculate
the total DOS as

VOUE) = xv}*(E) + (1 — )y (E),

where the subscript o stands for the spin degree of freedom.
Next, we shift the spin-resolved DOSs to each other by V) and
sum them,

V(E) = vP(E — Vo) + v (E 4+ V).

The energy shift Vy and nonmagnetic Fermi level Ef are found
from the system of two nonlinear equations,

ny—n, =0, ny+n, —n=0. (1)

Here, the first equation describes the condition of zero mag-
netization and the second one ensures that the number of
electrons is conserved. In Egs. (1),

Er
o :f VYUE — o V) dE
0

is the number of electrons with spin projection o per atom
and 7. is the total number of electrons per atom. Note that the
constructed nonmagnetic DOS is introduced for the problem
simplification, meaning that the Fe and Ni atoms are re-
placed by “effective medium” atoms with an average d band.
However, as pointed out in Refs. [64,82], it should not be
crucial because of the integral dependence of the DSFT equa-
tions on the electronic energy structure. Finally, the obtained
DOS is normalized to 10 (the number of d states per atom)
and slightly smoothed by a convolution with the Lorentzian
function with the half width I' = 0.001W, where W is the
bandwidth equal to 10.74 eV for all alloy compositions x in
our calculations.

In the DSFT, the temperature dependence of magnetic
characteristics is calculated by the numerical continuation
method [83]. At each temperature, one needs to solve the set
of nonlinear equations that consists of four equations with
respect to scalar variables: The chemical potential ¢, mean
field V7, transverse ¢*, and longitudinal ¢* single-site spin
fluctuations, and two equations with respect to complex func-
tions: The coherent potential and single-site Green’s function.
We performed these calculations using the MAGPROP program
suite [84]. Note that results presented below are carried out in
the renormalized Gaussian approximation of the DSFT that
allows one to get a better agreement with experiment and
eliminate any possible hysteresis behavior in the temperature
dependence calculated in the Gaussian approximation (for
details and application to the Invar alloy Feg¢sNigss, see
Refs. [85,86]).

III. ELECTRONIC PROPERTIES

To investigate the finite-temperature properties of Fe-Ni
alloys, we first examine their electronic structure depending
on the alloy composition. The Fermi energy given relative
to the muffin-tin zero Er and spin magnetic moments of Fe

DOS (states/atom/eV)
(=]

4 -6 4 2 0 2 4
E—EF(CV)

FIG. 1. Spin-resolved density of states of Fe (red dashed lines)
and Ni (green solid lines) sites in Fe,Ni;_, alloy calculated within
the scalar-relativistic KKR-CPA scheme. The top half of each panel
refers to the contribution from majority spin (spin up) and the bottom
half to minority spin (spin down). The vertical gray line marks the
zero energy positioned at the Fermi level, Er.

and Ni atoms, m™ N as well as the averaged moment of the

system myg as computed by virtue of the KKR-CPA approach
are depicted in Table I. One can clearly notice that the spin
magnetic moment of Fe decreases with x, whereas that of Ni
is almost independent of alloy composition. As a result, the
averaged spin magnetic moment calculated as a combination
of atomic magnetic moments per unit cell increases linearly
with x. Our numerical findings on magnetic moments are
in reasonable agreement with previously reported theoretical
[87-90] and experimental [1,91] data also shown in Table 1.
In Fig. 1, we present the calculated spin-resolved DOS
curves for different alloy composition. As one can notice
from Table I, the position of the Fermi energy remains almost
unchanged with the increase of Fe concentration. A close
inspection of the majority spin (spin up) DOS of Fe and Ni
reveal almost no response to the composition change, meaning
that they remain unperturbed under constituent variation. In
contrast, the maximum attributed to minority spin (spin down)
DOS of Fe decreases and shifts to the higher energy level with
x. Note that the calculated density of states is almost the same
as the material spin-resolved DOS found at minimal sufficient
angular momentum cutoff value (/,x = 2). The calculated
spin-polarized densities are utilized for constructing the non-
magnetic DOS v(E) of Fe,Ni;_, that is used as initial data
for the DSFT calculations. Following the discussed routine,
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FIG. 2. Nonmagnetic DOS v(E) of the d band of Fe,Ni,_, for
x = 0.3 (a) and 0.6 (b), respectively. The energy E is measured in
the units of the bandwidth W = 10.74 eV and the vertical line is
positioned at the Fermi level. The magnetization m*/my, transverse
¢*, and longitudinal ¢* spin fluctuations normalized by the squared
mean exchange field V2 at T = 0 of Fe,Ni,_, forx = 0.3 (¢) and 0.6
(d), respectively, in the renormalized Gaussian approximation of the
DSFT.

we compute v(E) for each alloy composition and present the
nonmagnetic DOS for the case x = 0.3 and 0.6 at Figs. 2(a)
and 2(b).

We provide the exchange coupling strength depending on
alloy composition in Table II. In 0.1 < x < 0.4 concentration
range, the increase of iron leads to a significant increase of
Fe-Fe interaction that subsequently decreases for x > 0.4.
One can expect that this enhancement at around 30-40% of
iron concentration might lead to the rise of the Curie temper-
ature and will be discussed in the following. The exchange
coupling strength between nickel atoms is about one order of
magnitude smaller than that between iron atoms, while the
interspecies exchange between nickel and iron continuously
decreases with Fe excess favoring ferromagnetic ordering.

IV. CURIE TEMPERATURE

According to experimental results, the Curie tempera-
ture of disordered Fe,Ni;_, alloys exhibits a nonmonotonous

900 ]
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FIG. 3. Curie temperature 7 of random Fe,Ni,_, alloys calcu-
lated using MFA (red diamonds), Monte Carlo simulations (green
squares), and DSFT (blue triangles) as a function of alloy composi-
tion. The experimental values [1,92] are marked by black circles.

behavior upon the increase of iron concentration with reach-
ing maximum value at x >~ 0.3 [1,92]. The Curie temperatures
of random binaries obtained by MFA, Monte Carlo, and DSFT
methods are shown in Fig. 3. Clearly, all the methods tend
to underestimate the Curie temperature as compared to the
experimental data. However, it is interesting to note that
the use of MFA and Monte Carlo results in the Curie tem-
perature reaching its maximum at x ~ 0.5, which leads to
the conclusion of insufficiency of these methods for quali-
tative description of alloy magnetic properties. Particularly,
the correct behavior cannot be captured in the Monte Carlo
framework, despite the maximum of Fe-Fe exchange cou-
pling strength at about 30-40% of iron concentration (see
Table II) included into the system magnetization simulations.
For specific alloy compositions, to get the temperature close
to experimental value using Monte Carlo simulations, the
exchange parameter should be sufficiently increased [80,93].

Progressing from MFA and Monte Carlo simulations to the
DSFT, we notice that the latter keeps track of the tempera-
ture trend revealing the importance of both longitudinal and
transverse spin fluctuations for describing magnetic properties
at high temperatures. To check their impact with respect to
the temperature, at Figs. 2(c) and 2(d) we show the basic
magnetic characteristics of Fe,Ni;_, calculated for x = 0.3
and 0.6. Notice that for small iron concentration (x = 0.3) the
longitudinal spin fluctuations {* dominate over the transverse
ones ¢*, while the situation is opposite when x = 0.6, which

TABLE II. Dependence of the exchange coupling strength for the 1st, 2nd, and 3rd coordination shell in random alloys of Fe,Ni;_, given

in meV as varied with alloy composition.

JNi—Ni JNi—Fe JFe—Fe

X 1st 2nd 3rd 1st 2nd 3rd st 2nd 3rd

0.1 2.70 —0.12 0.37 9.72 1.03 1.49 8.95 6.63 1.36
0.2 2.44 —0.20 0.35 9.46 0.93 1.35 9.91 7.16 1.11
0.3 2.29 —-0.23 0.35 9.29 0.93 1.22 10.84 7.20 0.83
04 2.24 —0.23 0.35 9.16 0.89 1.09 11.16 6.94 0.44
0.5 2.16 —0.22 0.36 8.78 0.84 0.93 10.43 6.67 —0.20
0.6 2.09 —-0.23 0.36 8.28 0.77 0.73 8.99 6.88 —1.23
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is in line with the previous analysis of pure Fe and Ni system:s,
as well as the Invar alloy [64,82,85].

For selected iron concentrations, the Curie temperature of
Fe,Ni;_, alloys has been also estimated using Monte Carlo
simulations with the effective Heisenberg Hamiltonian in-
cluding LSF as reported in Refs. [62,63]. For permalloy,
ie., x = 0.2, T varies from 482 K to 572 K depending on
the utilized approach [63], whereas for x = 0.3 and 0.5, the
reported Tc values are 800 K and 650 K [62], respectively.
However, the systematic calculation of 7¢ as a function of x
in these simulations is absent. The systematic study of the T¢
dependence on x for Fe,Ni;_, alloys has been addressed in
Ref. [92]. The best agreement has been obtained by means of
the renormalized random phase approximation (rRPA), where
the random alloys are treated as crystals with the effective
exchange interactions [94]. In comparison to the DSFT, the
obtained rRPA results demonstrate better quantitative agree-
ment, but it does not catch the qualitative trend of 7¢ properly
similar to our results found using MFA and MC. Indeed,
the rRPA gives the monotonous increase of T¢ up to 864 K
at x >~ 0.5 in contrast to maximum 7¢ = 880 K at x >~ 0.3
observed in experiments. For x > 0.5, the rRPA overestimates
the Curie temperature. This is attributed to the fact that the
rRPA does not respect spin fluctuations.

V. CONCLUSIONS

In summary, we have systematically investigated the elec-
tronic and magnetic properties of disordered Fe,Ni;_, alloys
in the concentration range from x = 0.1 to 0.6 of iron us-
ing the results of first-principles calculations. Within the

KKR-CPA approach, we have calculated the element-resolved
and averaged magnetic moments of selected alloy composi-
tions and found their agreement with experimental values.
We have noticed the strong impact of iron concentration on
spin-resolved density of states of specific alloys and exchange
coupling strength. Applying the DSFT, we have estimated
the Curie temperature of random iron-nickel binaries as var-
ied upon increasing iron concentration. We benchmark the
DSFT results against the available experimental data on the
Curie temperature: As opposed to MFA and Monte Carlo
simulations, the DSFT demonstrates good agreement and
unambiguously reveals the leading role of spin fluctuations.
Moreover, comparing our results to the previous systematic
calculations of the Curie temperature by the rRPA, we show
that the DSFT improves the rRPA results by correctly repro-
ducing the qualitative behavior of T¢ upon iron concentration
increase.
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