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In inhomogeneous dielectric media the divergence of the electromagnetic stress is related to the gradients of
ε and μ, which is a consequence of Maxwell’s equations. Investigating spherically symmetric media we show
that this seemingly universal relationship is violated for electromagnetic vacuum forces such as the generalized
van der Waals and Casimir forces. The stress needs to acquire an additional anomalous pressure. The anomaly
is a result of renormalization, the need to subtract infinities in the stress for getting a finite, physical force. The
anomalous pressure appears in the stress in media like dark energy appears in the energy-momentum tensor in
general relativity. We propose and analyze an experiment to probe the van der Waals anomaly with ultracold
atoms. The experiment may not only test an unusual phenomenon of quantum forces but also an analog of dark
energy, shedding light where nothing is known empirically.
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I. INTRODUCTION

Van der Waals forces [1–3] dominate the microcosm of
the nanoworld: They cause electrically neutral atoms and
molecules to interact with each other on submicron scales.
The force is generated by vacuum fluctuations that electrically
polarize these particles. Other vacuum forces [4] such as the
Casimir force [5] we can understand [6] as the net effect
of van der Waals interactions between the constituents of
dielectric media (taking retardation into account [7]). There
they cause stresses in the material described by the electric
and the magnetic components σE and σM of Abraham’s stress
tensor [8,9]. Differences in these stresses create forces.

Van der Waals and Casimir forces in dielectric media
need to be renomalized, for otherwise their energy and stress
were infinite. The renormalization is local: It depends on the
electric permittivity ε and the magnetic permeability μ as
functions of space r. We know this from piecewise homo-
geneos materials [1] where the renomalizer depends on the
ε and μ of each piece. For sandwiches of several materials,
the renormalization procedure [1] does not only give finite
results, but its quantitative predictions [1] have agreed with
high-precision measurements [10–12]. There is thus empirical
evidence for the locality of renormalization.

The question is How local is renormalization? This ques-
tion arises in inhomogeneous media [13] where ε(r) and μ(r)
vary gradually. Suppose we would approximate a given inho-
mogeneous medium with a sequence of homogeneous pieces,
making each piece finer and finer. The renormalized stress on
each piece is always finite, but the limit is not: The sequence
of stresses diverges [14]. From this follows that if macroscopic
electromagnetism can account for vacuum forces in media
at all, then the renormalizer must also depend on derivatives
of ε(r) and μ(r). It should be still sufficiently local, and it
cannot depend on all derivatives of ε and μ, for otherwise the
difference between the bare stress and the renormalizer would

vanish, and the stress would get lost in renormalization. So
how local is renormalization?

We know from planar inhomogeneous media [15] (where
ε and μ vary in one direction) that the renormalizing Green
function must depend on the derivatives of ε and μ up to
second order; it is not enough to take the gradients of ε

and μ into account. Furthermore, second-order locality is not
only necessary but also sufficient for getting finite stresses,
provided ε and μ depend on frequency and tend to unity
sufficiently fast for large frequencies [15]—as is the case for
real materials [16]. Experimental tests of the results of this
second-order renormalization procedure have been proposed
[17] but not yet carried out.

In this paper, we take the next step and study spherically
symmetric media. Like in the planar case [15], the symmetry
preserves the polarizations of the electromagnetic field that
would normally get mixed in inhomogeneous media, which
considerably simplifies the problem. Spherically piecewise
homogeneous media introduce problems of their own [18–26]
but here we avoid them by taking ε(r) and μ(r) as gradually
varying with radius r.

In our paper we use Lifshitz theory [1,27–29] to cal-
culate vacuum forces. This is the theory that agrees best
with experiments on the Casimir force [6,12]. Lifshitz the-
ory uses the fluctuation-dissipation theorem [29] to relate the
quantum stress of the vacuum to classical electromagnetic
Green functions. The renormalization is carried out by sub-
tracting from the total Green function the outgoing part such
that only the scattered part remains. The physical picture
behind this renormalization procedure is the idea that van
der Waals or Casimir forces [1] are caused by the scattering
of virtual electromagnetic waves at the boundaries or inho-
mogeneities of media. The outgoing Green function depends
on the local dielectric environment, on ε(r) and μ(r), and so
renormalization is local.
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Like in the planar case [15], we postulate second-order
locality for the renormalizing Green function. However, we
find that we need to subtract not only the zeroth-order Green
function D0 but also the first-order D1 to get a finite vacuum
stress. The Green function D0 describes a purely outgoing
wave, whereas D1 captures the first scattering at inhomo-
geneities around the point of emission. As renormalization is
local, the choice of the renormalizing Green function must
not depend on the global symmetry of the material—whether
it is planar or spherically symmetric must not matter there.
We thus conclude that one should always subtract both the
outgoing wave and first-order scattering in renormalization.

It is not entirely clear what the meaning of this modi-
fied renormalization is. Subtracting the outgoing wave has
a definite physical meaning: What is left are the scattered
virtual electromagnetic waves, and those are the ones causing
vacuum forces. But what is the meaning of the first-order
scattering we need to subtract as well? Maybe the best de-
scription for renormalization is this: In the context of van der
Waals and Casimir forces, renormalization is the removal of
the near field. Each infinitesimal cell of the medium acts like
an emitter and a receiver of virtual electromagnetic waves,
but the receiver should not interact with the near field of the
emitter. In our procedure we identify and subtract this field.

In adopting this renormalization procedure, we deduce a
remarkable feature of generalized van der Waals forces in
inhomogeneous media: We find that the electric and magnetic
stresses σE and σM should be replaced as

σF → σF + p

2
1, (1)

with the additional pressure p given by Eqs. (30) and (35)
for spherically symmetric media. This phenomenon we call
van der Waals anomaly, because it corresponds to the trace
anomaly of conformally invariant fields in curved space-time
[30] where the energy-momentum tensor T α

β gets replaced by

T α
β → T α

β + ε�δα
β . (2)

The energy-momentum contribution ε�δα
β has exactly the

form of the cosmological constant [31,32] written on the
right-hand side of Einstein’s field equations [33], but it is
not necessarily constant. Such a contribution to T α

β is called
dark energy [34]. Following other analogs of cosmology
in condensed-matter physics [35–41], the van der Waals
anomaly thus establishes an analog of dark energy.

A problem of our modified renormalization procedure is
the fact that first scattering, described by D1 in Eq. (29),
is only defined in the asymptotic expansion of the Green
function for large frequencies. This expansion captures the
infinities of the stress, because those appear in the high-
frequency limit, but it does not necessarily describe correctly
the finite part of the stress. However, the central quantity of
this paper, the anomalous pressure p, we calculate to lead-
ing order in frequency. Corrections to p will be practically
negligible.

What exactly is the quantity we calculate? As renormal-
ization is local, it may affect identities for the electromagnetic
field one would normally take for granted, as they follow from

Maxwell’s equations, such as

∇ · (σE + σM ) = ∇ε

ε
tr σE + ∇μ

μ
tr σM (3)

for the electric and magnetic components of Abrahams’s
stress tensor with

σE = E ⊗ D − E · D
2

1, σM = B ⊗ H − B · H
2

1, (4)

where in isotropic dielectric media and in SI units:

D = ε0εE, B = μ0μH, ε0μ0 = c−2. (5)

The Abraham identity of Eq. (3) relates the divergence of the
stress to gradients in ε and μ. In our paper we show that
the electromagnetic stresses need to be replaced according to
Eq. (1) for the identity to hold. This is the phenomenon we
call van der Waals anomaly. The additional pressure p in the
stress we call the anomalous pressure.

The anomaly is a direct consequence of the locality of
our near-field renormalization that takes first scattering into
account. In particular, it is the result of the violation of
reciprocity by renormalization [30], as follows. Since the
renormalizing Green function depends on the local dielectric
environment, the emitted and the received Green functions
will be different, violating reciprocity. The exchange of virtual
electromagnetic waves creates the van der Waals and Casimir
forces [1,2], and so [42] the recoil imbalance causes a mo-
mentum imbalance: the pressure p. This anomalous pressure
depends only on local dielectric properties, and we have found
explicit expressions, Eqs. (30) and (35), for the planar and the
spherical case.

Our analysis indicates that the dilute limit of vacuum forces
(the limit of vanishing density) is dominated by local dielec-
tric quantities. This is because the van der Waals anomaly
dominates the dilute limit. We see this as follows: Equation
(3) with replacement (1) implies that ∇ · (σE + σM ) + ∇p
vanishes quadratically in density, because ∇ε and ∇μ go at
least linearly with density and the renormalized stresses are
also at least linear in density. Now p depends on the local
values of ε and μ and their derivatives up to second order,
which implies that p is linear in density. We thus conclude that
∇ · (σE + σM ) ∼ −∇p in the dilute limit and that the vacuum
forces are local. From this also follows that ∇ · (σE + σM ) is
linear in density in the dilute limit [25], in contrast to what has
been widely believed [26] without questioning.

The dilute limit opens up the possibility of experimental
tests of the van der Waals anomaly with ultracold atoms
[43]. In our paper we outline the basic ideas for such tests
and estimate the required measurement precision. Note that
such experiments would not only probe the anomaly but also
additional assumptions we need to make: We assume that the
anomaly gives the electric and the magnetic stress directly
and equally, and we assume that the dielectric force is the
Helmholtz force [16] even for vacuum fluctuations. Our esti-
mation indicates that these measurements are within the range
of current experiments.

Such experiments may test more than just a curious phe-
nomenon in Casimir physics, as the van der Waals anomaly
is an analog of dark energy in condensed-matter physics.
While dark energy amounts to the most abundant form of
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mass (70%) in the universe [44], its theoretical understanding
has been riddled with problems [31]. Testing an analog of
dark energy in the laboratory may give some much-needed
empirical guidance to elucidate the matter.

How exactly is the van der Waals anomaly in dielectric
media related to the trace anomaly [30] in space-time? Dielec-
tric media appear to electromagnetic fields like curved spaces
[45–48]. In the case of impedance-matched media,

ε = μ = n, (6)

with refractive index n the effective geometry is exact, with
line element

ds2 = n2dr2 (7)

and, consequently [33], spatial metric tensor gi j = n21, its
inverse gi j = n−21 and determinant g = n6. For impedance
matching, the electric and magnetic vacuum stresses are the
same, σE = σM , and the total stress is a tensor density [33]:
σ = σE + σM = √

gτ with τ being a symmetric tensor τ i
j . We

obtain for the covariant divergence of a symmetric tensor [33]:

τ i
j;i = 1√

g
∂i

√
gτ i

j − 1

2
(∂ jgik )τ ik, (8)

= 1

n3

(
∇ · σ − ∇n

n
tr σ

)
, (9)

which gives Eq. (3) in the impedance-matched case of Eq. (6)
if we require τ i

j;i = 0. Therefore, in impedance-matched me-
dia where the medium corresponds to an exact geometry, the
Abraham identity is equivalent to the covariant conservation
of momentum. In curved space-time, the trace anomaly (2)
plays the same role: It serves to restore the covariant conser-
vation of energy momentum [30]. The van der Waals anomaly
in dielectric media is thus an analog of the trace anomaly in
space-time, and the trace anomaly appears as dark energy in
Einstein’s field equations [33].

The van der Waals anomaly might be more than just an
analog, it might actually be the archetype of a mechanism [49]
that explains dark energy without the need of new physics,
as an effect of quantum electromagnetism. This explanation
appears to be in agreement with astronomical data [50] re-
solving the tension between the measured Hubble constant
and its prediction from the cosmic microwave background
[51]. It is therefore possible that the same force that rules the
microcosm of the nanoworld does also rule the macrocosmos
of the expanding universe. Time and tests will tell.

II. SPHERICAL SYMMETRY

Our theory is based on the Lifshitz theory [27–29] of vac-
uum forces in dielectric media [4] where renormalization is
performed by subtracting the outgoing wave from the bare
Green function. The electromagnetic Green function G de-
scribes the vector potential at position r created by a point
dipole at r0 oscillating with frequency ω. It is a bitensor with
one index referring to the direction of the vector potential
and the other to the dipole direction. The vacuum stress is
calculated from G in the limit r0 ∼ r by integration along
positive imaginary frequencies and differentiations with re-
spect to r and r0. If there is a symmetry that preserves the two
polarizations of light, then the Green bitensor gets reduced to

two scalar Green functions. In the planar case, these are the
Green functions gE and gM of the electric and the magnetic
polarizations. There either the electric or the magnetic field
remains orthogonal to the propagation direction and the direc-
tion in which the medium varies. In a general inhomogeneous
medium, the polarizations mix; it takes a high degree of sym-
metry to preserve them.

A. Setting the scene

Consider a rotationally symmetric medium. We employ
spherical coordinates {r, θ, φ} and require

ε = ε(r), μ = μ(r). (10)

Without writing this explicitly, we also assume that ε and
μ depend on frequency (which will become important for
renormalization [15]). In spherically symmetric media, the
stress depends only on r and has no shear,

σ = diag
(
σ r

r , σ θ
θ , σ

φ

φ

)
, (11)

with

σ θ
θ = σ

φ

φ . (12)

The simplest of such media is a homogeneous dielectric
sphere embedded in a uniform background [52] (with ε = ε1,
μ = μ1 inside and ε = ε2, μ = μ2 outside the radius of the
sphere). Despite extensive effort [18–26,53–56] there is still
no general solution for the Casimir force in this case. One
of the major difficulties of this seemingly simple problem is
posed by the sharp interface between the sphere and the back-
ground. The issue is that even renormalized vacuum fields
tend to infinity at interfaces [57]. For piecewise homogeneous
planar media these infinities do not matter, but for spherically
symmetric media they do. To see this, consider the diver-
gence of the stress (that gives the force density in mechanical
equilibrium [8]). We get in spherical coordinates [58]

(∇ · σ )r = ∂rσ
r
r + 2

r
σ r

r − 2

r
σ θ

θ . (13)

At a spherical interface, (∇ · σ )r must be a delta function, and
so the radial stress σ r

r must be discontinuous. But both σ r
r

and σ θ
θ vary and tend to infinity at the interface [25]. These

diverging contribution cancel each other in the force density
[25], but their cancellation is subtle [25] and not fully under-
stood when ε and μ depend on frequency. For planar media,
on the other hand, the stress σ z

z orthogonal to the interface is
finite and piecewise constant, and the diverging stresses in the
other directions, σ x

x = σ
y
y , do not contribute to the force, as

(∇ · σ )z = ∂zσ
z
z . There this problem does not occur. Here we

avoid it by assuming ε(r) and μ(r) to be continuous.

B. Spectral stresses

Lifshitz theory relates the stress to the electromagnetic
Green function in the form of an integral along positive imag-
inary frequencies [29]:

σ = − h̄c

2π

∫ ∞

0
W dκ

∣∣∣∣
r0→r

, (14)

written here in terms of the imaginary wave number κ for the
frequency ω = icκ . The spectral stresses W depend on the
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Green function and on the source and observation points r0

and r. The limit r0 → r is taken in the integral of Eq. (14)
but not before. Spherical symmetry implies that the W are
functions of r and r0 and of the angle γ between the origin,
r and r0. The limit r0 → r corresponds then to r0 → r and
γ → 0.

We use the symbol W jP
jF to denote the contribution of the

P-polarization to the F component of the stress in j direction,
and obtain (Appendix A):

W rE
rE = εκ2gE ,

W rE
rM = −∂rr ∂r0 r0 gE

μrr0
− W θE

θM ,

W θE
θM = ∂γ sin γ ∂γ gE

μr2 sin γ
, (15)

for the electric polarization, and the equivalent expres-
sions for the magnetic polarization with ε ↔ μ and E ↔
M. All other spectral stresses vanish. In the limit of large
radii the expressions (15) reproduce the planar case [15],
where W zE

z = εκ2gE − μ−1∇ · ∇0 gE for the electric polar-
ization and W zM

z = μκ2gM − ε−1∇ · ∇0 gM for the magnetic
polarization.

C. Scalar Green functions

The two polarizations are described by the two scalar
Green functions gP. Like in the planar case [15] we write
them as

g = νν0D (16)

(dropping the polarization index) with ν0 = ν(r0) and

νE = μ, νM = ε. (17)

We show in Appendix A that D obeys the wave equation

∇ · ν∇D

n2ν
− Rr

r

2
D − κ2D = δ(r − r0)

n2ν
(18)

in terms of the refractive index n with

n2 = εμ (19)

and the abbreviation

Rr
r = 2

n2ν

(
ν ′2

ν
− ν ′′ − ν ′

ν

)
, (20)

where the primes denote differentiations with respect to r. In
the impedance-matched case (6) when the medium establishes
an exact geometry with line element (7) the term n−3∇ · n∇
in the wave equation (18) is the Laplacian of a scalar and Rr

r
becomes the radial component of the Ricci tensor [33]. In the
planar case [15], one obtains the same wave equation with
Rr

r replaced by Rz
z. The wave equations for D thus assume

an entirely geometrical form. Finally, for spherical symmetry
we have:

∇ · ν∇
ν

= ∂rr2ν ∂r

r2ν
+ ∂γ sin γ ∂γ

r2 sin γ
. (21)

Expressions (16)–(21) determine the scalar Green functions
and hence the spectral stresses.

D. Abraham identity

The Abraham identity, Eq. (3), follows from Maxwell’s
equations in general. Let us see how it follows from the wave
equation (18) in our case. We obtain from the expression for
W rE

rE in Eq. (15) by straightforward differentiation(
∂r + ∂r0 + 2

r
− ε′

ε

)
W rE

rE = D0DE (22)

in the limit r0 ∼ r, where D0 denotes the differential operator

D0 = κ2

r2
0

∂r0 r0μ0 n2 + κ2

r2
∂rrμ n2

0. (23)

We also obtain for W rE
rM and W θE

θM in the limit r0 ∼ r:(
∂r + ∂r0 + 2

r
− μ′

μ

)
W rE

rM −
(

2

r
+ 2μ′

μ

)
W θE

θM = D1DE

(24)
with the differential operator

D1 = 1

r2
0

∂r0 r0μ0 n2

(
−∇ · μ∇

n2μ
+ Rr

r

2

)

+ 1

r2
∂rrμ n2

0

(
−∇0 · μ0∇0

n2
0μ0

+ Rr
0r

2

)
(25)

using Eq. (21) for the Laplacians. For the magnetic polariza-
tion we obtain the corresponding expressions by interchang-
ing E ↔ M and ε ↔ μ.

Inspecting the differential operators, we see that the sum
D0 + D1 applied to DE contains the left-hand side of the wave
equation (18) for r and also for r0. For r 
= r0 the right-hand
side of Eq. (18) vanishes. So the sum of the left-hand sides
of Eqs. (22) and (24) vanishes, too, provided gE satisfies the
same wave equation in r0 as it does in r. This is the case if the
Green functions are reciprocal,

D(r, r0) = D(r0, r). (26)

The stresses are calculated after the limit r0 → r is taken in
Eq. (14), which implies that ∂rσ corresponds to the sum of
∂rW and ∂r0W in the spectral stresses. These and the 2/r
terms in Eqs. (22) and (24) form the divergence of the stress
according to Eq. (13), and σ r

r + 2σ θ
θ = σ r

r + σ θ
θ + σ

φ

φ gives
tr σ . We thus obtain the Abraham identity (3), provided the
Green functions are reciprocal. Yet renormalization breaks
reciprocity, as we show next.

III. RENORMALIZATION

The field of Casimir physics began with Casimir’s three-
page paper [5] in 1948. There he did two things: calculate
the force between two perfect mirrors and handwave the justi-
fication for renormalization. The latter has haunted the field
ever since. Renormalization is necessary, because the bare
stress calculated, for example, using the procedure of Sec. II is
infinite. One may view the infinity of the bare vacuum energy
and stress as an inevitable feature of quantum field theory or
as an artifact of the theory. In either case, the infinity needs to
be subtracted to get meaningful results. This process of sub-
traction is called renormalization. In Lifshitz renormalization
[1] the subtraction is performed on the Green functions. There
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the diverging part stems from high frequencies and is therefore
well captured in geometrical optics.

A. Geometrical optics

Let us briefly summarize geometrical optics in spheri-
cally symmetric media (further details in Appendix B). In the
asymptotic limit of large κ the Green function D approaches

D ∼ D0 + D1 (27)

with

D0 = A0 e−κs (28)

and (for r ∼ r0)

D1 = β1d1, d1 = A0s

κ
e−κs, (29)

where s denotes the optical path length with increment ds
given by Eq. (7) and A0 the amplitude. The factor β1 quan-
tifies the local scattering strength in the inhomogeneous
material. The contribution D0 describes a purely outgoing
wave, while D1 captures the first reflection in inhomogeneities
near the point of emission [15].

Renormalization depends on the local values of ε and μ.
Consider the vicinity of r0 up to quadratic order. One verifies
that D0 + D1 satisfies the wave equation (18) up to O(κ−1).
One also finds that both s and A0 are reciprocal up to quadratic
order (Appendix B). From this follows, according to Eqs. (28)
and (29), that D0 and d1 are reciprocal. However, the pref-
actor β1 of d1 turns out to be nonreciprocal; it is given by
(Appendix B):

β1 = 1

24n2

(
n′2 − 2n∇2n

n2
+ 6νν ′′ − 9ν ′2

ν2

)
(30)

evaluated at r = r0. Equation (30) closely resembles the re-
sult [15] for planar media where ∇2n = n′′ and the primes
denote ∂z whereas here ∇2n = n′′ + (2/r)n′ and the primes
stand for ∂r . Unlike the planar case [15], the spherical D1

does contribute to the stress, and this contribution diverges
(Appendix C). For getting a finite result one therefore needs
to subtract from the bare Green function D both D0 and D1.
Appendix D proves the convergence of the stress calculated
according to this procedure. As renormalization is local, it
must not depend on the global symmetry of the medium—
whether it is planar or spherically symmetric should not play
any role. We thus conclude that we should renormalize with
D0 + D1 in general, even in the planar case.

B. Reciprocity violation

The reciprocity-violating first-scattering amplitude β1 is
going to be responsible for the violation of the Abraham iden-
tity (3). Consider the spectral stresses W in Eq. (14). Here the
violation of the Abraham identity is described by the sum of
the left-hand sides of Eqs. (22) and (24) with definitions (23)
and (25). We call this sum Q. The wave equation (18) would
remove all of the terms in Q if not only D0 were reciprocal but
also D1 = β1d1. However, in ∇ · ν∇ β1(r0)d1 the amplitude
β1 appears as a constant, whereas in ∇0 · ν0∇0 β1(r0)d1 we
get the extra terms d1 ∇0 · ν0∇0 β1 + 2ν0(∇0β1) · (∇0d1). We

thus obtain:

Q = −1

r
∂r rν

[(
∂r0 r2

0ν0 ∂r0β1
)

r2
0ν0

+ 2(∂r0β1)∂r0

]
d1 (31)

evaluated for r0 → r. Note that Eq. (31) is only valid up to
O(κ−1) since D0 + D1 solves the wave equation only up to
this order. For large κ the dominant term in Q is given by
the highest power in κ . According to Eq. (29) this term is
produced by ∂r∂r0 e−κs, which is quadratic in κ for r0 → r. In
this limit the optical length s approaches nρ, where ρ denotes
the distance ρ = |r − r0|. Consequently, we obtain:

∂r∂r0 e−κs ∼ κ2n2e−nρ κ . (32)

Furthermore, the amplitude A0 approaches −(4πνρ)−1, be-
cause near the point of emission the wave equation (18)
reduces to the Laplace equation ∇2D = δ(r − r0)/ν with this
solution. Taking all this into account, we get

Q ∼ κ
n3

2π
β ′

1e−nρ0κ , (33)

where we kept a finite distance ρ0 between emitter and re-
ceiver that should be of atomic size.

C. Anomalous pressure

Equation (33) describes the violation of the Abraham iden-
tity for the spectral stress of the renormalizer. We give it a
minus sign to account for the subtraction in renormalization,
W = −Q in Eq. (14) and obtain the result

(∇ · σ )r = ε′

ε
tr σE + μ′

μ
tr σM − n3∂r

p

n3
(34)

for the total stress σ = σE + σM with the pressure

p = h̄c

(2π )2

∫ ∞

0
n3(β1E + β1M )e−nρ0κκ dκ. (35)

In Eq. (34) we pulled ε′/ε and μ′/μ from the spectral in-
tegral (14) for simplicity. In reality, ε′/ε and μ′/μ depend
on κ and therefore should be left inside the integral or re-
garded as operators outside. Equation (35) shows that the
anomalous pressure depends on the sum of the scattering am-
plitudes of the two polarizations. Finally, as n3(p/n3)′ = p′ −
(3/2)(ε′/ε + μ′/μ), tr 1 = 3, and (∇ · σ )θ = (∇ · σ )φ = 0,
we can cast Eq. (34) in a remarkably simple form: as the van
der Waals anomaly (1) in the Abraham identity (3).

D. Cosmological considerations

Without dispersion (frequency dependence of ε and μ) the
anomalous pressure of Eq. (35) would diverge like (nρ0)−2.
This does not occur in ordinary dielectric media where ε and
μ fall off like κ−2 beyond the last resonance of the material.
Therefore the pressure integral (35) does only logarithmically
depend on the atomic size ρ0 (and the precise value of the
cutoff ρ0 does not matter in comparison with the other con-
tributions to p). But now think of the curved space of general
relativity [33] as a medium [45–48]. The equivalence princi-
ple [33] requires that space acts the same on all objects, in
particular on all frequencies of the electromagnetic field—up
to the scale where classical general relativity does no longer
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hold. It is generally believed [42] that this scale is given by
the Planck length

�P =
√

h̄G

c3
(36)

with G being Newton’s gravitational constant. Our analogy
would thus suggest that nρ0 for the medium of space lies in
the order of the Planck length �P of Eq. (36). In this case,
the pressure (35) may have a cosmologically relevant gravita-
tional effect Gp, as both G and h̄ drop out. It depends on the
details whether it does.

According to the cosmological principle [33] space is
homogeneous and isotropic, as empirically verified in astro-
nomical surveys [59]. For homogeneous and isotropic space,
the refractive index is given by [33]

n = 2n1

1 + k(r/a)2
(37)

with constant n1 and scale factor a, where a gives the radius
of curvature and k ∈ {−1, 0, 1} its sign. Space acts as an
impedance-matched medium according to Eq. (6). We obtain
from Eqs. (30) and (37):

β1E = β1M = 1

6n3

(
n′′ − n′

r
− 2n′2

n

)
= 0. (38)

There is no scattering in maximally symmetric spaces [60],
and as our anomalous pressure is given by the scattering
amplitude, there is no anomaly, provided a is indeed constant.

However, the universe is expanding, and the scale factor a
is growing with time. The time dependence of a generates a
dynamical Casimir effect [61] with a trace anomaly [49] that
also goes as (nρ0)−2. If we take for nρ0 the Planck length
�P, then we obtain the correct order of magnitude of the
cosmological constant [49]. Moreover, a recent comparison
[50] with astronomical data has found that the anomaly [49]
appears to agree not only on the order of magnitude but also
with the details of the cosmic expansion, as measured by
supernova explosions, baryon acoustic oscillations, and the
cosmic microwave background. The theory may resolve the
Hubble tension [51] without invoking new, untested physics
[62] (but rather by revisiting aspects of quantum electromag-
netism that have been neglected for decades). The van der
Waals anomaly, although not acting in the homogeneous and
isotropic space of cosmology, is the archetype of this theory.

IV. POSSIBLE EXPERIMENT

Trace anomalies have been theoretically predicted a
considerable time ago [30], but they have never been experi-
mentally tested. Here we describe the idea for an experimental
test with Bose-Einstein condensates of alkali atoms [43]. At
first glance, alkali condensates might not appear as the most
likely candidates for demonstrating delicate dielectric effects,
as they are dilute gases with low density and hence low di-
electric response, but the possibility to optically excite and
probe elementary excitations with well-defined spatial struc-
tures may very well outweigh this disadvantage.

A. Dilute gases

Let us first discuss some consequences of the diluteness
of Bose-Einstein condensates within the context of the van
der Waals anomaly that apply to other dilute gases as well.
The renormalized vacuum stresses σE and σM are caused by
the scattering of virtual electromagnetic waves on inhomo-
geneities. As these are proportional to the number density ρ,
they, too, must be at least linear in ρ, but so are also ε′ and
μ′ in Eq. (3). From this and the van der Waals anomaly (1)
follows in the limit of vanishing density:

∇ · (σE + σM ) ∼ −∇p. (39)

Assuming that the stress is isotropic in this limit, we integrate:

σE + σM ∼ −p1. (40)

As p enters both σE and σM equally in the van der Waals
anomaly (1) we further assume that the stresses are equal in
the dilute limit and get

σF ∼ − p

2
1. (41)

These ideas suggest that in the dilute limit the electric and
magnetic stresses are entirely given by the anomalous pressure
and hence by local dielectric properties (by ε and μ and their
derivatives up to second order).

Consider a dilute gas with μ = 1 (such as the alkali
Bose-Einstein condensates [43]). In the dilute limit we have:

ε = 1 + χ, χ = α

ε0
ρ, (42)

where α denotes the polarizability [43]. Neglecting in Eq. (30)
all terms of higher order in ρ we obtain in the planar [15] and
the spherical case:

β1E + β1M = α

6ε0

{
∂2

z ρ (planar)(
∂2

r − ∂r
r

)
ρ (spherical)

. (43)

In either case, the resulting van der Waals anomaly is linear
in density. This and Eq. (40) confirms the previous, contro-
versal, result [25] that the vacuum stress on a homogeneous
sphere in a uniform background is linear in the dilute limit,
despite the pairwise nature of van der Waals interactions—and
the very existence of the van der Waals anomaly invalidates
the criticism [26] as a whole. However, the divergence of the
stress does not necessarily give the force density, at least not
in mechanical equilibrium [8].

The force in dielectrics is the Helmholtz force obtained by
varying the free energy with respect to the density, keeping all
external charges and currents constant [16]. In this way one
gets the force density [16]:

f = ∇ ∂ε

∂ρ
ρ

E · D
2

− E · D
2

∇ε

ε
. (44)

In the dilute limit, the Helmholtz force becomes the dipole
force [63] with

f = −ρ ∇V (45)

in terms of the dipole potential

V = −α

2
E2 = α

ε0
tr σE . (46)
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We assume this expression also for vacuum forces (and in-
tegrate over the entire spectrum of the polarisability as a
function of imaginary wave number κ).

B. Estimation

Let us first estimate the effect of the van der Waals anomaly
on Bose-Einstein condensates. Consider a simple toy model:
the particle in a box. Suppose the quantum gas is confined by
optical forces to a box of height a (in z direction) and width
and length b. Assume further that the gas is made noninteract-
ing by Feshbach resonance [43]. One can create excited states
in z direction, for example by applying optical pulses [64].
Suppose, for simplicity, that the gas is homogeneous in the
other directions. We thus have for the number density

ρ = 2ρ0 sin2 klz, kl = π

a
l, (47)

with positive integer l and average density

ρ0 = N

ab2
, (48)

where N denotes the total number of atoms. Without atom-
atom collisions—and without van der Waals anomaly—the
energies of these states are just the ones of a quantum particle
in a box:

El = h̄2k2
l

2m
, (49)

where m denotes the atomic mass. The van der Waals anomaly
will create a perturbation of the energies we calculate by
first-order perturbation theory, averaging the dipole potential
of Eq. (46) over the spatial probability distribution of an
individual atom ρ/N . We obtain from Eqs. (35), (41), (43),
and (47)–(49):

〈V 〉
El

= δ0 (50)

with

δ0 = ρ0

4πλC

∫ κ0

0

( α

ε0

)2
κ dκ, (51)

where λC denotes the Compton wavelength,

λc = 2π h̄

mc
. (52)

In the integral (35) over the imaginary wave numbers κ we
have replaced the exponential by a hard cutoff κ0. We see that
the van der Waals anomaly appears as a density-dependent
contribution to the effective mass, independent of quantum
number l .

Let us estimate the magnitude of this contribution. The
most frequently used atom for Bose-Einstein condensates
is rubidium. It has a Compton wavelength of λc ≈ 2.5 ×
10−18 m. As a rough approximation we assume the polariz-
ibility as being constant and of Ref. [43] α/ε0 ≈ 300 × 4πa3

B
in atomic units (with Bohr radius aB). We assume the cutoff in
the optical range: κ0 = 2π/λ0 with λ0 = 0.5 μm. Finally, we
suppose that 106 atoms are confined in a box of a = 100 μm
and b = 10 μm. This gives δ0 = 10−4 as a rough estimate of
the relative contribution of the van der Waals anomaly to the

energy. The details depend on the actual polarizibilities as a
function of imaginary frequency. The effect is small but not
out of the range of precision experiments.

The modified spectrum can be probed by exciting mo-
tional states of the trapped condensate. The excitation lines
should vary with density as indicated in Eqs. (50) and (51).
The atom-atom collision energy does also vary with density,
though. We have assumed that the collisions are reduced to
zero by Feshbach resonance [43], but a residual interaction
will always remain in practice. However, its contribution to
the energy does depend differently on l . As the collision term
in the Gross-Pitaevskii equation [43] is proportional to ρ, the
relative contribution to the energy goes with 〈ρ〉/El ∝ l−2

for the density profile of Eq. (47). The different scaling with
quantum number l may serve to discriminate between the
residual atom-atom collisions and the van der Waals anomaly.

C. Harmonic trap

Consider now a spherically symmetric harmonic trap of
frequency �. As before, atomic collisions shall be switched
off by Feshbach resonance [43]. Without atom-atom inter-
action, the spherically symmetric eigenstates ψl obey the
Schrödinger equation:

El ψl = − h̄2

2m

(
∂2

r + 2

r
∂r

)
ψl + m�2

2
r2 ψl . (53)

We scale the position r in terms of the characteristic
length a as

r = aξ with a2 = h̄

m�
, (54)

and obtain the energies

El = h̄�

(
2l + 3

2

)
, (55)

with non-negative integer l , and the wave functions

ψl = Nl

ξ
exp

(
−ξ 2

2

)
H2l+1(ξ ) (56)

in terms of the Hermite polynomials [65]. The wave functions
are normalized to unity with respect to ξ by

N 2
l = 1

π3/2 22l+2 (2l + 1)!
. (57)

Writing the number density ρ of the condensate as

ρ = ρ0 ψ2
l (58)

with average density

ρ0 = N

a3
, (59)

we obtain from Eq. (43) in the spherical case the result:

〈V 〉
h̄�

= δ0

∫ ∞

0

(
∂2
ξ ψ2

l − ∂ξψ
2
l

ξ

)
4π ξ 2 dξ, (60)

with δ0 given by Eqs. (51) and (52). The integral is domi-
nated by small ξ . We apply the asymptotics of the Hermite
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polynomials [65] H2l+1(ξ ) for large index and small variable,

ψl ∼ (−1)l sin(
√

4l + 3 ξ )

(4l + 2)1/4πξ
, (61)

and arrive at an approximation of Eq. (60) that is quite accu-
rate for l � 1:

〈V 〉
h̄�

∼ δ0

3π2

(4l + 3)3/2

2l + 1
. (62)

For l = 0 we have
〈V 〉
h̄�

= δ0√
2 π3/2

. (63)

In the harmonic trap, the relative contribution 〈V 〉/El of the
van der Waals anomaly to the energy varies with l as (4l +
3)1/2/(2l + 1) ∼ l−1/2 in contrast to the condensate in a box,
where 〈V 〉/El = const. This is because harmonic-oscillator
states are not rigidly confined but reach to the classical turning
points that depend on the energy, which reduces the density.
We can also work out the effect of collisions: The collision
term in the Gross-Pitaevskii equation [43] scales with

〈ρ 〉 ∼ ρ0

2π2

(4l + 3)1/2

2l + 1
for l � 1, (64)

〈ρ 〉 = ρ0

(2π )3/2
for l = 0. (65)

Like for the condensate in a box, the ratio 〈V 〉/〈ρ〉 goes with
the energy El , which allows to discriminate the van der Waals
anomaly from residual collisions.

Overall, we found the effect of the anomaly to be in the
range of 10−4 of the energy. The van der Waals anomaly can
be distinguished from the influence of residual collisions, and
it can be measured by probing the transition frequencies of
a trapped Bose-Einstein condensate, following Schawlow’s
motto for precision measurements [66]: “never measure any-
thing but frequency.”
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APPENDIX A: GREEN FUNCTION AND STRESS

In this Appendix we derive the expression for the Abraham
stress as a function of the scalar Green functions gE and gM .
Throughout, we use the vector spherical harmonic notation
introduced and discussed in Appendix E.

1. Scalar Green functions

We start with G(r, r0), the matrix Green function (the
Green bitensor) defined as the solution of the inhomogeneous
wave equation [57]:

∇ × 1

μ
∇ × G + εκ2G = 1 δ(r − r0), (A1)

for imaginary wavelengths κ . Equation (A1) is solved by
decomposing the matrix Green function into two contributions

GE and GM that originate from the two electromagnetic po-
larizations preserved in spherically symmetric media, and a
contact term GC :

G = GE + GM + GC, (A2)

where each polarization corresponds to one of the scalar
Green functions gE and gM as

GE = −
∑
lm

glm
E (r, r0)

l (l + 1)
�lm(θ, φ) ⊗ �∗

lm(θ0, φ0),

GM = 1

κ2ε(r)ε(r0)

∑
lm

∇ × glm
M (r, r0)

l (l + 1)
�lm(θ, φ)

× ⊗ �∗
lm(θ0, φ0) × ←−∇ 0 (A3)

in terms of the vector spherical harmonics �lm(θ, φ) de-
scribed in Appendix E. We are going to specify the contact
term later on. Let us first focus on the component GE of the E
polarization. Consider Eq. (A1) applied to GE only. From the
curl identities of the vector spherical harmonics [Eqs. (3.12)
of Barrera et al. [67]] follows

∇ × 1

μ
∇ × f (r)�lm = 1

r
∂r

1

μ
∂rr f (r) �lm (A4)

for an arbitrary function f (r). We see that for GE the left-
hand side of the inhomogeneous wave equation (A1) consists
entirely of �lm ⊗ �∗

lm terms. We decompose the right-hand
side into vector spherical harmonics:

δ(r − r0)1 = δ(r − r0)

r2

∑
lm

[
Y lm(θ, φ) ⊗ Y ∗

lm(θ0, φ0)

+ �lm(θ, φ) ⊗ �∗
lm(θ0, φ0)

l (l + 1)

+ �lm(θ, φ) ⊗ �∗
lm(θ0, φ0)

l (l + 1)

]
(A5)

and see that Eq. (A1) is satisfied for the �lm ⊗ �∗
lm terms if

we require:

1

r
∂r

1

ν
∂rrglm − l (l + 1)

r2ν
glm − n2κ2

ν
glm = δ(r − r0)

r2
, (A6)

dropping the polarization label and using ν = μ according to
Eq. (17) and the refractive index n of Eq. (19). This settles the
electric polarization.

Now turn to the magnetic polarization. It should take care
of the remaining Y lm ⊗ Y ∗

lm and �lm ⊗ �∗
lm terms in Eq. (A5)

for δ(r − r0)1. Let us define the contact term

GC = δ(r − r0)

κ2rr0 ε(r0)

∑
lm

[
Y lm ⊗ Y ∗

lm + �lm ⊗ �∗
lm

l (l + 1)

]
, (A7)

where we omit the dependencies on the various angles for
simplicity of writing. The contact term does not contribute
to the stress for r0 
= r, but it is required for mathemati-
cal consistency as we shall see below. When substituted in
Eq. (A1) εκ2GC immediately gives the Y lm ⊗ Y ∗

lm and �lm ⊗
�∗

lm terms for δ(r − r0)1. Furthermore, we obtain from the
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curl identities [Eqs. (3.12) of Barrera et al. [67]]:

∇ × GC = 1

κ2ε(r0)

∑
lm

�lm ⊗
[

− δ(r − r0)

r2r0
Y ∗

lm

+ 1

r
∂r

δ(r − r0)

r0

�∗
lm

l (l + 1)

]
(A8)

and writing r−1∂rr−1
0 δ(r − r0) as −r−1

0 ∂r0δ(r − r0) and using
the curl identities once more but this time for r0:

∇ × GC = δ(r − r0)

κ2rr0 ε(r0)

∑
lm

�lm ⊗ �∗
lm × ←−∇ 0. (A9)

Requiring Eq. (A6) for glm
M (with ν = ε) we obtain along

similar lines as in the case of the electric polarization:

∇ × 1

μ
∇ × (GM + GC ) + εκ2GM = 0. (A10)

This proves that, in Eq. (A1) for the Green tensor, GM

plus GC generates the remaining terms in Eq. (A5) for the
right-hand side.

Equation (A6) thus defines the scalar Green functions for
both polarizations. As Eq. (A6) does not depend on m the
Green function components glm do not depend on m either.
The scalar Green functions are given in terms of the compo-
nents glm with respect to the standard spherical harmonics. In
position space they read as

g(r, r0) =
∑
lm

glm(r, r0)Ylm(θ, φ)Y ∗
lm(θ0, φ0), (A11)

and the scalar wave equation (A6) takes the form of Eq. (18)
with definition (16).

2. Electric and magnetic stresses

The fluctuation-dissipation theorem [29] relates the
vacuum stress to the matrix Green function. In particular,
defining

τE = 1

2
〈0|D(r) ⊗ E(r0) + D(r0) ⊗ E(r)|0〉,

τM = 1

2
〈0|B(r) ⊗ H (r0) + B(r0) ⊗ H (r)|0〉, (A12)

we arrive at the expressions [29,57]:

τE = − h̄c

π

∫ ∞

0
κ2ε (GE + GM ) dκ,

τM = h̄c

π

∫ ∞

0

1

μ
∇ × (GE + GM ) × ←−∇ 0 dκ. (A13)

The stress tensors are then given by

σF = τF − 1
2 tr τF 1 (A14)

in the limit r0 → r. In order to derive manageable expressions
for the stress-tensor contributions, we write them in the spec-
tral representation (14) for the components i, fields F , and
polarizations P as

W iP
iF =

∑
lm

W iP
iF Ylm(θ, φ)Y ∗

lm(θ0, φ0). (A15)

The sum of the angular coefficients W iP
iF over P corresponds to

the Fourier component W in the planar case [15]. To illustrate

our method of determining the W iP
iF consider the simplest

case: W iE
iE . We get for the corresponding part of the correlation

function τE :

τ
(E )
E = − h̄c

π

∫ ∞

0
κ2ε GE dκ

= h̄c

π

∑
lm

∫ ∞

0

κ2εglm
E

l (l + 1)
�lm ⊗ �∗

lm (A16)

from Eq. (A3) and assuming the limit θ0 → θ and φ0 → φ.
Then we use the fact that glm is independent of m and apply
the last one of the sum identities (E9). From this and Eq. (A14)
follows

W rE
rE = κ2ε glm

E . (A17)

For calculating W iE
iM we define the corresponding τ

(E )
M accord-

ing to Eq. (A13), use Eq. (A3), apply the curl identities of
the vector spherical harmonics [Eqs. (3.12) of Barrera et al.
[67]] and finally use the sum identities (E9). We obtain from
Eq. (A14):

W rE
rM = −∂r0 r0 ∂rr glm

E

μrr0
− WθE

θM ,

WθE
θM = WφE

φM = − l (l + 1)

μrr0
glm

E . (A18)

Equations (A17) and (A18) give the expressions in Eq. (15)
when represented in position space according to Eqs. (A11)
and (A15). In order to determine the components for the
magnetic polarization we may proceed similarly but apply-
ing also the wave equation (A6) to reduce the number of
derivatives [68]. Alternatively, we may just take advantage of
the electromagnetic duality and interchange the fields and the
polarizations E ↔ M and μ ↔ ε.

APPENDIX B: GEOMETRICAL OPTICS

In this Appendix we provide some more details on the
geometrical-optics theory for the renormalizing scalar Green
functions D0 and D1. We closely follow the planar case [15]
where the general expressions have been derived and state the
results for the spherical case.

1. Quadratic expansion

As renormalization is local, the renormalizing Green func-
tion D should depend on the local ε and μ and their
derivatives. We postulate that these are maximally second
derivatives. This means that we expand the dielectric func-
tions up to second order around the point of emission r0:

n = n0 + n′
0(r − r0) + n′′

0

2
(r − r0)2, (B1)

with n0 = n(r0) and similarly for ε and μ. The renormalizing
Green function thus perceives the medium as if the dielectric
functions depend on the point of emission at r0, which poten-
tially breaks reciprocity.
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2. Optical length

The central quantity of geometrical optics is the optical
length s that satisfies the eikonal equation:

(∇s)2 = n2. (B2)

Spherical symmetry implies that s depends on r, r0, and the
angle γ between the origin, r and r0. The distance between r
and r0 is given by:

ρ =
√

r2 + r2
0 − 2rr0 cos γ . (B3)

One verifies that the solution of Eq. (B2) is as follows:

s = ρ

[
n0 + n′

0

2
(r − r0) + n′′

0

6
(r − r0)2

− n′
0r0 (n′

0r0 + 2n0)

24n0
sin2 γ

]
(B4)

up to quadratic order in r − r0 and γ . One also verifies the
reciprocity of s: If we replace r ↔ r0 and n ↔ n0 in Eq. (B4)
and use expansion (B1), then we obtain the same s, apart from
third-order corrections. So despite the fact that n depends on
r0, the optical length s is reciprocal up to quadratic order.

3. Amplitude

The amplitude A0 of the wave in geometrical optics satis-
fies the continuity equation [15]:

∇ · (
νA2

0∇s
) = 0 (B5)

with ν defined in Eq. (17). One verifies that up to quadratic
order the solution of Eq. (B5) is the same as in the planar
case [15]:

A0 = − 1

4π
√

ν0ν

(
1

ρ
+ n2

0R0

48
ρ

)
, (B6)

where R0 denotes the 3D curvature scalar [48]:

R0 = −4∇2n0

n3
0

+ 2n′2
0

n4
0

. (B7)

The only difference is that in the planar case [15] ∇2 = ∂2
z ,

whereas in the spherical case we have ∇2 = ∂2
r + (2/r)∂r .

One verifies again that A0 is reciprocal up to quadratic order.

4. First scattering

As s and A0 are reciprocal, the outgoing wave D0 defined
in Eq. (28) is reciprocal, too. The contribution D1 of Eq. (29)
depends on s and A0 as well but also on the amplitude β1.
This quantity describes the first scattering in inhomogeneities
around the point of emission [15]. The scattering amplitude is
given by [15]:

β1 = ∇ · ν∇A0

2n2νA0
− Rr

r

4
, (B8)

with Rr
r defined in Eq. (20). For ν = n when the medium

establishes an exact geometry, Rr
r is the radial component

of the 3D Ricci tensor [48]. Evaluating Eq. (B8) we obtain
Eq. (30) for β1. One verifies that D = D0 + D1 with the
expressions given satisfies the wave equation (18) around r0

within O(κ−1). The scattering amplitude β1 depends entirely
on r0 and therefore clearly breaks reciprocity, which causes
the van der Waals anomaly.

APPENDIX C: ASYMPTOTICS

In order to see whether the renormalizing Green functions
remove the infinity of the vacuum stress, we need to iden-
tify and characterize this divergency in the first place. The
stress is determined in Eq. (14) by an integration over spectral
stresses, and those are given in Eq. (15) by maximally second
derivatives of the scalar Green functions gP. We thus need to
analyze the asymptotics of the gP(r, r0) for large κ and r0 ∼ r.
The Green functions gP we represent in Eq. (A11) by the
Green coefficients glm dropping from now on the polarization
label P. The required asymptotics of g is then given by the
asymptotics of the glm for large l and large κ . This is the
asymptotics we determine in this Appendix.

1. Langer transformation

Similarly to the planar case [15], we apply a WKB tech-
nique. However, for the spherical case, it is wise to adopt the
Langer transformation [69]

r = ex, glm = e−x/2−x0/2 u(x) (C1)

dropping in u the lm indices for simplicity. We have put the
constant x0/2 in the exponent for keeping the reciprocity of
glm in u. Equation (A6) appears then in the form:

∂x
1

ν
∂xu − ν ′u

2ν2
− p2 + e2xκ2n2

ν
u = δ(x − x0), (C2)

where the primes denote differentiations with respect to x
(such that ν ′ = r∂rν) and the parameter p abbreviates

p = l + 1
2 (C3)

that should not be confused with the pressure. In the following
we determine the solution of Eq. (C2) for large κ and p.

2. Wronskian representation

First, we write down an expression for the exact solution in
terms of the homogeneous solutions h± of Eq. (C2):

u(x, x0) = 1

W

{
h+(x)h−(x0) : x > x0

h+(x0)h−(x) : x < x0
, (C4)

where W denotes the Wronskian:

W = h′
+(x) h−(x) − h′

−(x) h+(x)

ν
. (C5)

The Wronskian is constant, as a consequence of Eq. (C2).
Since the h± solve Eq. (C2) for r 
= r0, u does this as well. One
verifies that the jump at x = x0 specified in Eq. (C4) generates
the delta function on the right-hand side of Eq. (C2), which
proves that u solves Eq. (C2). The h± need to be chosen such
that they decay at ±∞, respectively, which determines u and
hence the Green coefficient glm uniquely.

3. WKB asymptotics

Now we use the standard WKB technique for the homoge-
neous solutions h± in the limit κ, p → ∞. For convenience,
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we replace κ and p by κ/q and p/q in terms of the formal
parameter q we regard as small. We write

h± = exp

(
−1

q

∞∑
m=0

qmsm

)
(C6)

and solve, order by order, the homogeneous equation

∂x
1

ν
∂xh − ν ′h

2ν2
− p2 + e2xκ2n2

q2ν
u = 0. (C7)

Inserting our ansatz (C6) into Eq. (C7), we get the relation:

1

q2

∞∑
m=0

qm
m∑

k=0

s′
ks′

m−k

ν
+ 1

q

∞∑
m=0

qm

(
−1

ν
s′′

m + ν ′

ν2
s′

m

)

= p2 + e2xκ2n2

q2ν
+ ν ′

2ν2
. (C8)

In lowest order (q−2) we have

s′
0 = ±

√
κ2n2e2x + p2, (C9)

where the ± corresponds to the two choices h± that should and
do vanish for x → ±∞ according to Eq. (C6). In the second-
lowest order (q−1) we have

s′
1 = 1

2s′
0

(
s′′

0 − ν ′

ν
s′

0

)
, (C10)

whereas in the next order (q0) we get

s′
2 = 1

2s′
0

(
s′′

1 − ν ′

ν
s′

1 − s′
1

2 − ν ′

2ν

)
. (C11)

For all other orders, Eq. (C8) reduces to

s′
m = 1

2s′
0

(
s′′

m−1 − ν ′

ν
s′

m−1 −
m−1∑
k=1

s′
ks′

m−k

)
(C12)

that includes Eq. (C10) as a special case. Note that Eq. (C12)
is exactly the same recurrence relation as in the planar case
[15]. Note also that the ± in Eq. (C9) does not change the sign
of s′

1 in Eq. (C10). The ± sign carries then over from s′
0 to s′

2
in Eq. (C11). In fact, all even orders carry the ± sign, while
all odd orders are unchanged, as one sees from Eq. (C12). In
terms of our ansatz (C6) we thus have

h± = e∓sE e−sO , (C13)

where the sE and sO collect the even and orders in s,
respectively:

sE ≡ 1

q

∞∑
m=0

q2ms2m, sO ≡ 1

q

∞∑
m=0

q2m+1s2m+1. (C14)

Given our result (C13) for h±, we write down the Wronskian
of Eq. (C5):

W = −2

ν
s′
E e−2sO . (C15)

As W = const, we may put W = √
W (x)W (x0) and have

W = −2

√
s′
E (x)s′

E (x0)

ν(x)ν(x0)
e−sO (x)−sO (x0 ), (C16)

which gives the compact expression

u = −1

2

√
ν(ex )ν(ex0 )

s′
E (x)s′

E (x0)
exp

(
−

∣∣∣∣
∫ x

x0

s′
E dx

∣∣∣∣
)

(C17)

that only depends on the even orders in the asymptotic ex-
pansion (C6). Formula (C17) is explicitly reciprocal and so
is the Green function given by the Langer transformation,
Eq. (C1). Note that Eq. (C17) is identical with the expression
for the Fourier-transformed Green functions in the planar case
[15]. However, the starting point of the recurrence and the
expression for s2, Eqs. (C9) and (C11), are different.

4. Divergency of the stress

Now we are going to characterize the divergency of the
vacuum stress using as cutoff � = 1/q and the expressions
derived for the scalar Green function. But first we note that
due to dispersion [16] the refractive index and impedance have
the following asymptotic form in the high-frequency limit:

n(r; κ ) ∼ 1 + n∞(r)

κ2
, Z (r; κ ) ∼ 1 + Z∞(r)

κ2
, (C18)

where the impedance is defined as Z = √
μ/ε.

In the following we express our results in terms of the
spectral stresses defined in Eq. (A15). We take dispersion into
account according to Eq. (C18) and calculate the bare stresses
given by Eqs. (A17) and (A18) using our WKB technique. We
obtain for W r

r for each order of divergency:

�4 : −4pw

r3
,

�2 :
p(−8r2w4n∞ + p4 + w4)

2r3w5
,

ln � :
p

32r3w11(w2 − p2)
(32p4r3w6n′

∞ − 16r2w4n∞(w2 − p2)(5p4 + w4)

−(w2 − p2)2(105p6 − 63p4w2 + 7p2w4 − w6) − 64p2r4w8n2
∞), (C19)

with the abbreviation

w =
√

p2 + κ2r2. (C20)
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We obtain for Wθ
θ :

�4 :
2p3

r3w
,

�2 :
−8p3r2w4n∞ + 5p7 − 6p5w2 + p3w4 − 2pw6

4r3w7
,

ln � :
p

64r3w13(w2 − p2)

( − (w2 − p2)2(1155p8

−1617p6w2 + 553p4w4 − 47p2w6 + 4w8) + 16r2w4{2p4rw2[rw2n′′
∞ − 5(w2 − p2)n′]

+n(35p8 − 65p6w2 + 33p4w4 − 5p2w6 + 2w8) + 4p2r2(2w2 − 3p2)w4n2
∞}). (C21)

These are the divergencies of the vacuum stress. In
Appendix D we prove that they are removed by
renormalization.

APPENDIX D: CONVERGENCE

In this Appendix we prove that the renormalization con-
verges. By this we mean that the infinite vacuum stress
calculated from the renormalizer, D0 +D1, compensates for
the infinite vacuum stress calculated using the asymptotics of
the Green function (Appendix C). What is left is finite.

1. Spherical harmonics decomposition

In order to compare the vacuum stress of the renormalizer
with the bare stress given by the asymptotics of the Green
function, we need to represent D0 and D1 in terms of spherical
harmonics. Since we are only interested in the behavior up to
quadratic order, we approximate and decompose D0 and D1

according to Eqs. (28), (29), (B1), (B4), and (B6):

D0 = A0 e−κs

∼ − 1

4πρ
√

νν0

[
1 + n2

0R0

48
ρ2

]
(1 + κρα0γ

2) e−κρχ

=
4∑

m=1

Dm
0 where (D1)

α0 = n′
0r0 (n′

0r0 + 2n0)

24n0
, (D2)

χ = n0 + n′
0

2
(r − r0) + n′′

0

6
(r − r0)2, (D3)

D1
0 = − 1

4πρ
√

νν0
e−κρχ , (D4)

D2
0 = − 1

4π
√

νν0

n2
0R0

48
ρ e−κρχ , (D5)

D3
0 = − 1

4π
√

νν0
κα0γ

2 e−κρχ , (D6)

D4
0 = − 1

4π
√

νν0

n2
0R0

48
ρ2κα0γ

2 e−κρχ , (D7)

D1 = A0
β1s

κ
e−κs ∼ − 1

4π
√

νν0

β1

κ
e−κρχ . (D8)

These terms generate all divergencies in the vacuum stress,
with further terms being of order O(�−2) or below in their
contribution to the stress.

Equations (D1)–(D8) reduce our problem to figuring out
how to decompose the functions f and γ 2 fα into spherical
harmonics with

fα (r; r0) = ρα

4π
e−kρ, (D9)

where k abbreviates κχ here. The fα depend via ρ on the
angles θ and φ of the spherical coordinates, whereas k does
not depend on them. The spherical harmonics f−1,lm of f−1

are given by the well-known expression [65]:

f−1,lm(r, r0; k) = 1√
rr0

{
Kp(kr0)Ip(kr) r < r0

Ip(kr0)Kp(kr) r > r0
, (D10)

where Ip and Kp are the modified Bessel functions [65] with
indices p = l + 1

2 . From definition (D9) follows then

fα,lm = (−k)−α−1∂α+1
k f−1,lm. (D11)

Given the decomposition of fα one can also determine the
spherical harmonics for γ 2 fα and γ ∼ 0. For this we take
γ 2 ∼ 2(1 − cos γ ) and rotate our coordinate system such that
γ = θ . From the recurrence relations of the Legendre polyno-
mials [65] in the spherical harmonics [65] follows then:

(cos γ f )lm = (l + 1) fl+1,m − l fl−1,m

2l + 1
. (D12)

Now we need to determine the asymptotics of these expres-
sions for large κ and p with p = l + 1

2 .

2. Asymptotics

As the vacuum stress is given by a linear differential
operator on the Green function, its asymptotic behavior for
r0 → r is determined by this linear differential operator ap-
plied on functions of type IK and their derivatives. We take
the choice r > r0 (or r < r0) in Eq. (D10). Using the Bessel
identities [65]

2α

x
Iα (x) = Iα−1(x) − Iα+1(x),

2I ′
α (x) = Iα−1(x) + Iα+1(x),

−2α

x
Kα (x) = Kα−1(x) − Kα+1(x),

−2K ′
α (x) = Kα−1(x) + Kα+1(x), (D13)
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we can always reduce the stress to the form:

σ ∼ R1Ip(κχr0)Kp(κχr)

+R2Ip+1(κχr0)Kp(κχr)

+R3Ip(κχr0)Kp+1(κχr)

+R4Ip+1(κχr0)Kp+1(κχr), (D14)

where the Ri are some rational functions of r, r0, κ , and p. We
only need the asymptotics of the products IK for large index
and large argument.

The required uniform asymptotic behavior of the Bessel
functions is well understood. For large α and finite z we
have [70]:

Iα (αz) ∼ eαξ

(2πα)1/2(1 + z2)1/4

∞∑
s=0

Us(w)

αs
,

Kα (αz) ∼
( π

2α

)1/2 e−αξ

(1 + z2)1/4

∞∑
s=0

(−1)s Us(w)

αs
,

ξ = (1 + z2)1/2 + ln
z

1 + (1 + z2)1/2
,

w = (1 + z2)−1/2, (D15)

in terms of the polynomials Us defined by the relations

Us+1(x) = 1

2
x2(1 − x2)U ′

s (x) + 1

8

∫ x

0
(1 − 5t2)Us(t ) dt,

U0(x) = 1. (D16)

This gives the asymptotics of the IK products:

Iα1 (α1z1)Kα2 (α2z2) ∼ eα1ξ1−α2ξ2

2(α1α2)1/2 (1 + z2
1 )1/4 (1 + z2

2 )1/4

×
∑

0�s1<∞
0�s2�s1

(−1)s2
Us1−s2 (w1)

α
s1−s2
1

Us2 (w2)

α
s2
2

. (D17)

We use this equation to get the asymptotic forms of all
the needed IK combinations by taking α1, α2 = p, p + 1
as necessary, and z1 = (κχr)/p for the p case and z1 =
(κχr0)/(p + 1) for the (p + 1) case. From here we expand
around � → ∞, take r → r0, and obtain the divergency. The
calculations are best done with computer algebra; in the fol-
lowing we state the main result.

3. Result

We find that the D0 contribution to the stress almost takes
care of all the infinities described in Eqs. (C19) and (C21) with
only one term left:

Wθ
θ − Wθ

θ

∣∣
D0

= p3

w3

rn′′
∞(r) − n′

∞(r)

3κ2r2
. (D18)

If we think of the p summation as an integration and write p =
w cos ϑ and κr = w sin ϑ such that we get a two-dimensional
integral in polar coordinates with (large) radius w, then the
result (D18) leads to a logarithmic divergence in �. Using
Eq. (C18) we may also express the result as:

Wθ
θ − Wθ

θ

∣∣
D0

∼ p3

w3

2(βE + βM )

r
(D19)

for large κ in terms of the scattering amplitudes βE and βM

defined in Eq. (30). These scattering amplitudes characterize
the D1 waves of Eq. (29). In fact, we find that the leftover term
Wθ

θ − Wθ
θ |D0 is entirely accounted for by the contribution of

D1 to the stress. So, if we include D1 in the renormalization
procedure, then the stress becomes finite.

APPENDIX E: VECTOR SPHERICAL HARMONICS

In this Appendix we state the definitions, main relations,
and sum formulas for the vector spherical harmonics we use
in this paper.

1. Definition

According to Barrera et al. [67] the vector spherical
harmonics are defined as:

Y lm(θ, φ) = r̂Ylm(θ, φ),

�lm(θ, φ) = r × ∇Ylm(θ, φ),

�lm(θ, φ) = r∇Ylm(θ, φ), (E1)

where the Ylm are the usual spherical harmonics [65] and r̂ =
r/r. The vector spherical harmonics establish three orthogonal
vectors in three-dimensional space for equal lm, and they are
orthogonal functions on the unit sphere for different lm.

2. Decomposition

Any vector function V (θ, φ) on the unit sphere can be
decomposed into vector spherical harmonics:

V (θ, φ) =
∞∑

l=0

l∑
m=−l

[
AlmY lm(θ, φ) + Blm�lm(θ, φ)

+Clm�lm(θ, φ)
]

(E2)

with the coefficients given by [67]

Alm =
∫

V (θ, φ) · Y ∗
lm(θ, φ) d�,

Blm = 1

l (l + 1)

∫
V (θ, φ) · �∗

lm(θ, φ) d�,

Clm = 1

l (l + 1)

∫
V (θ, φ) · �∗

lm(θ, φ) d�. (E3)

3. Sum identities

In order to derive our results for the vacuum stress we make
use of several sum identities of the vector spherical harmonics
that are nigh impossible to find in the literature. Therefore
we list them here. They originate from the familiar sum
identity [65]

4π

2l + 1

l∑
m=−l

Ylm(θ1, φ1)Y ∗
lm(θ2, φ2) = Pl (cos γ ), (E4)

where γ denotes the angle between the two points (θ1, φ1) and
(θ1, φ2) on the unit sphere, with

cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2). (E5)
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Let us explain our procedure by giving an example: the sum of
�lm(θ, φ) ⊗ �lm(θ, φ)∗ over m. From definition (E1) follows

�lm(θ1, φ1) ⊗ �lm(θ2, φ2)∗

=

⎡
⎢⎣

0 0 0

0 ∂θ1∂θ2
1

sin θ2
∂θ1∂φ2

0 1
sin θ1

∂φ1∂θ2
1

sin θ1 sin θ2
∂φ1∂φ2

⎤
⎥⎦Ylm1Y

∗
lm2 (E6)

with Ylmi ≡ Ylm(θi, φi ). Hence we obtain

l∑
m=−l

�lm(θ1, φ1) ⊗ �lm(θ2, φ2)∗

=

⎡
⎢⎣

0 0 0

0 ∂θ1∂θ2
1

sin θ2
∂θ1∂φ2

0 1
sin θ1

∂φ1∂θ2
1

sin θ1 sin θ2
∂φ1∂φ2

⎤
⎥⎦2l + 1

4π
Pl (cos γ )

(E7)

from Eq. (E4). We take the limit γ → 0 and use for the kth
derivatives P(k)

l (1) the formula

P(k)
l (1) =

∏k
q=−k+1(l + q)∏k

q=1 2q
(E8)

that is easy to derive by induction. The result is given below,
and also the results for similar sum identities we have derived

with the same method:

l∑
m=−l

Y lm ⊗ Y ∗
lm =

⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦2l + 1

4π

l∑
m=−l

Y lm ⊗ �∗
lm = 0,

l∑
m=−l

Y lm ⊗ �∗
lm = 0,

l∑
m=−l

�lm ⊗ Y ∗
lm = 0,

l∑
m=−l

�lm ⊗ �∗
lm =

⎡
⎣0 0 0

0 1 0
0 0 1

⎤
⎦ l (l + 1)(2l + 1)

8π
,

l∑
m=−l

�lm ⊗ �∗
lm =

⎡
⎣0 0 0

0 0 1
0 −1 0

⎤
⎦ l (l + 1)(2l + 1)

8π
,

l∑
m=−l

�lm ⊗ Y ∗
lm = 0,

l∑
m=−l

�lm ⊗ �∗
lm =

⎡
⎣0 0 0

0 0 −1
0 1 0

⎤
⎦ l (l + 1)(2l + 1)

8π
,

l∑
m=−l

�lm ⊗ �∗
lm =

⎡
⎣0 0 0

0 1 0
0 0 1

⎤
⎦ l (l + 1)(2l + 1)

8π
(E9)

for θ0 = θ and φ0 = φ.
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