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Reliable modeling of weak antilocalization for accurate spin-lifetime extraction
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We examine models for the quantum-interference correction to the magnetoconductivity in two-dimensional
electron gases (2DEGs) with both Rashba and Dresselhaus spin-orbit coupling for their applicability to experi-
mental data fitting. In particular, we compare the Landau-quantized Cooperon approach, which is mostly only
numerically treatable, and the quasiclassical approximation that was recently employed to obtain an explicit
solution for arbitrary Rashba and Dresselhaus spin-orbit couplings [Marinescu et al., Phys. Rev. Lett. 112,
156601 (2019)]. It is found that the quasiclassical approximation yields significantly different results even to
the lowest order in the magnetic field and appears unsuitable for reliable parameter fitting. The discrepancy
emerges when a sum over Landau levels is replaced by an integral over wave vectors. Substantial improvement is
achieved by supplementing the quasiclassical model with the first two corrections given by the Euler-MacLaurin
formula for approximating a sum by an integral. Corresponding modifications are, however, only feasible in
special spin-orbit parameter configurations where the mixing of Landau bands is negligible and a closed-form
solution that accounts for Landau quantization is also available. Such a scenario appears in a parameter regime
where a persistent spin helix emerges and a transition between weak localization and weak antilocalization takes
place. Combining recent findings, we derive a generalized closed-form expression for the magnetoconductivity
correction applicable to generic 2DEGs that are grown along a crystal direction with at least two growth-direction
Miller indices equal in modulus. The result is a function of spin lifetimes of the long-lived spin textures and
valid close to the persistent-spin-helix regime. The accuracy of the derived formula is validated by comparing
with results from numerical diagonalization of the multiband Cooperon as well as a recently established Monte
Carlo-based real-space simulation in exemplary (001)-, (113)-, and (110)-2DEGs.

DOI: 10.1103/PhysRevB.104.235430

I. INTRODUCTION

In 1980, Hikami et al. discussed the importance of spin-
orbit (SO) coupling for the quantum-interference correction
to the conductivity [1]. In diffusive conductors without SO
coupling, the constructive interference of counter-propagating
electrons in closed-loop scattering paths leads to an enhanced
back-scattering probability and concomitantly a reduction
of the conductivity, known as weak localization [2,3]. This
effect, however, can be reversed by SO-induced spin de-
coherence, which is therefore called weak antilocalization.
Distinctive features of weak antilocalization appear as a low-
field negative magnetoconductivity with local extrema, related
to the competition of spin relaxation and magnetic dephasing.
Fitting experimental data from magnetoconductance measure-
ments with theoretical expressions has to date evolved into
a useful tool for extraction of SO coupling strength, spin
lifetime, and other diffusion and transport parameters and
can be employed to various kinds of semiconductor quantum
structures in diverse mesoscopic configurations [4–16]. Since
the fitting procedure needs to incorporate a rather extensive
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parameter space, the theoretical result should ideally be avail-
able in analytic or closed form.

While Hikami et al. considered spin-flip scattering at
impurities as the central mechanism for spin relaxation
(Elliott-Yafet mechanism) [17,18], in diffusive conductors
with broken inversion symmetry the D’yakonov-Perel’ [19]
spin relaxation due to a randomization of spin precession is
often more relevant. In III-V semiconductors with zinc-blende
structure, the broken inversion symmetry becomes manifest
in wave-vector (k) dependent spin splittings due to k-linear
Rashba [20,21] and k-linear and k-cubic Dresselhaus [22]
SO coupling. Computing the magnetoconductivity correction
with generic Rashba and Dresselhaus SO couplings is in gen-
eral only achieved numerically. Technically, such a calculation
requires a summation over the eigenvalues of the multiband
Cooperon propagator, which characterizes the closed-loop
quantum interference [23]. Since k-linear SO terms nontriv-
ially mix spin components and adjacent Landau levels, the
Cooperon eigenvalues can be obtained analytically only in a
few specific cases as summarized below.

(i) In bulk semiconductors with pure k-cubic Dresselhaus
SO coupling, Altshuler et al. derived a closed-form expression
for the magnetoconductivity correction [24]. (ii) 2DEGs with
[001] growth direction were first studied by Iordanskii et al.,
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who took into account k-linear and k-cubic Dresselhaus SO
coupling and derived an analytic formula for the magnetocon-
ductivity correction [25]. At the same time, the result is also
valid for pure Rashba SO coupling because the Hamiltoni-
ans for Rashba and k-linear Dresselhaus SO coupling can be
converted into each other by a unitary transformation [4,23].
(iii) Another special case was pointed out by Pikus et al.
[23] if in a (001)-2DEG the Rashba SO coefficient equals
the k-linear Dresselhaus SO coefficient and the k-cubic Dres-
selhaus SO coupling is neglected. This observation was later
adopted to (110)-2DEGs without Rashba SO coupling, which
has analogous properties [5]. Such special scenarios conform
to the formation of a persistent-spin-helix (PSH) symmetry,
enabling homogeneous and helical persistent spin textures
[26–29]. These spin textures exist in 2DEGs with at least two
growth-direction Miller indices equal in modulus if Rashba
and k-linear Dresselhaus SO coefficients are suitably matched
and the k-cubic Dresselhaus SO coupling is negligible [30].

Recently, there have been several attempts to bridge the
gap between these particular solutions and cover a wider SO
parameter regime. To avoid the complications arising from the
coupled Landau levels, an attractive approach is to assume
a quasiclassical approximation, in which the magnetic field
leads only to an additional dephasing term and the energy
spectrum remains quasicontinuous. Based on this approach,
Marinescu et al. presented an approximate expression for
the magnetoconductivity correction for arbitrary Rashba and
Dresselhaus SO couplings in a (001)-2DEG [31]. Other works
employed a perturbative expansion of the Cooperon eigen-
values based on the exact solvability at the PSH-symmetry
point [30,32]. Deviations from this symmetry can induce a
crossover from weak localization to weak antilocalization,
which is accompanied by significant changes in the mag-
netoconductivity [33]. The PSH-symmetry breaking arises
from the presence of k-cubic Dresselhaus SO coupling and
small changes of the ratio of k-linear SO coefficients and
limits the lifetime of the formerly persistent spin textures as
studied in detail for 2DEGs with general growth direction in
Refs. [30,34]. Kammermeier et al. [30] provided a general
closed-form expression near the PSH symmetry point for
arbitrarily-oriented 2DEGs with k-linear SO coupling utiliz-
ing the quasiclassical treatment of the magnetic field. Weigele
et al. [32] derived an analogous solution for a (001)-2DEG
but also accounting for k-cubic Dresselhaus SO coupling and
Landau quantization.

In this paper, we critically examine the matter of applica-
bility of these new models for accurate experimental param-
eter fitting. Although qualitatively the magnetoconductivity
correction obtained from the quasiclassical approximation and
the exact consideration of the Landau quantization exhibit
the same trends, we find significant quantitative discrepan-
cies. Remarkably, the deviations are most prominent for low
magnetic fields, where the magnetic dephasing time is much
longer than the inelastic scattering time. To lowest order,
the magnetoconductivity correction scales linearly with the
magnetic field in the quasiclassical approximation while it
scales parabolically in the Landau-level picture. The origin
of this discrepancy lies in the inaccuracy that occurs when
replacing a sum over Landau levels by an integral over wave
vectors. The error can be strongly diminished by including

in the quasiclassical model the first two corrections given
by the Euler-MacLaurin formula for integral approximation
of a sum. Not only does this allow to recover the correct
quadratic scaling of the magnetoconductivity in the low-field
limit, it also yields generally excellent agreement with the
Landau-level approach. Unfortunately, the applicability of
the Euler-MacLaurin formula is limited to situations when
the Landau levels decouple and the Cooperon spectrum is
purely quadratic in the wave vector, which does not hold for
general SO coupling and is inapplicable to correct the quasi-
classical model of Marinescu et al. [31], derived for arbitrary
Rashba and Dresselhaus SO couplings.

On the other hand, the model of Weigele et al. [32] that
approximates the Cooperon spectrum near the PSH-symmetry
but includes Landau quantization displays high accuracy in
a broad parameter range. The underlying reason is that in
this regime a gauge transformation allows to decouple the
Landau levels and the Cooperon spectrum resembles that of
a system without k-linear SO coupling, which can be treated
then analogously to case (i) of Altshuler et al. [24] Com-
bining the recent findings of Kammermeier et al. [30] and
Iizasa et al. [34], we can generalize the model of Weigele
et al. [32] to arbitrarily oriented 2DEGs in the vicinity of
the PSH regime. The derived magnetoconductivity correction
is given as a function of the finite lifetimes of the long-
lived spin textures, resulting from k-cubic Dresselhaus SO
coupling and small changes of the optimal ratio of k-linear
SO coefficients. We demonstrate the applicability of the ob-
tained closed-form expression explicitly by a comparison with
numerical diagonalization of the multiband Cooperon and
a Monte Carlo-based real-space simulation as developed by
Sawada et al. [35] for 2DEGs grown along [001], [113], and
[110] crystal directions. The exemplary (001)-2DEG corre-
sponds to the GaAs/AlGaAs quantum-well structure designed
in Ref. [36], where the closed-form expression was used for
all-electrical evaluation of the spin lifetimes. The extracted
values were in excellent agreement with results independently
obtained by exploring the weak-localization anisotropy in
wire geometries with in-plane magnetic field.

This paper is organized as follows. In Sec. II, we intro-
duce the low-energy Hamiltonian for a generic 2DEG with
at least two growth-direction Miller indices equal in modu-
lus, the arising long-lived spin textures as well as the weak
(anti)localization correction and its modifications in presence
of an out-of-plane magnetic field. The magnetoconductivity
correction in a system without spin-splitting is studied in
Sec. III, while Sec. IV focuses on (001)-2DEGs with SO
coupling. In Sec. V, we give an expression for the magne-
toconductivity correction for general 2DEGs near the PSH
symmetry point and discuss its applicability using several
examples in comparison with former models.

II. BASIC THEORY

A. Hamiltonian

Zinc-blende 2DEGs grown along a crystal direction with at
least two Miller indices equal in modulus enable the formation
of persistent homogeneous and helical spin textures, the latter
known as PSH [30]. Without loss of generality, we focus on
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a generic growth direction given by the unit vector n̂ lying
in the first quadrant of the [110]-[001] crystal plane, i.e., n̂ =
(η, η,

√
1 − 2η2) with η ∈ [0, 1/

√
2] and basis vectors point-

ing along the high-symmetry crystal directions [100], [010],
and [001]. For convenience, we define a coordinate system
such that x̂ and ŷ axes span the conduction plane of the 2DEG
while the ẑ axis corresponds to the quantum-well growth
direction, i.e., x̂ = (nz, nz,−2η)/

√
2, ŷ = (−1, 1, 0)/

√
2, and

ẑ ≡ n̂.
In the vicinity of the � point, the band structure of the

2DEG is described by the Hamiltonian

H = h̄2k2

2m
+ h̄

2
(�1 + �3) · σ (1)

with effective electron mass m, in-plane wave vector k =
(kx, ky), and the vector of Pauli matrices σ = (σx, σy, σz ). The
SO coupling is characterized by the SO fields

�1 = 2k

h̄

⎛
⎝ [α + β (1)(1 + 3η2)nz] sin ϕ

[−α + β (1)(1 − 9η2)nz] cos ϕ

−√
2β (1)η(1 − 3η2) sin ϕ

⎞
⎠ (2)

and

�3 = 2k

h̄
β (3)

⎛
⎝ (1 − 3η2)nz sin 3ϕ

−(1 − 3η2)nz cos 3ϕ

3
√

2η(1 − η2) sin 3ϕ

⎞
⎠, (3)

sorted in terms of first and third angular harmonics in the in-
plane wave vector, represented in polar coordinates, i.e., kx =
k cos ϕ and ky = k sin ϕ, with in-plane polar angle ϕ [30].

The first angular harmonic SO field �1 depends on the
coefficients of Rashba and effective k-linear Dresselhaus SO
coupling, α = γREz and β (1) = γD(〈k2

z 〉 − k2/4), respectively.
Both coefficients involve the material-specific bulk param-
eters γR,D. Assuming an approximately constant potential
gradient along the quantum-well growth direction ẑ, the
Rashba coefficient scales linearly with the electric-field com-
ponent Ez. The effective k-linear Dresselhaus SO coefficient
is predominantly determined by the width and structure of
the quantum well through the projection 〈k2

z 〉 on the lowest
bound state, which yields, for instance, 〈k2

z 〉 = (π/a)2 in an
infinite square-well potential of width a. Additionally, the
coefficient β (1) includes a small term ∝ k2, which originates
from the first angular harmonic part of the k-cubic Dressel-
haus SO coupling. The third angular harmonic part of the
k-cubic Dresselhaus SO coupling, yielding the field �3, is
distinguished by the prefactor β (3) = γDk2/4. As consequence
of the proportionality ∝ k2, both Dresselhaus coefficients β (1)

and β (3) are functions of the electron sheet density ns, which
at zero temperature is related to the Fermi wave vector as
kF = √

2πns. Since the first angular harmonic contribution of
the k-cubic Dresselhaus SO coupling only renormalizes the
magnitude of the k-linear Dresselhaus SO coupling, we follow
common practice and denote �1 as k-linear and �3 as k-cubic
SO fields for simplicity. In respect of D’yakonov-Perel’ spin
relaxation, it is practical to work with the ratios of the SO co-
efficients, for which we introduce the definitions �1 = α/β (1)

and �3 = β (3)/β (1).

B. Long-lived spin textures

The spatiotemporal evolution of a spin density in presence
of SO coupling has been intensively studied in different pa-
rameter regimes using semiclassical [37–40] or diagrammatic
[41–44] techniques.

We focus here on the diffusive regime with weak disor-
der and SO coupling, where the elastic mean free path is
much longer than the Fermi wavelength but much shorter than
spin-precession and all phase-breaking lengths (e.g., inelas-
tic scattering, magnetic dephasing). The scattering potentials
are considered spin-independent and temperature effects only
contribute to inelastic scattering processes by electron-phonon
interaction. Under these preconditions, the dynamic of a local
spin density s(r, t ) at position r and time t can be computed
by the spin-diffusion equation, which reads in reciprocal space
[30,34,45]

∂

∂t
s̃(q, t ) = −�̃sd(q) s̃(q, t ) (4)

with wave vector q and Fourier-transformed spin-density
s̃(q, t ) = ∫

d2r e−iq·rs(r, t ). The spin-diffusion operator �̃sd

for a generic 2DEG with the underlying Hamiltonian (1) was
computed in Refs. [30,34] and its explicit form is presented in
Appendix A.

Long-lived spin textures are determined by the minima in
the spectrum λl (l ∈ {0,±1}) of the spin-diffusion operator
�̃sd, corresponding to the D’yakonov-Perel’ spin-relaxation
rates. A special situation arises if the linear SO coefficients
fulfill the relation

�1 = �0 := (1 − 9η2)nz (5)

and the cubic Dresselhaus SO field vanishes, i.e., �3 = 0
[30]. (Note that the [001] growth direction has the addi-
tional solution with �1 = −1.) Such configurations establish
a PSH symmetry, in which the SO field �1 (�3 = 0) becomes
collinear with the vector

ûPSH = sgn(1 − 3η2)√
2 − 3η2

⎛
⎝−√

2nz

0
η

⎞
⎠, (6)

enabling the emergence of both homogeneous (homo) and
helical (PSH) spin textures with infinite lifetime, that are,

shomo = ±ûPSH, (7)

sPSH = (ŷ × ûPSH) cos(Q · r) − ŷ sin(Q · r), (8)

with spin-helix wave vector

Q = Q0

√
1 − 3η2/2|1 − 3η2| ŷ (9)

and Q0 = 4mβ (1)/h̄2 [30,34]. The homogeneous spin texture
is spin-polarized along the direction of the collinear SO field
while the helical texture performs a rotation in real space
perpendicular to the SO field axis.

For small parametric deviations from the ideal precon-
dition, for which the SO-field collinearity is only weakly
broken, the long-lived spin textures retain the real-space struc-
ture (7) and (8) but decay exponentially with the characteristic
lifetimes τhomo and τPSH [30,34]. Here, the spectrum of �̃sd

can be approximated as

λl = De
[
q2

x + (qy + l Q)2
] + �̃l , l ∈ {0,±1}, (10)
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where �̃±1 = 1/τPSH and �̃0 = 1/τhomo denote the spin-
relaxation rates

1

τPSH
= 4π2

τ0

[
3 − 17η2 + 85η4 − 171η6 + 108η8

8 − 12η2
�2

3

+ 1

8
(�1 − �0)2

]
, (11)

1

τhomo
= 4π2

τ0

[
n2

z (1 + 17η2 − 45η4 + 27η6)

4 − 6η2
�2

3

+ 1

4
(�1 − �0)2

]
. (12)

In expressions (11) and (12) we combined the results of
Refs. [30,34] under the assumption that the deviations from
PSH symmetry induced by k-linear and k-cubic SO terms are
small and independent of each other, i.e., �1 being close to
�0 and �3 � 1. Additionally, it is required that the magnitude
of the SO field �3 should much smaller than �1. Even though
this is normally the case, for growth directions very near [111]
the Rashba and k-linear Dresselhaus SO couplings suppress
each other and the total SO field can strongly differ from
collinearity.

The particular form of the spin-diffusion spectrum (10)
allows us to derive a closed-form expression for the magneto-
conductivity correction due to weak antilocalization in Sec. V.

C. Weak (Anti)localization

The weak (anti)localization correction to the longitudinal
conductivity in the diffusive regime, analogous to the spin-
diffusion equation in Sec. II B, is given by [1]

�σ = − 2e2

h

h̄De

V
∑
γ ,δ

∑
q

〈γ δ| C(q) |δγ 〉 , (13)

where De is the 2D diffusion constant, e > 0 the elemen-
tary charge, V the 2D volume, γ , δ ∈ {±1/2} the spin-1/2
indices and q ⊥ ẑ the total in-plane wave vector of the two
interfering electron waves. The Cooperon C (in units of
1/energy) describes the propagation of two electrons traveling
along closed-loop trajectories in opposite directions [46]. The
derivation of this expression is reviewed in detail, e.g., in
Ref. [47].

If Zeeman spin splitting is negligible, it is convenient to
select the singlet-triplet representation | j, mj〉 for total spin-1
particles, with total-spin quantum number j ∈ {0, 1} and mag-
netic quantum number mj ∈ {0,±1}, as the singlet ( j = 0)
and triplet ( j = 1) sectors decouple. In this representation, we
can express �σ in terms of the singlet and triplet eigenvalues,
ES and ET

l (l ∈ {0,±1}) of the inverse Cooperon C−1, which
reads

�σ = 2e2

h

h̄De

V
∑

q

[
1

ES (q)
−

∑
l

1

ET
l (q)

]
. (14)

While the singlet eigenvalue can be generally written as ES =
h̄Deq2, the triplet eigenvalues ET

l are sensitive to the SO
coupling as it mixes the triplet components. Without magnetic
field, the triplet sector of the inverse Cooperon C−1 is linked
to the spin-diffusion operator �̃sd by a unitary transformation

U via

C−1 = h̄ U �̃sdU
†, (15)

where U relates the triplet basis to spin-density components
(cf. Appendix B for more details) [43]. Therefore, the triplet
eigenvalues ET

l follow directly from the diagonalization of
�̃sd, which is given for a generic 2DEG with at least two
growth-direction Miller indices equal in modulus in Eq. (A1).

In 2D, the sum over q diverges as ln(q) for small and large
wave vectors. The standard regularization procedure consists
of selecting cutoff parameters for small and large q. The upper
limit qmax is naturally given by the shortest diffusion, which
means a single collision, where the distance is given by the
mean free path l . It is common to select qmax = 1/

√
Deτ ,

where τ is the elastic scattering rate.1 The lower limit is deter-
mined by the finite dephasing times due to inelastic scattering
(τφ) and magnetic field (τB). This cutoff is usually introduced
as additional positive energy shifts h̄/τφ,B in the eigenvalues
ES and ET

l of the inverse Cooperon. In the sum over q, the
vanishing wave vectors can then be included without causing
divergence.

D. Magnetoconductivity

Experimentally, the weak (anti)localization correction is
typically probed in response of a weak out-of-plane magnetic
field B ‖ ẑ, where Zeeman spin splitting is negligible. The
orbital contribution of the magnetic field suppresses the inter-
ference of electrons counter-propagating along time-reversed
paths by breaking of time-reversal invariance and introducing
an Aharonov-Bohm phase. It is, therefore, practical to define
the relative magnetoconductivity correction

�σR(B) := �σ (B) − �σ (0), (16)

with magnetic-field strength B := ‖B‖, that constitutes the
experimentally measured quantity.

In this paper, we juxtapose two distinct methods for the
inclusion of the phase-breaking effect of a weak perpendicular
magnetic field.

1. Landau-level picture

In the Landau-level (ll) picture, the magnetic field restricts
the electron motion to highly energy-degenerate Landau or-
bitals. Accordingly, the in-plane wave-vector components qx,y

are expressed in terms of ladder operators a† and a as

qx = (a + a†)/
√

2lB, qy = (a − a†)/i
√

2lB (17)

with the magnetic length lB = √
h̄/2eB of a particle with

effective charge 2e. The ladder operators a†(a) raise (lower)
the index of a Landau level |n〉 with n ∈ N0 and thereby lead
to the nonvanishing matrix elements

〈n − 1|a|n〉 = 〈n|a†|n − 1〉 = √
n, 〈n|a†a|n〉 = n (18)

1Although
√

Deτ = l/
√

2 is smaller than the mean free path l , in
the diffusive regime the exact value of the upper cutoff hardly affects
the final result.
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with [a, a†] = 1 and a |0〉 = 0. Thus the sum over in-plane
wave-vector q in Eqs. (13) and (14) is replaced by a trace
over Landau levels n multiplied by the degeneracy factor
g = V/2π l2

B, i.e.,

�σ (ll) = e2

2π2h̄

h̄De

l2
B

Nmax∑
n=0

〈n|
[

1

ES (q)
−

∑
l

1

ET
l (q)

]
|n〉 .

(19)

The positive energy shift of C−1 in the lowest Landau level
|0〉 without SO coupling can be interpreted as a magnetic-
dephasing cutoff

h̄

τB
:= 〈0|C−1|0〉 = 〈0|h̄Deq2|0〉 = 2eDeB (20)

entering each singlet and triplet channel. Moreover, using
the relation 〈n|q2|n〉 = (2n + 1)/l2

B � 1/Deτ , we identify the
upper cut-off Nmax in the sum over Landau levels as

Nmax ≈ h̄/4eBDeτ = τB/2τ, (21)

where the integer part has to be taken and we assumed Nmax �
1 ⇔ τB � τ according to the diffusive limit. This cut-off
is equivalent to the one used in Refs. [4,23]. Although the
maximum Landau level has to be an integer, we can treat
Nmax formally as a continuous parameter whenever an analytic
result for the finite sum over Landau levels exists.

The k-linear SO field �1 yields contributions in the
Cooperon triplet sector that are linear in the wave-vector
components qx,y [cf. the related spin-diffusion operator �̃sd

in Eq. (A1)]. It follows from the relations (17) and (18)
that the q-linear terms induce a mixing of Landau levels,
which usually inhibits the derivation of an explicit solution
for the Cooperon eigenvalues. Thus the diagonalization of the
4(Nmax + 1)-dimensional Cooperon, represented in the joint
Landau-spin-1 basis |n〉 | j, mj〉, constitutes the key obstacle
for finding an analytic solution for the magnetoconductivity
correction.

2. Quasiclassical approximation

The quasiclassical (qc) approximation assumes that the
magnetic field solely induces a dephasing rate 1/τB =
De/l2

B given by the Aharonov-Bohm phase difference of two
electrons counter-propagating in a closed loop [48]. The
dephasing rate yields a positive energy shift h̄/τB of the in-
verse Cooperon equivalent to the eigenvalue ES in the lowest
Landau orbital |0〉 [cf. Eq. (20)]. Since effects of Lan-
dau quantization in the Cooperon spectrum are neglected
otherwise, the wave-vector components qx,y remain quasicon-
tinuous variables. Thus the sum over q in �σ , Eq. (14), can
be replaced by a 2D integral in q-space, i.e.,

�σ (qc) = e2

2π2h̄

∫ 2π

0

dφ

2π

∫ 1/
√

Deτ

0
dq q

[
h̄De

ES (q) + h̄/τB

−
∑

l

h̄De

ET
l (q) + h̄/τB

]
, (22)

where we expressed q in polar coordinates with polar angle φ

and introduced an upper cutoff in the wave-vector integral due
to elastic scattering.

III. SPIN-DEGENERATE CASE

To elucidate the differences in outcomes of Landau-
quantization and quasiclassical approaches, let us first study
the simple situation of vanishing SO coupling. Here, the sin-
glet and triplet eigenvalues of C−1 are identical, i.e., ES =
ET

l = h̄Deq2 + h̄/τφ , where we included an energy shift due
to inelastic scattering.

A. Quasiclassical approximation

According to Eq. (22) the magnetoconductivity correction
takes the form

�σ (qc) = − e2

π2h̄

∫ 2π

0

dφ

2π

∫ 1/
√

Deτ

0
dq

Deq

Deq2 + τ−1
φ + τ−1

B

= − e2

2π2h̄
ν(0), (23)

with the function

ν(x) = ln

(
τ−1 + τ ′

φ (x)−1

τ ′
φ (x)−1

)
, (24)

depending on the total dephasing rate

1

τ ′
φ

(x) = 1

τφ

+ 1

τB
+ x. (25)

In the diffusive limit, where τ � x−1, τφ,B, we can simplify
the function (24) as

ν(x) ≈ ln

(
τ ′
φ (x)

τ

)
. (26)

For B = 0, Eq. (23) agrees with the well-known expression
for the zero-field weak localization [23,25].

Notice that the regularization of the logarithm in Eq. (24)
is physically meaningful: the lower limit constitutes the total
dephasing rate, the upper limit the total scattering rate, which
according to Matthiessen’s rule is the sum of all contribution
scattering rates. If we alternatively included the total dephas-
ing as lower limit of the integral as in Ref. [31], the upper
cut-off is solely given by the elastic scattering rate. In the limit
τφ,B � τ , both approaches are equivalent, though.

B. Landau-level picture

Taking into account the Landau quantization, �σ is given
by Eq. (19) and reads

�σ (ll) = − e2

2π2h̄

Nmax∑
n=0

(
n + 1

2
+ τB

2τφ

)−1

= − e2

2π2h̄
ξ (0), (27)

where

ξ (x) = �

(
3

2
+ τB

2

[
1

τ
+ 1

τφ

+ x

])

− �

(
1

2
+ τB

2

[
1

τφ

+ x

])
(28)
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FIG. 1. Ratio of magnetoconductivity correction in Landau-level
and quasiclassical picture �σ (ll)/�σ (qc) in dependence of the ratio
of inelastic scattering and magnetic dephasing times τφ/τB, propor-
tional to the magnetic-field strength B, without SO coupling. The
solid lines use the expressions (23) and (27), while the dashed lines
use approximations (26) and (29), valid in the diffusive limit, where
τ � τφ,B.

with the Digamma function �, being the logarithmic deriva-
tive of the Gamma function. Using the approximation

ξ (x) ≈ ln
( τB

2τ

)
− �

(
1

2
+ τB

2

[
1

τφ

+ x

])
, (29)

in the diffusive limit, τ � x−1, τφ,B, where we employed the
asymptotic expansion of the Digamma function �(x) ≈ ln x
for x → ∞, Eq. (27) agrees with the result in Ref. [49].
Notice that in other papers the expressions are often trans-
formed in magnetic-field scales, e.g., τB/2τφ = Bφ/B where
Bφ = h̄/4eDeτφ .

Without magnetic field, where τB → ∞, the function ξ

becomes identical to ν and σ (qc) equals σ (ll). In the following,
we see, however, that for finite magnetic fields differences
arise even in lowest order in B.

C. Comparison

Initially, we turn to the numerical comparison of the results
obtained by the quasiclassical and Landau-level approaches.
According to the diffusive regime, the elastic scattering time
should be much shorter than the phase-breaking time scales,
i.e., τ � τφ,B. Moreover, the effect of the magnetic field be-
comes appreciable if τB < τφ .

In Fig. 1, we plot the ratio of magnetoconductivity
correction in the Landau-level and quasiclassical picture
�σ (ll)/�σ (qc) in dependence of the ratio of inelastic scattering
and magnetic dephasing times τφ/τB, which is proportional
to the magnetic-field strength B. Depending on B and the
ratio τ/τφ , the deviation from unity can be significant. This
becomes particularly apparent when comparing the corre-
sponding relative magnetoconductivity corrections �σR (blue
and yellow lines) in Fig. 2. Interestingly, while in the moderate
magnetic-field regime, where τφ � τB both functions exhibit
qualitatively the same trend, in the limit B → 0 the tangents
grossly differ, leading to a large separation of both curves for
small magnetic fields.

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0
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FIG. 2. Relative magnetoconductivity correction in the Landau-
level (blue) and quasiclassical picture (yellow) for (a) τ/τφ = 10−2

and (b) 0.05 in dependence of the ratio of inelastic scattering and
magnetic dephasing times τφ/τB (proportional to the magnetic-field
strength B) without SO coupling. The solid lines are obtained using
the expressions (23) and (27). The red dotted line uses the quasi-
classical approximation with inclusion of the first Euler-MacLaurin
correction �σχ1 [Eq. (36)], the red dot-dashed line the first two cor-
rections �σχ [Eqs. (39)], and the black dashed line the first two
corrections but considers the diffusive limit, where τ � τφ,B.

To better understand the differences, we inspect the asymp-
totic limits of small and moderate magnetic fields.

1. Small magnetic fields: τB � τφ � τ

We find to second order in the magnetic field (1/τB ∝ B)

�σ (qc) → − e2

2π2h̄

[
ln

(τφ

τ

)
− τφ

τB
+ τ 2

φ

2τ 2
B

]
, (30)

�σ (ll) → − e2

2π2h̄

[
ln

(τφ

τ

)
− τ 2

φ

6τ 2
B

]
, (31)

which gives to lowest order in the magnetic field

�σ
(qc)
R → e2

2π2h̄

τφ

τB
, (32)

�σ
(ll)
R → e2

2π2h̄

τ 2
φ

6τ 2
B

. (33)
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FIG. 3. Relative magnetoconductivity correction in the Landau-
level (blue) and quasiclassical picture (yellow) for the asymptotic
limits of (a) small magnetic fields (τB � τφ � τ ) and (b) moderate
magnetic fields (τφ � τB � τ ) in dependence of the ratio of inelastic
scattering and magnetic dephasing times τφ/τB (proportional to the
magnetic-field strength B) without SO coupling. The solid lines are
obtained using the exact expressions (23) and (27), while the dashed
lines use the simplified form using the approximations (26) and
(29), valid in the diffusive limit, where τ � τφ,B. The dotted lines
correspond to the asymptotic expressions (32)–(35).

Since for small magnetic fields the logarithmic function in
�σ dominates, the ratio �σ (ll)/�σ (qc) in Fig. 1 approaches
unity for decreasing τ/τφ and B. Yet, the magnetoconductivity
exhibits a different scaling with the magnetic field in lowest
order (linear and quadratic), which explains the B-linear in-
crease for B → 0 in Fig. 1 and the large discrepancy in Fig. 2.
The asymptotic functions for �σR are displayed as dotted
lines in Fig. 3(a), which corresponds to Fig. 2(a) with focus
on low values of τφ/τB. The low-field behavior of �σ

(ll)
R was

already mentioned by Hikami et al. [1]. Noteworthy, although
the underlying mechanisms may differ, other authors also
reported a B-parabolic scaling in the low-field magnetocon-
ductivity in thin films, wires, and quantum dots [50–53].

2. Moderate magnetic fields: τφ � τB � τ

For moderate magnetic fields, we obtain

�σ
(qc)
R → e2

2π2h̄
ln

(τφ

τB

)
, (34)

�σ
(ll)
R → e2

2π2h̄

[
ln

(τφ

τB

)
+ ln 2 + �(1/2)

]
. (35)

While here the B-dependence is logarithmic in both quasiclas-
sical approximation and Landau-level picture, a quantitative
agreement is only found if ln(τφ/τB) � | ln 2 + �(1/2)| ≈

1.3. This requirement is difficult to fulfill in experiment since
τ � τB must hold at the same time. For instance, even for
τφ/τB = 102, we obtain only ln(τφ/τB) ≈ 4.6, which is not
considerably larger than 1.3. The asymptotic functions for
�σR are displayed as dotted lines in Fig. 3(b), which corre-
sponds to Fig. 2(a) with focus on moderate values of τφ/τB.

D. Euler-MacLaurin corrections to the quasiclassical
approximation

Comparing the magnetoconductivity corrections in expres-
sions (23) and (27), it becomes clear that �σ (qc) is obtained
from �σ (ll) by performing the substitution n → q2DeτB/2
and replacing the sum over Landau levels by an integral
over the wave vector. Since integration and summation are
mathematically not identical, we explore whether a more ac-
curate agreement can be obtained using corrections given by
the Euler-MacLaurin formula, which describes the differences
between sum and integral [54]. Details about this formula are
given in Appendix C. We find that adding the leading two cor-
rections �σχ1 and �σχ2 to the quasiclassical formula �σ (qc)

for the magnetoconductivity correction provides an excellent
approximation of �σ (ll) without performing the explicit sum
over Landau levels. The correction terms are

�σχ1,2 = − e2

2π2h̄
f1,2(0) (36)

with the functions

f1(x) = τ ′
φ (x)[2τ + τ ′

φ (x)]

τB[τ + τ ′
φ (x)]

, (37)

f2(x) = τ ′
φ (x)3[2τ + τ ′

φ (x)]

3τ 2
B[τ + τ ′

φ (x)]2
(38)

and the total dephasing rate 1/τ ′
φ (x) as defined in Eq. (25).

Adding both corrections, we define

�σχ := �σχ1 + �σχ2 = − e2

2π2h̄
f (0), (39)

with f = f1 + f2, which can be approximated as

f (x) ≈ τ ′
φ (x)

τB
+ τ ′

φ (x)2

3τ 2
B

(40)

in the diffusive limit, where τ � x−1, τφ,B.
For small magnetic fields (τB � τφ), we thus have in the

diffusive limit

�σχ → − e2

2π2h̄

(
τφ

τB
− 2τ 2

φ

3τ 2
B

)
, (41)

which when added to �σ (qc) [Eq. (30)] equals �σ (ll)

[Eq. (31)] in the Landau-level picture. More specifically, the
first correction cancels the B-linear term, the second cor-
rection allows to recover the accurate parabolicity. Hence,
including the first two corrections of the Euler-MacLaurin
formula to the integral approximation in the quasiclassical
approach enables to restore the appropriate low-field scaling
of the magnetoconductivity given by the Landau-level picture.
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With regard to the moderate-magnetic-field regime (τB �
τφ), we obtain in the diffusive limit

�σχ → − e2

2π2h̄

4

3
. (42)

Adding this term to �σ (qc) [Eq. (34)] closes the conductivity
shift compared to �σ (ll) in Eq. (35) since ln 2 + �(1/2) ≈
−4/3.

In Fig. 2, we display the impact of the Euler-MacLaurin
corrections to the relative magnetoconductivity correction
�σ

(qc)
R in quasiclassical approximation (yellow solid line) for

different ratios of τ/τφ . The red dotted lines include the first
correction �σχ1 , the red dot-dashed lines the first two correc-
tions �σχ , and the black dashed line the first two corrections
�σχ with the approximation of function f in diffusive limit,
Eq. (40). While the first correction �σχ1 provides already
large enhancement of the magnetoconductivity profile, excel-
lent agreement with the exact result �σ

(ll)
R (blue solid line) is

found when both Euler-MacLaurin corrections are taken into
account. The accuracy of the approximation of �σχ in the
diffusive limit (black-dashed line) increases with reduction of
the ratio τ/τφ .

IV. (001)-2DEG WITH SPIN SPLITTING

In the following, we turn to the more intricate scenario
of a zinc-blende 2DEG with both Rashba and Dresselhaus
SO coupling and account for the arising D’yakonov-Perel’
spin relaxation [19]. For a quantum-well grown along the
[001] high-symmetry crystal direction, the triplet sector of the
inverse Cooperon can be written as

C−1

Deh̄
= q2 + qxQ0(1 − �1)Sy + qyQ0(1 + �1)Sx

+ Q2
0

4

{[
(1 + �1)2 + �2

3

]
S2

x + [
(1 − �1)2 + �2

3

]
S2

y

}
,

(43)

where we used its relation (15) to the spin-diffusion operator
�̃sd, Eq. (A1), which is evaluated at η = 0 and expanded in
spin-1 basis matrices Sx,y,z, listed in Appendix D.

As a result of the SO coupling, the Cooperon is gener-
ally nondiagonal in the spin-1 triplet subspace. In addition,
the Rashba and effective k-linear Dresselhaus SO field �1,
Eq. (2), yields contributions in the inverse Cooperon that are
also linear in the wave vector qx,y and thus induce a mixing of
adjacent Landau levels, i.e., in general we have 〈n ± 1|C|n〉 �=
0. The latter property makes an analytic treatment particularly
challenging as the simple association n = q2l2

B/2 between
wave-vector and Landau-level quantum number is not possi-
ble for linear q. Consequently, exact solutions exist only in a
very limited number of scenarios: (i) pure k-cubic Dresselhaus
SO coupling (α = β (1) = 0), (ii) either Rashba (β (1,3) = 0) or
Dresselhaus SO coupling (α = 0), or (iii) for PSH symmetry
(�1 = ±1 and �3 = 0).

In the following, we briefly review all three cases sepa-
rately. The last case is then used in the next section as basis to
obtain an approximate closed-form expression for the magne-
toconductivity correction of an arbitrary confined 2DEG near
the PSH-symmetry point.

A. Pure cubic Dresselhaus SO coupling

The impact of k-cubic Dresselhaus SO coupling on the
magnetoconductivity correction was first studied by Altshuler
et al. [24] in view of bulk semiconductors but the transfer
to 2DEGs is straightforward [4,25]. Although a mere k-cubic
spin-splitting is not very common in 2DEGs, this is the only
case that enables the derivation of an exact closed-form ex-
pression for the magnetoconductivity correction displaying
weak-antilocalization features. Since the k-cubic Dressel-
haus SO coupling yields only q-independent terms in the
inverse Cooperon (43), the Landau levels are decoupled and
the calculation follows analogously to the spin-degenerate
case of the previous section, apart from an the inclusion of
finite spin-relaxation rates in each triplet channel. Conse-
quently, this example is ideally suited for comparison between
Landau-level and quasiclassical approaches in the weak-
antilocalization regime.

Diagonalizing the operator (43) for α = β (1) = 0, we find
the triplet eigenvalues

ET
l /h̄ = Deq2 + �l , l ∈ {0,±1}, (44)

where the gaps �±1 = 1/τs3 and �0 = 2/τs3, with

1/τs3 = 2τ (kF β (3)/h̄)2, (45)

correspond to spin-relaxation rates of homogeneous spin
textures with in-plane and out-of-plane spin polarizations, re-
spectively. The considerations of the previous section remain
valid if we replace 1/τφ → 1/τφ + �l with l ∈ {0,±1} in the
three triplet channels. Since the sum over spin indices is now
performed explicitly, each singlet and triplet contribution to
the conductivity gains an additional prefactor ±1/2 with a
positive sign for each triplet and a negative sign for the singlet
channel [cf. Eq. (14)].

In analogy with Eqs. (23) and (27), the magnetoconductiv-
ity corrections in quasiclassical and Landau-level picture read

�σ (qc) = − e2

4π2h̄

[
ν
(
2τ−1

s3

) + 2ν
(
τ−1

s3

) − ν(0)
]

(46)

and

�σ (ll) = − e2

4π2h̄

[
ξ
(
2τ−1

s3

) + 2ξ
(
τ−1

s3

) − ξ (0)
]
, (47)

respectively. Including the first two Euler-MacLaurin cor-
rections amounts to replacing ν → ν + f in Eq. (46). The
relative magnetoconductivity obtained by formula (47) in the
diffusive limit is equivalent to expression (39) in Ref. [4].

In Fig. 4, we plot the relative magnetoconductivity cor-
rection in the Landau-level (blue) and quasiclassical picture
(yellow), using the Eqs. (46) and (47), in dependence of the
ratio of inelastic scattering and magnetic dephasing times
τφ/τB, which is proportional to the magnetic-field strength B,
for pure k-cubic Dresselhaus SO coupling. Panels (a)–(c) use
different ratios of τs3/τφ as shown in the insets. The dashed
lines in (a) correspond to the case without SO coupling. As
expected from the observations in the previous section, we see
that there is a large discrepancy in the shape of the curves and,
in particular, the location of the minimum, which is essential
in experimental data fitting for an accurate extraction of SO
parameters and spin lifetimes.
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FIG. 4. Relative magnetoconductivity correction in the Landau-
level (blue) and quasiclassical picture (yellow) obtained by Eqs. (46)
and (47) in dependence of the ratio of dephasing and magnetic
dephasing times τφ/τB (proportional to the magnetic-field strength
B) with pure k-cubic Dresselhaus SO coupling. The ratio of elastic
and inelastic scattering times is chosen as τ/τφ = 10−3. (a)–(c) use
different ratios of spin lifetime and inelastic scattering time τs3/τφ

as shown in the inset. The dashed lines in (a) correspond to the case
without SO coupling.

Figure 5 displays the relative magnetoconductivity cor-
rection in the Landau-level approach (blue) together with
the quasiclassical approximation but taking into account the
first two Euler-MacLaurin corrections (black-dashed) in the
diffusive limit, where τ � τφ,B,s3. We select τ/τφ = 10−3

and vary the ratio τs3/τφ , where the values are displayed
next to the corresponding curves. Including the first two
Euler-MacLaurin corrections, allows to obtain the magneto-
conductivity minimum with high accuracy, contrary to the
simplified quasiclassical approach.

B. Rashba or Dresselhaus SO coupling

The case of pure Dresselhaus SO coupling, explored
by Iordanskii et al. [25], is a special one as the ro-

0 2 4 6 8 10
�0.2

�0.1

0.0

0.1

0.2

0.3

FIG. 5. Relative magnetoconductivity correction in the Landau-
level (blue) resulting from Eq. (47) and quasiclassical picture taking
into account the first two corrections of the Euler-MacLaurin for-
mula (black dashed) in the diffusive limit, where τ � τφ,B,s3, using
Eqs. (46) and substituting ν → ν + f with f obtained from Eq. (40).
We select ratio of elastic and inelastic scattering times τ/τφ = 10−3

and vary the ratio of spin lifetime and inelastic scattering time τs3/τφ

(the values are displayed next to the corresponding curves).

tational symmetry of the spin splitting permits reorga-
nizing the Landau-spin-1 basis |n〉 | j, mj〉 that it block-
diagonalizes the Cooperon. In particular, if we disregard
the generally decoupled singlet channel, the basis subsets
{|n − 1〉 |1, 1〉 , |n〉 |1, 0〉 , |n + 1〉 |1,−1〉}, where n � 1, split
the Cooperon into noninteracting 3 × 3 blocks that can be
diagonalized analytically. The remaining states at the bottom
of the spectrum {|1〉 |1,−1〉 , |0〉 |1, 0〉 , |0〉 |1,−1〉} have to
be included separately as the corresponding basis subsets
would contain unphysical states with negative Landau-level
quantum number. Similarly, since the sum runs over Landau
levels n ∈ [1, Nmax], the state |Nmax + 1〉 |1,−1〉 is taken into
account while |Nmax〉 |1, 1〉 is excluded. However, the arising
error can be ignored as the contribution of the states |Nmax〉 to
the conductivity is of the order N−1

max smaller than those at the
bottom of the spectrum and thus generally negligible in the
diffusive regime, where Nmax � 1.

Following this recipe, we obtain for the magnetoconduc-
tivity correction

�σ (ll) = e2

4π2h̄

{
ξ (0) − 1

a0
− τB/2τs + 2a0 + 1

a1(a0 + τB/2τs) − τB/τs1

−
Nmax∑
n=1

3a2
n+anτB/τs−1−(2n+1)τB/τs1

an+1an−1(τB/2τs+an)−τB/τs1[an(2n+1)−1]

}
,

(48)

where an = n + 1/2 + τB/2τs + τB/2τφ . The spin-relaxation
rate 1/τs = 1/τs1 + 1/τs3, where

1/τs1,s3 = 2τ
(
kF β (1,3)/h̄

)2
, (49)
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describes the decay of a spin texture that is homogeneously
polarized in the quantum-well plane. The first term in Eq. (48)
constitutes the singlet contribution. The second and third term
are due to the separately considered triplet states at the bottom
of the spectrum while the last term sums over the remaining
reciprocal eigenvalues arising from the decoupled 3 × 3 triplet
blocks. Without k-linear Dresselhaus SO coupling, i.e., for
1/τs1 = 0, this expression agrees with Eq. (47) in the diffusive
limit. Since the Rashba and k-linear Dresselhaus Hamiltoni-
ans are related by a unitary transformation, the formula (48)
is also valid for pure Rashba SO coupling (although a different
basis subset for block-diagonalization must be used) [23].
To obtain the corresponding expression for pure Rashba SO
coupling, we must set β (3) = 0, i.e., τs → τs1, and replace β (1)

by the Rashba coefficient α.
Owing to Landau quantization, the magnetoconductivity

correction (48) is not a smooth function of B. To remove
fluctuations related to the stepwise variation of Nmax with B,
we can add and subtract in the sum of Eq. (48) the term 3/n,
which corresponds to the asymptotic contribution for n → ∞
of all three triplet channels. After evaluation of the sum, the
added term yields the conductivity shift −3e2[�(Nmax + 1) +
γ ]/4π2h̄, where γ denotes the Euler-Mascheroni constant and
Nmax can now be formally treated as a continuous quantity.
The subtracted term, on the other hand, allows extending
the sum to infinity since both summands approximately can-
cel each other for n > Nmax � 1. If we further employ the
asymptotic expansion of the digamma functions, we recover
Iordanskii et al.’s original expression for the magnetoconduc-
tivity correction, Eq. (13) in Ref. [25].

Even though in the special scenario of either pure Dressel-
haus or pure Rashba SO coupling an analytic expression for
the magnetoconductivity correction can be obtained, the re-
sult still requires a tedious summation over all—in Iordanskii
et al.’s original result even infinite—Landau levels. Hence, the
technical applicability of the formula for experimental data
fitting is limited.

C. Cooperon in case of PSH symmetry

The particular structure of the Cooperon spectrum in case
of PSH symmetry was first pointed out by Pikus et al. [23]
Setting �3 = 0 and �1 = 1 in the operator (43), the inverse
Cooperon can be written as

C−1/Deh̄ = q2
x + (qy + Q0Sx )2, (50)

and similarly for �1 = −1 if the x and y components of q and
S are interchanged. In the eigenbasis |1, m′

j〉 of Sx the three
triplet states decouple yielding the eigenvalues

C−1 |1, m′
j〉 /Deh̄ = [

q2
x + (qy + m′

jQ0)2] |1, m′
j〉 . (51)

The physical origin for this decoupling is the well-defined spin
quantization axis due to the SO-generated effective magnetic
field that is collinear in k space on the Fermi circle. If q varies
continuously, the spectrum consists of three parabolas where
one is centered at q = 0 while the other two are displaced
by q = ±Q0ŷ. The minima correspond to the vanishing spin-
relaxation rates of the persistent spin textures (7) and (8) for
η = 0.

In the computation of the magnetoconductivity, the wave-
vector shift in Eq. (51) can be neglected since the commu-
tation relations [qx, qy] do not change when qy is displaced
by m′

jQ0 and the modifications in the upper cutoff are irrele-
vant in the diffusive regime, where Q0 � 1/

√
Deτ . The latter

represents the usual precondition for the D’yakonov-Perel’
mechanism, which requires that the spin-precession length
should be much longer than the mean free path. As result of
the absence of q-linear terms, the Landau levels are decoupled
and magnetoconductivity correction can be analogously cal-
culated as in the case of pure k-cubic Dresselhaus SO coupling
(cf. Sec. IV A). Since the Cooperon spectrum is gap-less, the
inferred expression for the magnetoconductivity correction
resembles that of a system without SO coupling and exhibts
weak-localization characteristics.

Initially, such situation appears to be not very useful as for
experimentally extracting SO-related parameters the weak-
antilocalization features with the typical local extrema in the
negative magnetoconductivity are essential. However, we can
use the exact solvability at the PSH-symmetry as a basis for a
perturbative expansion of the Cooperon spectrum, providing
analogous structure but including small spin-relaxation gaps
due to the finite lifetime of the long-lived spin textures. The
resulting magnetoconductivity expression turns out to be a
good approximation even in a parameter regime where a tran-
sition to weak-antilocalization has already taken place and is
therefore very helpful for experimental data fitting.

V. GENERAL 2DEG NEAR PSH SYMMETRY

It was demonstrated in Ref. [30] that a PSH symmetry
generally exists in 2DEGs if the quantum-well growth di-
rection has at least two Miller indices equal in modulus, the
Rashba and k-linear Dresselhaus coefficients α and β (1) are
suitably matched, and the k-cubic Dresselhaus coefficient β (3)

vanishes. Small deviations from that symmetry either due to a
misalignment of Rashba and k-linear Dresselhaus coefficients
or due to the presence of finite k-cubic Dresselhaus SO cou-
pling induce finite spin-relaxation rates 1/τhomo and 1/τPSH

[Eqs. (12) and (11)] of the otherwise persistent homogeneous
and helical spin textures (cf. Sec. II B).

As shown in Eq. (10), near the PSH-symmetry point
the spectrum of the spin-diffusion operator (and therewith
the spectrum of the inverse Cooperon) can be approximated
by three parabolas analogously to expression (51) but with
gapped minima determined by the finite spin-relaxation rates
of the long-lived spin textures. Following the reasoning of
the previous section, we can neglect the wave-vector shift Q
and write the eigenvalues of the triplet sector of the inverse
Cooperon for a 2DEG grown along unit vector n̂ as

ET
l /h̄ ≈ Deq2 + �̃l , l ∈ {0,±1}, (52)

with the gaps �̃±1 = 1/τPSH and �̃0 = 1/τhomo. The simpli-
fied Cooperon spectrum now allows to compute a closed-form
expression for the magnetoconductivity correction that reads
in the Landau-level picture

�σ (ll) = e2

4π2h̄

[
ξ (0) − ξ

(
τ−1

homo

) − 2ξ
(
τ−1

PSH

)]
. (53)
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Using the approximation (29) for ξ in the diffusive limit (τ �
τφ,B,homo,PSH) and considering a [001] quantum-well growth
direction (η = 0), Eq. (53) is equivalent to the one recently
obtained by Weigele et al. in Ref. [32].

As analogously shown in Sec. IV A, we may alternatively
use the quasiclassical approximation and include the first two
Euler-MacLaurin corrections, which amounts to substituting
ξ → ν + f in Eq. (53). Even though the use of the improved
quasiclassical expression seems not to offer a practical ad-
vantage for fitting, the function ν + f unlike ξ does not
contain any special functions, which can be useful for analytic
purposes. (The function ξ depends on the Digamma func-
tion, which—being the logarithmic derivative of the Gamma
function—is strictly speaking not a closed-form expression.)

In the following, we give examples to validate the applica-
bility of Eq. (53) and compare with previous models.

A. Model comparison for a realistic (001)-2DEG

1. Weakly broken PSH symmetry

In Ref. [36], the experimentally extracted magnetocon-
ductance profile of a (001)-2DEG in a GaAs/AlGaAs
heterostructure was fitted by the approximate magnetocon-
ductivity expression (53) for parameters in the vicinity of the
PSH symmetry. Thereby, the authors achieved an electrical
evaluation of the spin-relaxation rates of both homogeneous
and helical long-lived spin textures simultaneously. Note
that this constitutes an advantage over, e.g., optical spin-
orientation measurements, where only the helical spin lifetime
is accessible [29]. The accuracy of the obtained rates has been
independently verified by inspection of the weak-localization
anisotropy in wire geometries under application of an in-plane
magnetic field and extracting SO coefficients following the
method of Refs. [55,56].

To prove the accuracy and usefulness of Eq. (53), we
show that for the device parameters in line with the inves-
tigations in Ref. [36], the formula (53) agrees well with the
full numerical calculation by diagonalizing the operator (43)
in the Landau-spin-1 basis.2 For additional validation, we
compare also with the results obtained by a Monte Carlo-
based real-space simulation as introduced by Sawada et al.
in Ref. [35]. Here, the conductivity correction is determined
by considering the phase-breaking effect of magnetic field and
SO coupling on the return probability of electrons propagating
along predetermined closed-loop trajectories. As this method
does not set any precondition on the relation of scattering and
phase-breaking time scales, it is also valid beyond diffusion
approximation. The latter regime has also been discussed an-
alytically but doesn’t allow for closed-form expressions for
the magneto-conductivity [57,58].

In the following, we assume an elastic scattering time
τ = 1.53 ps, inelastic scattering time τφ = 2.33 ns, effec-
tive mass m = 0.067me of GaAs with bare electron mass

2To confirm the correctness of our numerical calculations, we re-
produced Figs. 1 and 2 of Pikus et al. in Ref. [23], who performed
analogous numerical calculations but used the extension of the sum-
mation Nmax → ∞ equivalently to Iordanski et al.’s approach to
smoothen their curves (cf. Sec. IV B).

me, electron sheet density ns = 3.0 × 1015 m−2, k-linear and
k-cubic Dresselhaus SO coefficients β (1) = 1.9 meV Å and
β (3) = 0.4 meVÅ, respectively.3 In the experiment, the k-
cubic Dresselhaus SO coupling breaks the PSH symmetry
only weakly such that the weak-localization features are still
observable for the PSH condition �1 = 1 for Rashba and
k-linear Dresselhaus coefficients. A crossover from weak lo-
calization to weak antilocalization is however achieved by an
additional variation of the ratio �1 in the range [0.5,3].

In Fig. 6(a), we display the resulting relative magnetocon-
ductivity correction obtained by the approximate closed-form
expression (53) near the PSH regime (smooth colored solid
lines), the exact numerical calculation in the Landau-spin-
1 basis (discontinuous colored solid lines), and the Monte
Carlo-based real-space simulation [35] (black dashed lines).
The different colors correspond to distinct ratios �1 as
indicated by the plot legend. The numerical data from diag-
onalizing the multiband Cooperon exhibits jumps due to the
step-wise change of the maximum Landau-level Nmax with
B, where the width of steps becomes wider with increasing
magnetic field. We see that all three approaches show very
good agreement. In particular, the characteristic magnetocon-
ductivity minima that are essential for a reliable spin-lifetime
extraction are well reproduced. Hence, the utilization of ex-
pression (53) for fitting experimental data as done in Ref. [36]
is indeed suitable.

2. General spin-orbit parameter configurations

For SO parameter configurations far from PSH symmetry,
the expression (53) is no longer valid. In the recent paper
of Marinescu et al. [31], a magnetoconductivity model for
arbitrary ratios of Rashba and Dresselhaus SO coupling was
presented. The derivation involves, on the one hand, approx-
imations of the Cooperon spectrum wrt to the SO coupling,
on the other hand, a quasiclassical treatment of the magnetic
field with the assumption of quasicontinuous Cooperon bands.
While these simplifications enabled an analytical integration
over wave-vector magnitude q [cf. Eq. (22)], the final result
further necessitates the evaluation of an angular integral and
is thus not in closed form. The authors used a successful
comparison with experiment for model validation.

Here, we test the accuracy of Marinescu et al.’s mag-
netoconductivity model, Eq. (19) in Ref. [31], in a GaAs
(001)-2DEG with the same parameter configurations as above
but with the ratio �1 in the range [0,1]. This regime includes
the special case of pure Dresselhaus SO coupling (�1 = 0),
which is far from PSH symmetry and allows for the particular
analytic expression (48), yielding the well-known formula
of Iordanskii et al. [25]. In Fig. 6(b), we compare the rela-
tive magnetoconductivity correction computed by Marinescu
et al.’s formula (colored solid lines),4 the full numerical
calculation by diagonalization of operator (43) in the Landau-

3Note that Ref. [36] defines the k-linear and k-cubic Dresselhaus
coefficient as β1 and β3, respectively, which are related by β (1) =
β1 − β3 and β (3) = β3 to the definitions in the present paper.

4To ensure the correct implementation of Marinescu et al.’s for-
mula, we numerically reproduced Fig. 2 in Ref. [31].
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FIG. 6. Relative magnetoconductivity correction for a GaAs (001)-2DEG corresponding to the experimental setup in Ref. [36] with
elastic (inelastic) scattering time τ = 1.53 ps (τφ = 2.33 ns), effective mass m = 0.067me with electron mass me, electron density ne =
3.0 × 1015 m−2, and k-linear and k-cubic Dresselhaus SO coefficients β (1) = 1.9 meVÅ and β (3) = 0.4 meV Å, respectively. The ratio of
Rashba and k-linear Dresselhaus coefficients α and β (1) is varied in the range [0.5, 3] in (a) and [0, 1] in (b) as indicated by the distinct colors
in the plot legends. The colored discontinuous lines in (a) and dots in (b) correspond to full numerical calculation of �σR by diagonalization of
the operator (43) in the Landau-spin-1 basis. The black dashed lines display the result obtained by a Monte Carlo-based real-space simulation as
developed by Sawada et al. in Ref. [35], which also applies beyond the diffusive regime. The numerical data is compared with the closed-form
expression (53) in (a) and with Eq. (19) of Ref. [31] derived by Marinescu et al. in (b) (colored solid lines). The additional gray solid line in
(b) is computed by Iordanski et al.’s analytic formula derived in Ref. [25] and reviewed in Sec. IV B.

spin-1 basis (colored dotted lines), the Monte Carlo-based
real-space simulation [35] (black dashed lines), and Iordankii
et al.’s analytic result, Eq. (13) in Ref. [25], (gray solid line).
Both numerical approaches and the result by Iordanskii et al.,
in the case of pure Dresselhaus SO coupling, show perfect
agreements. On the contrary, we note a significant discrepancy
with Marinescu et al.’s formula for SO parameters far as
well as close to PSH symmetry. Similar disagreement can
be found when using the magnetoconductivity expression of
Kammermeier et al. in Ref. [30], limited to k-linear SO terms
and the vicinity of the PSH regime, because it also employs
the quasiclassical approximation (here not shown).

In summary, among the available analytic expressions for
the magnetoconductivity correction in (001)-2DEGs there are
only two models that enable accurate data extraction from
experiment. Formula (53) can be used close to the PSH
symmetry, where Rashba and effective k-linear Dresselhaus
coefficients are of similar order, and formula (48), or the en-
suing expression of Iordanskii et al. [25], when either Rashba
or Dresselhaus SO coupling is negligible.

B. Exemplary 2DEGs grown along [113] and [110]

To underline the applicability to other growth directions
and encourage further experimental studies, we demonstrate
now the results for two exemplary (113)- and (110)-2DEGs,
which are particularly interesting for the following reasons.

In Ref. [34], it was theoretically predicted that the PSH-
lifetime limitation due to the k-cubic Dresselhaus coefficient

is minimized in quantum wells with a [225] low-symmetry
growth direction. Although such quantum wells are rather
unusual, a [225] growth direction can be approximated by
the [113] growth direction, which has been realized in ex-
periment and according to the results in Ref. [34] should
yield a similarly strong PSH-lifetime enhancement. For in-
stance, quantum wells grown along [113] have been reported
to exhibit long hole-spin-relaxation times [59,60] and recently
gained notable attention due to large hole g-factor anisotropy
[61,62]. The PSH-symmetry point for a (113)-2DEG corre-
sponds to a small ratio of Rashba and k-linear Dresselhaus
coefficients �0(η = 1/

√
11) ≈ 0.16.

In a (110)-2DEG, the PSH symmetry is generated in the ab-
sence of Rashba SO coupling, that is, �0(η = 1/

√
2) = 0. The

resulting uniaxial SO field has only components perpendicular
to the quantum-well plane. Spin lifetimes in (110)-2DEGs
have been experimentally studied by means of optical spin-
orientation measurements [63–65]. Since optically the spins
are typically polarized perpendicular to the quantum-well,
only the homogeneous persistent spin textures can be ad-
dressed in these systems. Probing lifetime and dynamics of
a PSH would, however, require a spin excitation parallel
to the quantum-well plane as the PSH precesses about the
axis of the SO field, which is experimentally difficult to
achieve. Chen et al. circumvented this issue by manipulating
the spin-quantization axis through the application of a tilted
magnetic field with in-plane and out-of-plane components and
performing space and time-resolved Kerr-rotation measure-
ments [65]. Using the manifestation of the PSH lifetime in the
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FIG. 7. Relative magnetoconductivity correction for a hypothetical GaAs 2DEG with a quantum-well growth direction along [113] in
(a) and [110] in (b). As system parameters, we selected the elastic (inelastic) scattering time τ = 1.53 ps (τφ = 2.33 ns), effective mass m =
0.067me with electron mass me, electron density ne = 3.0 × 1015 m−2, and k-linear and k-cubic Dresselhaus SO coefficients β (1) = 8.8 meVÅ
and β (3) = 0.4 meVÅ, respectively. The ratio of Rashba and k-linear Dresselhaus coefficients α and β (1) is varied in the range [0.5, 3] in
(a) and [0, 0.3] in (b) as indicated by the distinct colors in the plot legends. The colored dots correspond to full numerical calculation of �σR

using the operator (A1) for (a) η = 1/
√

11 and (b) η = 1/
√

2 and taking into account Landau quantization. The black dashed lines display the
result obtained by a Monte Carlo-based real-space simulation as developed by Sawada et al. in Ref. [35]. The colored solid lines represent the
magnetoconductivity correction described by the closed-form expression (53).

magnetoconductivity correction provides an alternative access
that does not necessitate such interventions and motivates an
electrical-evaluation approach of the spin relaxation as pre-
sented in Ref. [36].

In Fig. 7, we display the relative magnetoconductivity cor-
rection for a hypothetical GasAs 2DEG with growth directions
along [113] in (a) and [110] in (b). We employ analogous
system parameters as in the previous section but for illustra-
tive purposes slightly elevated k-linear Dresselhaus coefficient
β (1) = 8.8 meVÅ. The ratio �1 is varied around the respective
PSH condition, where we selected the range [0.5, 3] in (a) and
[0, 0.3] in (b). Similar to the (001)-2DEG, we find in both
cases good agreement between the numerical diagonalization
of the Cooperon, related to the spin-diffusion operator (A1),
in the Landau-spin-1 basis (colored dotted lines), the Monte
Carlo-based real-space simulation by Sawada et al. [35] (black
dashed lines), and the closed-form expression (53) shown by
the colored solid lines.

VI. CONCLUSION

We reviewed the applicability of models for the quantum-
interference correction to the magnetoconductivity with both
Rashba and Dresselhaus SO coupling. In particular, we looked
at the recent model of Marinescu et al. [31], which aims
to solve the long-standing problem of a missing closed-
form magnetoconductivity expression for arbitrary ratios of
Rashba and Dresselhaus SO coefficients. It is shown that this
model is unsuitable for experimental parameter fitting due
to a significant lack of accuracy that results from a quasi-
classical treatment of the phase-breaking mechanism of the

magnetic field. The discrepancy between the quasiclassical
approximation and the accurate Landau-level approach is re-
lated to the replacement of a sum over Landau levels by an
integral over wave-vectors. In some configurations, the error
can be reduced by including the first two corrections given by
the Euler-MacLaurin formula for integral approximation of a
sum.

However, this remedy works only in parameter regimes
where Landau levels decouple and an approximate solution—
including Landau quantization—is also available. Such a
scenario is given by the PSH regime, where persistent spin
textures emerge and simultaneously a transition between weak
localization and weak antilocalization occurs. In this special
case, an exact solution for the magnetoconductivity correc-
tion including Landau quantization exits [23]. This exact
solvability can be used as a basis to derive an approximate
closed-form description of the magnetoconductivity correc-
tion near the PSH symmetry, as shown recently by Weigele
et al. [32] for a (001)-2DEG. Combing the recent findings
[30,34], we demonstrate that this method can be generalized to
2DEGs with at least two growth-direction Miller indices equal
in modulus. The resulting expression is a function of spin
lifetimes of the long-lived spin textures and thus particularly
attractive for exploring the possibility of long-lasting spin
coherence.

The validity of the magnetoconductivity formula near the
PSH regime is explicitly demonstrated by comparing with the
results from distinct numerical calculations in (001)-, (113)-,
and (110)-2DEGs. The simplicity of the derived expressions
enable a practical and accurate fitting of experimental data
in a wide range of 2DEGs and a broad parameter regime.
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For arbitrary Rashba and Dresselhaus SO coefficients, how-
ever, a numerical approach is inevitable for a reliable
description of the magnetoconductivity correction due to
weak antilocalization.
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APPENDIX A: SPIN-DIFFUSION OPERATOR

In a zinc-blende 2DEG with Rashba and Dresselhaus SO
coupling and general growth direction n̂ = (η, η,

√
1 − 2η2)

with η ∈ [0, 1/
√

2], the spin-diffusion operator �̃sd(q) in
Fourier space, entering the spin-diffusion equation (4), reads
as [34]

�̃sd =
⎛
⎝�̃xx �̃xy �̃xz

�̃∗
xy �̃yy �̃yz

�̃∗
xz �̃∗

yz �̃zz

⎞
⎠, (A1)

with

�̃xx = 4π2

τ0

[
1 − 18η2 + 105η4 − 144η6

4
− (1 − 9η2)nz

2
�1

+ �2
1

4
+ 1 + 10η2 − 15η4

4
�2

3 + q2

Q2
0

]
, (A2)

�̃xy = 4π2

τ0
i
√

2(η − 3η3)
qy

Q0
, (A3)

�̃xz = 4π2

τ0

{√
2(η − 9η5)nz

4
+

[√
2(η − 3η3)

4
− i

qx

Q0

]
�1

− 3(η − 4η3 + 3η5)nz

2
√

2
�2

3 − i(1 − 9η2)nz
qx

Q0

}
, (A4)

�̃yy = 4π2

τ0

[
1 + 6η2 − 15η4

4
+ (1 + 3η2)nz

2
�1 + �2

1

4

+ 1 + 10η2 − 15η4

4
�2

3 + q2

Q2
0

]
, (A5)

�̃yz = − 4π2

τ0
i(�1 + nz + 3η2nz )

qy

Q0
, (A6)

�̃zz = 4π2

τ0

[
1 − 8η2 + 57η4 − 90η6

2
+ 6η2nz�1 + �2

1

2

+ 1 − 8η2 + 21η4 − 18η6

2
�2

3 + q2

Q2
0

]
, (A7)

where we used the basis vectors x̂ = (nz, nz,−2η)/
√

2, ŷ =
(−1, 1, 0)/

√
2, and ẑ = n̂. The parameter 1/τ0 = DeQ2

0/4π2

corresponds to the spin-precession rate of the persistent spin
helix (8) along the ŷ axis in a (001)-2DEG with spin-helix
wave vector Q0 = 4mβ (1)/h̄2 and 2D diffusion constant De.
The underlying Hamiltonian is given in Eq. (1). If anisotropic
scattering is prevalent, we need to distinguish elastic scat-
tering times τ1,3 related to first and third angular harmonics
in the SO terms, which amounts to replacing τ → τ1 and
β (3) → β (3)√τ3/τ1.

APPENDIX B: RELATION BETWEEN SPIN-DIFFUSION
OPERATOR AND COOPERON

In Ref. [43], it was shown that there exists a unitary trans-
formation U that connects the triplet sector of the inverse
Cooperon C−1 with the spin-diffusion operator �̃sd. The trans-
formation is given by C−1 = h̄U �̃sdU †, where

U =
⎛
⎝−1 i 0

0 0
√

2
1 i 0

⎞
⎠/

√
2 (B1)

links the components of the spin-density s = (sx, sy, sz )� with
the triplet basis s̃ = (|1, 1〉 , |1, 0〉 , |1,−1〉)� via s̃ = U s.

APPENDIX C: THE EULER-MACLAURIN FORMULA

The differences between sum and integral can be computed
by the Euler-Maclaurin formula. It states that for integers
N, p � 1 and for any function g ∈ Cp[a, b], we have

w

N∑
n=0

g(a + n w) −
∫ b

a
du g(u)

= w

2
[g(a)+g(b)] +

p∑
j=2

w j B j

j!

[
g( j−1)(u)

]b

a+rp(a, b, N ),

(C1)

where Bj are Bernoulli coefficients, w = (b − a)/N the seg-
ment width, and rp(a, b, N ) is the remainder

rp(a, b, N ) = − wp

p!

∫ b

a
du Pp

(a − u

w

)
g(p)(u), (C2)

where Pp is the pth Bernoulli periodic function [66]. (Notice
that B3 = B5 = B7 = · · · = 0.) The first term on the rhs of
Eq. (C1) can be obtained by approximating the integral by
a sum using the trapezoidal rule with N + 1 w-equidistant
evaluation points. The other terms may be viewed as an
extension of the trapezoidal rule by including corrections
arising from Taylor expanding the integrand at the evalua-
tion points [54]. Notice that the asymptotic expansion does
usually not converge and past certain values of p the terms
increase rapidly.

In the main text, we will limit ourselves to the inclusion
of the first two, still well-behaving, corrections for a unit grid
w = 1 on the rhs of Eq. (C1) and neglect the remainder rp. As
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relevant summation elements, we identify

g(n) = − e2

2π2h̄

[
n + τB

2τ ′
φ (x)

]−1

, (C3)

where the integration and summation limits correspond to a =
0 and b = N = Nmax. Using Eq. (C3), we obtain the leading
two Euler-Maclaurin corrections

�σχ1 = 1

2
[g(0) + g(Nmax)], (C4)

�σχ2 = 1

12
[g′(Nmax) − g′(0)], (C5)

to be added to the quasiclassical magnetoconductivity expres-
sion �σ (qc).

APPENDIX D: SPIN-1 BASIS MATRICES

The basis matrices for the triplet sector of a total spin-1
system read as

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = i√

2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠,

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, (D1)

in the triplet-basis | j = 1, mj ∈ {0,±1}〉 with the order
{|1, 1〉 , |1, 0〉 , |1,−1〉}.
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