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The topological invariants of band insulators are usually assumed to depend only on the connectivity between
orbitals and not on their intracell position (orbital embedding), which is a separate piece of information in
the tight-binding description. For example, in two dimensions, the orbital embedding is known to change the
Berry curvature but not the Chern number. Here, we consider one-dimensional inversion-symmetric insulators
classified by a Z2 topological invariant ϑ = 0 or π , related to the Zak phase, and show that ϑ crucially depends
on orbital embedding. We study three two-band models with bond, site, or mixed inversion: the Su-Schrieffer-
Heeger model (SSH), the charge density wave model (CDW), and the Shockley model. The SSH (resp. CDW)
model is found to have a unique phase with ϑ = 0 (resp. π ). However, the Shockley model features a topological
phase transition between ϑ = 0 and π . The key difference is whether the two orbitals per unit cell are at the same
or different positions.

DOI: 10.1103/PhysRevB.104.235428

I. INTRODUCTION

The canonical example of a topological insulator is the
two-dimensional Chern insulator. Its occupied bands have a
nonzero total Chern number, which leads to a quantized Hall
effect. A simple example is Haldane’s two-band model on the
honeycomb lattice [1]. Such a tight-binding model is defined
by a state space spanned by orbitals, by a Hamiltonian giving
the connectivity between orbitals, and by a position operator
giving their spatial embedding. Geometrical quantities such as
the Berry curvature depend on the orbital embedding [2–5].
In contrast, the Chern number, a topological quantity which
is the integral of the Berry curvature over the whole Brillouin
zone (BZ), does not. It is therefore commonly assumed that
topological invariants are generically independent of orbital
embedding and only depend on the connectivity between or-
bitals. In other words, topological quantities depend on the
Hamiltonian topology, and geometrical quantities depend in
addition on the position operator (see, e.g., [5]).

In the tenfold classification of topological insulators and
superconductors [6–8], the starting point is a k-periodic Bloch
Hamiltonian, where k spans the BZ. It is well known that
there are two main conventions for the Bloch Hamiltonian,
essentially depending on a choice in the Fourier transform
[2–4,9,10]. In one convention, the intracell position of orbitals
is irrelevant and the resulting Bloch Hamiltonian is always pe-
riodic with the BZ. However, this periodic Bloch Hamiltonian
is not unique and depends on a choice of unit cell. In the other
convention, the intracell positions are taken into account, and
the Bloch Hamiltonian is unique and almost never periodic
(except if there is a single site per unit cell hosting all the
orbitals). We call it the canonical Bloch Hamiltonian. The dif-
ferent Bloch Hamiltonians are related by a k-dependent gauge
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transformation involving the distances between orbitals within
the unit cell. See Appendix A for details and [11] for a recent
review. Cases where it is crucial to retain the nonperiodicity
of the Bloch Hamiltonian therefore may escape this tenfold
classification.

In the present article we consider one-dimensional band
insulators and show that their topological characterization
crucially depends on the orbital embedding and cannot be
obtained from the knowledge of the tight-binding Hamiltonian
alone. As an emblematic example, we show that the SSH
model [12] can either have a single trivial phase or two phases
separated by a topological transition, depending on the orbital
embedding. The first situation corresponds to the original
SSH model in which the two orbitals are located on different
sites (we call it SSH1/2, where d = 1/2 refers to the distance
between the two sites, or simply SSH) [12]. The second situ-
ation corresponds to a modified SSH model in which the two
orbitals would be on the same site (we call it SSH0, as d = 0).
We show that SSH1/2 and SSH0 are physically different and
are not topologically equivalent.

Here we restrict ourselves to inversion-symmetric insula-
tors, which are characterized by a Z2 topological invariant
ϑ = 0 or π [13,14], closely related to the Zak phase [15,16].
Inversion-symmetric crystals have two inversion centers per
unit cell. Depending on their position with respect to the
sites, three situations arise: bond, site, or mixed inversion (see
Fig. 1). As representative two-band examples, we consider
the SSH1/2 model (bond inversion) [12], the charge density
wave (CDW) model (site inversion), and the Shockley model
of coupled s and p bands (mixed inversion) [17,18]. The SSH0

model has mixed inversion symmetry and will also be briefly
discussed.

The article is organized as follows. In Sec. II we define
a modified Zak phase that is position-origin independent, in
contrast to the standard Zak phase. Then in Sec. III we review
the Z2 classification of inversion-symmetric insulators. Next
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FIG. 1. 1D crystals with (a) bond inversion, (b) site inversion,
and (c) mixed inversion. Identical sites are shown as gray dots and
nonequivalent ones as red and green dots. Inversion centers are
indicated by blue # and the average site positions in the unit cell
in magenta x̄.

we study the SSH1/2 model in Sec. IV, the CDW model in
Sec. V, and the Shockley model in Sec. VI. Eventually we give
a conclusion and perspectives (see Sec. VII). In Appendix A
we review two conventions for writing a Bloch Hamiltonian
when there are several sites per unit cell and explain why
a bulk winding number can be defined for the SSH0 model
but not for the SSH1/2 model, despite its chiral symmetry.
In Appendix B we relate the present study of the Zak phase
(that focuses on electronic properties) to that of the electric
polarization (that also involves ions). In Appendix C we study
the Rice-Mele model [19], which is a generalization of the
SSH1/2 and CDW models that breaks inversion symmetry, and
compute its Zak phase analytically.

II. ZAK PHASE

The Zak phase [15] is a peculiar Berry phase (Zak calls
it noncyclic [16] and Resta an open-path Berry phase [20])
defined for a given band n along a noncontractible loop of the
first BZ. It reads

Zn =
∫ π

−π

dk〈un|i∂kun〉 + arg〈un(−π )|ei2πx|un(π )〉, (1)

where x is the position operator (we have taken a unit Bra-
vais lattice spacing) and |un(k)〉 are the cell-periodic Bloch
states, i.e., the eigenvectors of the canonical Bloch Hamil-
tonian H (k), see Appendix A. This expression is valid for
periodic boundary conditions (PBCs) in the thermodynamic
limit and in any gauge, thanks to the arg〈...〉 term in (1) [21].
The key property of the Zak phase is that it is proportional to
the Wannier (or band) center 〈xn〉 of the band: Zn = 2π〈xn〉
[15,16].

Because of its relation to the position operator, the Zak
phase depends continuously on the choice of position origin:
when x → x + x0, where x0 is an arbitrary real number, Zn →
Zn + 2πx0. Invariance under translation by a Bravais lattice
spacing x0 = 1 shows that Zn is defined mod 2π .

In order to remove this dependence on the position origin,
we define the “modified Zak phase” by

Z̄n = Zn − 2π x̄ = 2π (〈xn〉 − x̄), (2)

where x̄ is the mean position of sites in a unit cell. Physically,
〈xn〉 − x̄ measures the position of the Wannier center (i.e., of

the localized electrons filling the nth band) with respect to the
average position of sites.

A subtle issue is that even if the Zn is mod 2π , Z̄n is not
necessarily defined mod 2π . Let us call Zq the “quantum of
Zak phase,” such that Z̄n matters mod Zq. The quantum of
Zak phase reflects the behavior of Z̄n under space translation,
which involves both Zn and x̄. If there is a single site per unit
cell then x̄ = x0 mod 1, where x0 depends on the choice of
origin, and therefore Zq = 2π . But if there are two sites per
unit cell (as in the SSH1/2 model), then x̄ = x0 mod 1/2 and
then Zq = π (see Sec. IV for a detailed proof).

The modified Zak phase Z̄n and the quantum of Zak phase
Zq are closely related to the bulk electric polarization P of
crystals and the corresponding quantum of polarization Pq

[10,18,22,23], see also Appendix B. There is a subtle differ-
ence, however. The modified Zak phase does not depend on
a model for ions, in contrast to P. It is purely an electronic
quantity that depends on the tight-binding Hamiltonian (hop-
ping amplitudes, connectivity of orbitals) and on the position
operator (orbital embedding, i.e., position of sites in the tight-
binding model) [24] but not on the charge or position of ions.

The two key differences between Z̄n and Zn are that the
former is independent of the position origin and defined mod
Zq, whereas the latter depends continuously on the position
origin and is defined mod 2π . Throughout the article, unless
otherwise specified we chose the position origin such that
x̄ = 0 mod xq (where xq can be either 1/2 or 1 depending on
the number of sites per unit cell), so that

Z̄n = Zn mod Zq, (3)

where Zq = 2πxq = π or 2π . In the following we consider
several types of inversion-symmetric insulators and character-
ize them by their modified Zak phase.

III. INVERSION-SYMMETRIC INSULATORS

A. Z2 classification

We define an angle ϑ characterizing one-dimensional (1D)
band insulators by

ϑ = −2π
Z̄

Zq
mod 2π, (4)

where Z̄ = ∑
n<0 Z̄n is computed over the occupied bands

[25]. The difference between ϑ and Z̄ is that ϑ is, by con-
struction, a defined mod 2π . In the absence of a protecting
symmetry, ϑ can take any value, so that there is a single class
of 1D band insulators [6–8].

However, for a crystal with inversion symmetry, the modi-
fied Zak phase must satisfy Z̄ = −Z̄ mod Zq and therefore Z̄
equals either 0 or Zq/2 mod Zq [13–16,18]. This allows one
to distinguish two classes of inversion-symmetric insulators
depending on whether the angle

ϑ = 0 (trivial) or π (topological). (5)

The quantized angle ϑ plays the role of a Z2 topological
invariant protected by inversion symmetry [26].

Any symmetry (not just inversion) that makes Z̄ = −Z̄
mod Zq leads to these two classes [27]. It is conventional
to call ϑ = 0 trivial and ϑ = π topological. The important
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FIG. 2. (a) Rice-Mele model with arbitrary distance d between
A and B sites. The dimerization is called δ and the staggered on-
site potential is called �. SSH1/2 corresponds to � = 0 and CDW to
δ = 0. (b) Choices of unit cell. Electrons are localized at the Wannier
center 〈x−〉 shown as a black dot. The mean site position in a unit cell
is x̄ = (xA + xB )/2. The electric charges +g/2 and −g, where g = 2
is the spin degeneracy, refer to a specific ionic model discussed in
Appendix B.

thing is that there are two distinct classes that cannot be
adiabatically connected and are distinguished by the value of
the topological invariant ϑ .

B. Three types of inversion symmetry

Depending on the position of the two inversion centers in
the unit cell, we distinguish three types of inversion symme-
tries. The centers can be both mid-bond (bond inversion), both
on-site (site inversion) or one on-site and the other mid-bond
(mixed inversion). As representative examples of the three
cases, we use two-band models: the SSH1/2 model (bond
inversion), the CDW model (site inversion), and the Shockley
model (mixed inversion) [17]. In the following we study the
three models in turn.

IV. SU-SCHRIEFFER-HEEGER MODEL

The SSH model is a 1D tight-binding model with two
sites A and B per unit cell, which was introduced to describe
the valence electrons of trans-polyacetylene [12]. Each site
j = (R, l ) contains a single 2pz orbital | j〉, where l = A, B
labels the sublattices and R is an integer that spans the Bravais
lattice (with lattice spacing a = 1). The two nearest-neighbor
hopping amplitudes are v = 1 + δ (strong bond if the dimer-
ization δ > 0) and w = 1 − δ (weak bond if δ > 0), following
the pattern shown in Fig. 2(a), with � = 0. The SSH model
can be seen as a special case of the Rice-Mele model [19], that
we discuss in Appendix C. The position operator reads

x =
∑

j

x j | j〉〈 j|, (6)

with x j = xA = R − d/2 if j = (R, A) and x j = xB = R +
d/2 if j = (R, B), such that x̄ = (xA + xB)/2 = 0 mod 1/2,
see Fig. 2(a). It is crucial that the two sites in the unit cell
are not at the same position, i.e., d �= 0, as they correspond to
two different carbon atoms in polyacetylene. Physically, the
strongest bond should have a shorter distance and d should be
a function of δ, such as d = 1/2 − δ/4. However, the model
with d = 1/2 for all δ already contains the essential features.
Unless otherwise specified, we restrict ourselves to d = 1/2

FIG. 3. The SSH1/2 model on a ring: weak (strong) bonds are
shown as thin (thick) lines, Wannier centers as blue dots and the
position origin at an inversion center as a magenta 0. The lattice
spacing is taken as unit length. The two dimerizations are identical
up to a change in the origin. The average position of sites in the unit
cell is x̄ = 0 mod 1/2 so that Z̄ matters mod Zq = π . Therefore Z̄ =
0 mod π .

and call it SSH1/2. The system has translation invariance: it is
either infinite or finite with PBC.

The canonical Bloch Hamiltonian (see Appendix A) reads

Hd (k) = 2 cos
k

2
σ eff

x (k, d ) − 2δ sin
k

2
σ eff

y (k, d ), (7)

with the effective Pauli matrices

σ eff
j (k, d ) = eiφσz/2σ je

−iφσz/2, (8)

where φ = k(d − 1/2) and j = x, y, z = 1, 2, 3. Note that
Hd (k + 2π ) �= Hd (k). When d = 1/2, H (k) = H1/2(k) and
σ eff

j = σ j are the standard Pauli matrices. The eigenvectors
of (7) are cell-periodic Bloch states |un(k)〉 with band index
n = ± and wave vector k in the BZ [−π, π [. The correspond-
ing eigenvalues do not depend on d and read

E±(k) = ±
√

4 cos2 k

2
+ 4δ2 sin2 k

2
. (9)

The SSHd model is time-reversal invariant Hd (−k)∗ =
Hd (k), which implies that En(−k) = En(k). It also has a
pseudo-charge conjugation σyHd (−k)σy = −Hd (k), which
implies that E−(k) = −E+(−k). With time reversal, it implies
that E−(k) = −E+(k).

The two inversion centers per unit cell are mid-bond (x̄ =
(xA + xB)/2 and x̄ + 1/2). Bond-inversion symmetry acts as

Hd (k) → σxHd (−k)σx = Hd (k) when � = 0. (10)

The SSHd model is bipartite and there is a sublattice (chi-
ral) symmetry, which means that

σzHd (k)σz = −Hd (k). (11)

The corresponding sublattice pseudospin �σ is not fully inter-
nal and is coupled to the intracell position because d �= 0.

The SSHd model is invariant under the following parame-
ter transformation (d, δ) → (1 − d,−δ) and relabeling of the
two sublattices (A ↔ B). On the Bloch Hamiltonian Hd,δ (k)
in Eq. (7), this symmetry acts as

Hd,δ (k) → σxH1−d,−δ (k)σx = Hd,δ (k). (12)

Without loss of generality, one may therefore restrict the study
to δ � 0. The SSH1/2 model therefore has a single gapped
phase, which is obvious from Fig. 3 (see also [14] and [28]).
In other words, it is possible to go from one dimerization (δ =
δ0) to the other (δ = −δ0) without closing the gap, simply by
a global shift of half a lattice spacing. The two dimerizations
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actually result from the spontaneous doubling of the lattice
spacing at the Peierls transition. In analogy, the two possible
symmetry-broken ground states of an Ising antiferromagnet,
which are also identical by half-a-lattice spacing shift, are not
considered as two different phases. They just represent the two
degenerate ground states of the same antiferromagnetic phase.

When δ > 0, the Wannier center of the occupied band is
on the inversion center on the strong bond, i.e., 〈x−〉 = 0 mod
1 (see Fig. 2) and Z = 0 mod 2π . When δ < 0, the Wannier
center is on the other inversion center, which is again on the
strong bond, i.e., 〈x−〉 = 1/2 mod 1 (see Fig. 2) and Z = π

mod 2π . In the next paragraph we show that x̄ = 0 mod 1/2
so that the modified Zak phase Z̄ = 0 mod π .

In order to prove that Zq = π , we consider several choices
of unit cell and compute Z̄ , which should be independent of
such a choice. In a given unit cell [see choice 1 in Fig. 2(b)]

Z̄1 = 2π (〈x−〉 − x̄), (13)

where x̄ = (xA + xB)/2 is the mean position of sites. In an-
other choice [see 2 in Fig. 2(b)], with the same A ion and
the same Wannier center for the electrons but another B ion
with position x(2)

B = xB − 1, it reads Z̄2 = Z̄1 + π as x̄(2) =
x̄ − 1/2. If as a third choice [see 3 in Fig. 2(b)] we further
move the unit cell to the left in order to change the Wan-
nier center such as 〈x(3)

− 〉 = 〈x−〉 − 1, then Z̄3 = Z̄2 − 2π =
Z̄1 − π . Other choices always lead to modified Zak phases
that differ by an integer multiple of π , so that Zq = π and
not 2π .

This shows that the two dimerizations of SSH1/2 describe
the same phase with Z̄ = 0 mod π (see Fig. 3). The conclusion
is that there is no phase transition as δ changes sign, despite
the gap closing, and that the gapped phase is characterized by
ϑ = 0.

V. CHARGE DENSITY WAVE MODEL

Another model of a 1D two-band inversion-symmetric in-
sulator is the charge density wave. It also has two sites per
unit cell, but instead of dimerized hoppings, it has a staggered
on-site potential � [see Fig. 2(a) with δ = 0]. It can be seen
as a special case of the Rice-Mele model [19], see Appendix
C. Inversion symmetry is of site type and only exists for an
A-B distance d = 1/2. The canonical Bloch Hamiltonian (see
Appendix A) reads

H (k) = 2 cos
k

2
σx + �σz, (14)

which is also not BZ periodic as H (k + 2π ) �= H (k).
Inversion acts as

H (k) → H (−k) = H (k), (15)

and the two inversion centers are on-site (xA and xB).
The CDW model is not bipartite, but there is another chiral

symmetry:

σyH (k)σy = −H (k). (16)

The model is also invariant under the following parameter
transformation � → −� and relabeling of the two sublattices
(A ↔ B). On the Bloch Hamiltonian H�(k) in Eq. (14), this

FIG. 4. The CDW model on a ring: the staggered on-site poten-
tial ±� is shown in green/red, Wannier centers as blue dots, and the
position origin as a magenta 0. The two staggerings are identical up
to a change in the origin. The average position of sites in the unit
cell is x̄ = 0 mod 1/2 so that Z̄ matters mod Zq = π . Therefore Z̄ =
π/2 mod π .

symmetry acts as

H�(k) → σxH−�(k)σx = H�(k). (17)

Without loss of generality, one may therefore restrict the study
to � � 0.

When � > 0, the Wannier centers of the occupied band
are localized on the B ions that have lowest on-site energy and
〈x−〉 = 1/4 mod 1 so that Z = −π/2, see Fig. 4. When � <

0, they are on the A ions that have lowest energy 〈x−〉 = −1/4
mod 1, so that Z = π/2. Because the mean site position x̄ = 0
mod 1/2, due to the two sites per unit cell, we find that Zq = π

and that the modified Zak phase Z̄ = π
2 mod π .

Here, as for SSH1/2, there is a single gapped phase and
no phase transition as � changes sign. However, the gapped
phase is such that ϑ = π and represents the other class of
inversion-symmetric insulators.

It is easy to construct an inversion-symmetric model that
features a phase transition between SSH1/2 and CDW, see
[11]. Below we study a more physical example that features a
topological phase transition between ϑ = 0 and π .

VI. SHOCKLEY MODEL

The Shockley model of coupled s and p bands [17,18] is
sometimes assumed to be equivalent to SSH (see, e.g., [29]
and the Supplemental Material in [30]). Here we show that
it is different from SSH1/2 but closely related to SSH0. In
particular, due to a single site per unit cell, Zq = 2π and its
canonical Bloch Hamiltonian is 2π periodic (see Fig. 5).

We follow the analysis of [18]. The Shockley model is a
1D tight-binding model with a single site per unit cell and
two orbitals (s and px). The s (px) orbital is even (odd) under

FIG. 5. The Shockley model on a ring: sites are shown as
black dots, Wannier centers as blue dots, and the position origin as
a magenta 0. The average position of sites in the unit cell is x̄ =
0 mod 1 so that Z̄ matters mod Zq = 2π . Therefore Z̄ = π	(2δt −
δε) mod 2π .
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inversion. The crucial difference with SSH1/2 and CDW is that
there is a single site per unit cell rather than two. This means
that here Zq = 2π as x̄ = 0 mod 1.

The Bloch Hamiltonian is

H (k) =
[
εs + εp

2
+ (tss + tpp)cosk

]
σ0

+
[
εs − εp

2
+ (tss − tpp)cosk

]
σz + 2tspsink σy,

(18)

where tss � 0, tpp � 0 and tsp are hopping amplitudes, and
εs � 0 and εp � 0 are orbital energies. Mixed inversion sym-
metry means σzH (−k)σz = H (k).

We call δε = εp − εs and δt = tpp − tss. When δε > 2δt ,
the Wannier center is on-site 〈x−〉 = 0 mod 1, so that Z̄ = 0
mod 2π , and the system is an atomic insulator with s-type
valence band. A band inversion occurs at δε = 2δt , where the
gap closes. When δε < 2δt , the Wannier center is mid-bond
〈x−〉 = 1/2 mod 1 and the modified Zak phase Z̄ = π mod
2π . It is a covalent insulator with a valence band of bonding
sp-hybridized type. Here there is a genuine topological phase
transition between a phase with ϑ = 0 and one with ϑ = π as
δε − 2δt changes sign.

Generically, the Shockley model does not have a chiral
symmetry, belongs to the AI class, and is therefore a trivial
insulator according to the periodic table [6–8]. But it still has
a Z2 classification as an inversion-symmetric insulator. The
fact that there is no chiral symmetry (and hence no winding
number) does not change anything for the quantization of the
modified Zak phase.

However, for εs = −εp and tss = −tpp, the model possesses
a chiral (not sublattice) symmetry,

σxH (k)σx = −H (k), (19)

and belongs to the BDI class [6–8]. In contrast to the SSH1/2

model, here the pseudospin �σ is internal because the two
orbitals are at the same position. As the canonical Bloch
Hamiltonian H (k) is 2π periodic, unlike for SSH1/2 and
CDW, there is a well-defined winding number W = sgn tsp if
δε < 2δt and W = 0 if δε > 2δt . The winding is related to the
modified Zak phase by

Z̄ = πW mod 2π. (20)

Only in this very specific case does the winding number and
the modified Zak phase coincide (up to a factor of π ). But this
is the exception rather than the rule [31]. This is how the Z
classification for chiral insulators (with invariant W ) becomes
a Z2 classification for inversion-symmetric insulators (with
invariant Z̄ or ϑ) and W matters only mod 2.

The SSH0 model has mixed inversion and can be mapped
onto the chiral Shockley model (see Fig. 6). Other models that
have a similar behavior are the Creutz ladder at π/2 flux per
plaquette [32] and the Kitaev chain of a p-like superconductor
[33]. In these four models (Shockley, SSH0, Creutz, Kitaev)
the two orbitals are at the same x position. This is the key
difference with the SSH1/2 model.

FIG. 6. The SSH0 model on a ring. The B orbital is on top of
the A one (vertical direction is just for visualization purposes). Here
Zq = 2π so that Z̄ = π	(−δ) mod 2π .

VII. CONCLUSION

We studied three types of inversion-symmetric insulators
and our main results are summarized in Table I. The gap clos-
ings that occur in these three models are of different nature.
In all cases, at the gap closing the inversion symmetry is of
mixed type. In other words, only for the Shockley model does
the inversion symmetry remain of the same type across the
transition.

We find that SSH1/2 (resp. CDW) has a unique gapped
phase with ϑ = 0 (resp. π ), which makes it a trivial (resp.
topological) inversion-symmetric insulator. There is no topo-
logical phase transition as the dimerization δ (resp. the on-site
potential �) changes sign.

In contrast, the Shockley model is arguably the simplest
example of an inversion-symmetric insulator featuring a topo-
logical transition between a phase with ϑ = 0 and one with
ϑ = π . In a special limit, it also provides an example of
topological phase transition in a chiral insulator characterized
by a winding number.

As chiral insulators, SSH1/2 and CDW do not have a well-
defined bulk winding number, see Appendix A and also [34].
This is due to the two sites per unit cell, which prevent the
existence of a BZ-periodic Bloch Hamiltonian that is inde-
pendent of a unit cell choice.

Breaking chiral (but not inversion) symmetry does not
change the topological invariant ϑ . Sublattice (chiral) is not
an exact symmetry of real polyacetylene, in contrast to in-
version symmetry, as it is broken by next-nearest-neighbor
hopping. The SSH1/2 model, which has both symmetries, is
better characterized as a trivial inversion-symmetric insulator
than as a chiral insulator.

Although the SSH1/2 chain is not a topological insula-
tor, it is a Dirac insulator, with the property of trapping
midgap states at domain walls [12,35]. Our conclusion does
not contradict the bulk-edge correspondence of chiral insula-
tors in terms of an edge-dependent (relative) winding number
[31,34,36,37].

The quantum of Zak phase Zq depends on the number of
sites per unit cell. The Shockley model has a single site per
unit cell and Zq = 2π . However, the CDW and SSH1/2 models
have two sites per unit cell and Zq = π .

Because they do not involve the electric charge (e.g., a
model for ions) but only the position of the orbitals in the
tight-binding description, our results for the modified Zak
phase also apply to artificial realizations of SSH1/2 with “neu-
tral electrons,” such as cold atoms in optical lattices [38],
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TABLE I. Three types of inversion-symmetric insulators: SSH1/2, CDW, and Shockley. 1a, 1b, and 2c refer to Wyckoff positions in the unit
cell (see, e.g., Fig. S5 in the Supplemental Material of [30]). The two inversion centers are always at 1a and 1b but can be on-site, mid-bond,
or mixed. The position origin is chosen on an 1a inversion center. At the transition, the gap vanishes and inversion symmetry is of mixed type
in all three cases. (∗)Defined only for the chiral Shockley model (see Sec. VI).

Model SSH1/2 SSH1/2 CDW CDW Shockley Shockley

Phase δ > 0 δ < 0 � > 0 � < 0 δε > 2δt δε < 2δt
Inversion centers Mid-bonds Mid-bonds On-sites On-sites Mixed Mixed
Position of sites 2c 2c 1a and 1b 1a and 1b 1a 1a
Mean site position x̄ 0 mod 1/2 0 mod 1/2 1/4 mod 1/2 1/4 mod 1/2 0 mod 1 0 mod 1
Wannier centers Mid-bond Mid-bond On-site On-site On-site Mid-bond
(Position of electrons) 1a 1b 1b 1a 1a 1b
Zq π π π π 2π 2π

Z̄ mod Zq 0 0 Zq/2 = π/2 Zq/2 = π/2 0 Zq/2 = π

ϑ mod 2π 0 0 π π 0 π

Bulk winding W Undefined Undefined Undefined Undefined (∗) 0 (∗) Sgn tsp

Insulator type Molecular Molecular Ionic Ionic Atomic Covalent

microwaves in lattices of dielectric resonators [39], or polari-
tons [40].

In contrast to two-dimensional topological invariants (e.g.,
the Chern number [41]), the 1D topological invariant ϑ (or
Z̄) depends not only on the tight-binding Hamiltonian H but
also on the position operator x. This is due to the fact that
the Zak phase explicitly depends on the position operator. In
other words, the mere knowledge of the connectivity between
orbitals, contained in H is not enough to decide the topology
of 1D bands and one must know their orbital embedding,
contained in x. The topological classification of 1D band
insulators [6–8] assumes a large number of bands and stability
to the addition of trivial bands (the so-called stable equiva-
lence). It does not necessarily agree with a specific two-band
model. For example, it agrees with SSH0 but not with SSH1/2

(actually, it does not distinguish the two). The SSH0 model,
which is very unphysical in describing polyacetylene as its
strongest bond, is not always the shortest, has a well-defined
bulk winding number, and is equivalent to the chiral Shockley
model.

As perspectives, we would like to study whether the orbital
embedding is also crucial for inversion-symmetric insulators
with more than two bands. For example, by adding orbitals
would it be possible to continuously connect the SSH1/2 and
SSH0 models? Also, in the case of an insulator with more than
two bands, what are the possible values of the quantum of Zak
phase Zq depending on the number of filled bands?
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APPENDIX A: CANONICAL VERSUS PERIODIC BLOCH
HAMILTONIAN—INFLUENCE ON THE

WINDING NUMBER

The SSH1/2 model has a chiral sublattice symmetry, which
means that its 2 × 2 Bloch Hamiltonian can be represented as
an effective magnetic field pointing along the equator of the

Bloch sphere. This defines a map from the BZ circle to the
equator, which should be characterized by a winding number.
Then why do we say that there is no well-defined bulk winding
number?

This has to do with the different conventions for the Bloch
Hamiltonian when there are several sites per unit cell; see,
e.g., [2–4,9,10]. When going from the tight-binding Hamilto-
nian H to the k-dependent Bloch Hamiltonian, one needs to
define the Fourier transform. Because of the two sites per unit
cell, there are several ways of doing this, sometimes called
basis I and basis II [9] (or convention II and convention I [10])
in the literature.

One way leads to a periodic Bloch Hamiltonian H(k), such
that H(k + 2π ) = H(k), which involves the unitary transfor-
mation e−ikRHeikR, where R is the Bravais lattice position
operator (basis I). However, this way is not unique, as it
depends on the choice of unit cell. Each choice of unit cell
gives another periodic Bloch Hamiltonian and another value
for the winding number, which is therefore not physical.

The other way leads to a unique Bloch Hamiltonian H (k)
(which we call canonical, or basis II) independent of a unit cell
choice, which involves the unitary transformation e−ikxHeikx ,
where x is the complete position operator. However, it is not
periodic, i.e., H (k + 2π ) = e−i2π (x−R)H (k)ei2π (x−R) �= H (k),
as it depends on the distance d between the two sublattices so
that a winding number cannot be defined.

The conclusion is that there is no well-defined bulk wind-
ing number for the SSH1/2 model. The same issue applies to
the CDW model. However, the chiral Shockley model and the
SSH0 model do not suffer from this problem, as they have a
single site per unit cell.

APPENDIX B: ELECTRIC POLARIZATION

According to the modern theory of polarization, the Zak
phase gives the electronic contribution to the bulk electric
polarization of crystals [18,22,23]. As it is only well defined
for a neutral system, the polarization also involves the ions.
One must therefore specify an ionic model, e.g., by giving the
position and charge of static pointlike ions.
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There is a specific ionic model that is such that the po-
larization is proportional to the modified Zak phase Z̄ . It
consists in assuming that every site of the electronic (tight-
binding) model carries an ion and that all ions have the same
charge. This ionic model is as harmless as possible to the
electronic model. It is actually the only model compatible with
polyacetylene. For SSH1/2 and CDW (and more generally
Rice-Mele, see [18]), if we consider electrons of charge −1
each and spin degeneracy g = 2, this leads to a g/2 = 1 ion
charge on every site, see Fig. 2(b). For the Shockley model,
this means a charge 2 ion on each site. With this specific ionic
model, in the three cases (SSH1/2, CDW, and Shockley) the
polarization is

P = −g
Z

2π
+ gx̄ = −g

Z̄

2π
mod Pq, (B1)

where Pq is the quantum of polarization. Usually, Pq = g,
which reflects the mod 2π of the Zak phase Z [18,22,23].
This is the case of the Shockley model, because x̄ = 0 mod 1.
However, when g = 2 and there are ions of odd-integer charge
(as for SSH1/2 or CDW), it is known that Pq = 1 and not 2; see
page 169 in Ref. [10] and Ref. [42]. It turns out that for SSH1/2

and CDW, Pq = g/2 because x̄ = 0 mod 1/2, i.e., for the same
reason that Zq = π . Therefore P = 0 mod g/2 for SSH1/2 and
P = g/4 mod g/2 for CDW.

For this specific ionic model, the quantity

ϑ = 2π
P

Pq
mod 2π (B2)

is the well-known polarization angle appearing in the electro-
magnetic Lagrangian of 1D dielectrics [14]. For other ionic
models, P is no longer directly proportional to Z̄ .

To conclude this section on electric polarization, we show
that the bulk polarization and the polarization quantum are not
a mere convention but are measurable in principle via the end
charge Q of an open chain. The surface charge theorem [18]
relates Q to the bulk polarization P by

Q = P + mPq, (B3)

where m is an integer. The end charge of a finite chain is
obviously a measurable quantity. Changing the terminations
of an open chain, it is possible to change the end charge by
integers �Q = �mPq ∈ Z corresponding to the transfer of
individual electrons from one end to the other. For a chain with
bulk inversion symmetry, P = 0 or Pq/2 mod Pq and therefore
the end charge Q = mPq or (m + 1/2)Pq. By monitoring the
allowed values of Q for a chain with inversion symmetry as a
function of different surface termination, one may determine
P and Pq.

For example, Vanderbilt and King-Smith (see Fig. 4 in
[18]) have computed the end charge as a function of a param-
eter (called θ ) in the spinful Rice-Mele model (see Appendix
C). For the two values of this parameter (θ = π/2 and 3π/2)
that correspond to the two dimerizations of SSH1/2, they find
Q = 1 and 0, which means that P = 0 and that Pq = 1/m
with m a positive integer. For the two values of the parameter
(θ = 0 and π ) that correspond to the two versions of CDW,
they find Q = −1/2 and 1/2, which means that Pq = 1 and
P = 1/2. The conclusion is again that Pq = g/2 when g = 2,

that P = 0 mod Pq for SSH1/2, and that P = Pq/2 mod Pq for
CDW.

APPENDIX C: RICE-MELE MODEL

In this Appendix we generalize the SSH1/2 and CDW
models to the Rice-Mele (RM) model [19]. The latter has
both a dimerization δ and a staggered on-site potential �, see
Fig. 2(a). The canonical Bloch Hamiltonian reads

Hd,�,δ (k) = 2 cos
k

2
σ eff

x (k, d ) − 2δ sin
k

2
σ eff

y (k, d ) + �σz.

(C1)

Following [18], a convenient parametrization of the model
is in terms of an energy M > 0 and an angle θ such that
� = M cos θ and δ = M sin θ . In the following we fix M =
0.6 and vary θ . Particular values with inversion symmetry are
θ = 0, π (CDW) and θ = π/2, 3π/2 (SSH1/2).

The RM model is invariant under the following parameter
transformation (d,�, δ) → (1 − d,−�,−δ) and relabeling
of the two sublattices (A ↔ B). On the Bloch Hamiltonian,
this symmetry acts as

Hd,�,δ (k) → σxH1−d,−�,−δ (k)σx = Hd,�,δ (k). (C2)

Without loss of generality, one may therefore restrict the study
to 0 � θ < π .

For the specific ionic model in which every site carries a
g/2 charge, the bulk polarization is proportional to the modi-
fied Zak phase, see Eq. (B1). It was computed numerically in
Refs. [18,43,44] for a finite PBC chain with d = 1/2 assum-
ing that Pq = g. It should be modified in order to account for
the fact that the quantum of polarization is actually Pq = g/2.
Here, we also compute it analytically directly in the thermo-
dynamic limit to find

P = −g

4

[
1 − sgn δ

�δ

π
√

1 + �2/4

×�

(
1 − δ2,

1 − δ2

1 + �2/4

)]
mod

g

2
, (C3)

FIG. 7. Bulk polarization P (in units of Pq = g/2) as a function
of θ for the Rice-Mele model with M = 0.6. (a) Blue dots are for a
finite PBC chain of 100 sites. The purple line is Eq. (C3).
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where �(n, m) is the complete elliptic integral of third kind.
Numerical and analytical results are plotted in Fig. 7. We
see that P(−�,−δ) = P(�, δ) mod Pq, in agreement with the
relabelling symmetry. In particular, for SSH1/2 P = 0 mod Pq

(i.e., ϑ = 0) and P = Pq/2 mod Pq for CDW (i.e., ϑ = π ).
As a last confirmation that Pq = g/2, consider the polariza-

tion computed in [18,44] for the RM model as a function of θ

at fixed M (see Fig. 4 in [18] and Fig. 3 in [44]). In the four
cases that have inversion symmetry (θ = 0, π/2, π, 3π/2),
the polarization was found to be −g/4, 0, g/4, and g/2. But
a centrosymmetric crystal must satisfy P = mPq/2, where
m ∈ Z. We therefore have to conclude that Pq = g/2 such that
0 ≡ g/2 and g/4 ≡ −g/4.
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