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Experimental observation of edge-dependent quantum pseudospin Hall effect
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It is conventional wisdom that the helical edge states of a quantum spin Hall (QSH) insulator are particularly
stable due to the topological protection of time-reversal symmetry. Here, we report experimental observation of
an edge-dependent quantum (pseudo)spin Hall effect by employing two Kekulé electric circuits with molecule-
zigzag and partially bearded edges, where the chirality of the circulating current in the unit cell mimics the
electron spin. We observe a helicity flipping of the topological in-gap modes emerging in opposite parameter
regions for the two edge geometries. Experimental findings are interpreted in terms of the mirror winding number
defined in the unit cell, the choice of which exclusively depends on the edge shape. Our work offers a deeper
understanding of the boundary effect on the QSH phase and paves the way for studying the spin-dependent
topological physics in electric circuits.
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I. INTRODUCTION

A paradigm in the topological band insulator family [1,2]
is the quantum spin Hall (QSH) insulator, which has an in-
sulating gap in the bulk but supports gapless helical states
at the boundary [3–6]. QSH insulators are characterized by
the topological Z2 invariant, defined in the presence of time-
reversal symmetry. Because of the symmetry protection, the
helical edge states are robust against the electronic backscat-
tering [5–9], ushering in a new era in spintronics and quantum
computing [10–13]. Counterintuitively, Freeney et al. recently
reported an edge-dependent topology in artificial Kekulé lat-
tices [14]. The mechanism is that the edge geometries of
samples determine the choice of the unit cell and further dic-
tate the value of topological invariants [15–17]. It is intriguing
to ask if there is any spin-resolved topological effect related
to the edge shape of graphenelike materials [18,19] or other
topological insulators [20,21]. This question motivates us to
address theoretically and experimentally the edge-dependent
quantum (pseduo)spin Hall effect.

Recently, the topolectrical circuit sprang up as a powerful
platform to study fundamental topological physics [22–31]
since simple inductor-capacitor (LC) networks can fully sim-
ulate the tight-binding model in condensed-matter physics.
In this work, we fabricate two kinds of Kekulé LC circuits
with molecule-zigzag and partially bearded edges (see Fig. 1).
By measuring the node-ground impedance and monitoring
the spatiotemporal voltage signal propagation, we observe the
quantum pseudospin Hall effect emerging in opposite param-
eter regions with flipped helicities for the two different edge
terminations, where the chirality of the circulating current in
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the unit cell mimics the spin. A quantized mirror winding
number is proposed to explain our experimental findings.

This paper is organized as follows. The circuit model and
main results are displayed in Sec. II, in which we present
the experimental observations of an edge-dependent quantum
pseudospin Hall effect by employing two Kekulé electric cir-
cuits, accompanied by the numerical calculations. In Sec. III,
we explain these findings by evaluating the mirror winding
number defined in the unit cell. In Sec. IV, we clarify the
meaning of pseudospin and map the circuit Hamiltonian to
the Bernevig-Hughes-Zhang model. Conclusions are drawn in
Sec. V.

II. CIRCUIT MODEL AND MAIN RESULTS

We consider two finite-size artificial Kekulé circuits with
molecule-zigzag and partially bearded edge terminations, as
shown in Figs. 1(a) and 1(b), respectively. The circuits consist
of two types of capacitors, CA and CB, and an inductor L. The
response of the circuit at frequency ω is given by Kirchhoff’s
law:

Ia(ω) =
∑

b

Jab(ω)Vb(ω), (1)

where Ia is the external current flowing into node a, Vb is
the voltage of node b, and Jab(ω) = iω[−Cab + δab(

∑
n Can −

1
ω2La

)] is the circuit Laplacian, with Cab being the capaci-
tance between nodes a and b and the sum being taken over
all nearest-neighbor nodes. Based on Eq. (1), we explicitly
express the circuit Laplacians JI(ω) and JII(ω) of the two
circuits in Figs. 1(a) and 1(b). At the resonant frequency
ω0 = 1/

√
(2CA + CB)L, the diagonal elements of the circuit

Laplacians vanish.
Two printed circuit boards with different edge geometries

are displayed in Figs. 2(a) and 2(b). In experiments, we adopt

2469-9950/2021/104(23)/235427(12) 235427-1 ©2021 American Physical Society

https://orcid.org/0000-0003-0157-6872
https://orcid.org/0000-0001-6369-2882
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.235427&domain=pdf&date_stamp=2021-12-22
https://doi.org/10.1103/PhysRevB.104.235427


YANG, SONG, CAO, WANG, AND YAN PHYSICAL REVIEW B 104, 235427 (2021)

FIG. 1. Illustration of two artificial Kekulé LC circuits with (a) molecule-zigzag and (b) partially bearded edge terminations. Each node is
grounded by inductors and capacitors with the configuration shown in the inset. The dashed red hexagon and rhombus represent the appropriate
unit cells for the two different edge shapes.

FIG. 2. Printed circuit boards with (a) molecule-zigzag and (b) partially bearded edges. Yellow stars label the position of signal sources
in the voltage measurements. (c)–(f) Experimental measurements of the spatial distribution of impedance between each node and the ground.
Insets: numerical results.
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FIG. 3. Experimental measurements of the steady-state amplitude of the voltage oscillation in devices with (a) molecule-zigzag
(CA/CB = 0.1) and (d) partially bearded (CA/CB = 10) edges. (b) and (e) Theoretical calculation with Q = 1000. (c) and (f) Snapshots of
the propagating voltage. The blue star labels the position of the signal source, and the red and blue arrows represent the propagation direction
of the voltage with up and down pseudospins, respectively.

CA = 1 nF, CB = 10 or 0.1 nF, and L = 39 μH (all circuit
elements have a 2% tolerance; see Appendix A), with the
resonant frequency being ω0/2π = 1/[2π

√
(2CA + CB)L] =

232.65 or 556.13 kHz, respectively.
We measure the distributions of impedance between each

node and the ground with the impedance analyzer (Keysight
E4990A), and the results are plotted in Figs. 2(c)–2(f). For de-
vices with a molecule-zigzag edge at CA/CB = 0.1 [Fig. 2(c)]
and a partially bearded edge at CA/CB = 10 [Fig. 2(f)], we ob-
serve that the impedance concentrates on the sample edge, the
value of which is larger than 1000 �, indicating the existence
of edge states (Appendix A). Theoretically, the impedance
between nodes a and b is given by [28]

Zab = Va − Vb

Iab
=

∑
n

|ψn,a − ψn,b|2
jn

, (2)

where |ψn,a − ψn,b| is the amplitude difference between the a
and b nodes of the nth eigenstate and jn is the nth eigenvalue.
We plot the numerical results in the insets of Figs. 2(c)–2(f),
showing excellent agreement with the experimental measure-
ments.

It is known that the QSH insulator allows bidirectional
propagation states along the boundary. However, we cannot
directly observe the time-resolved wave dynamics by mea-
suring the impedance. To solve this problem, we monitor
and record the spatiotemporal voltage signal in the circuits.
Specifically, we impose a sinusoidal voltage signal v(t ) =
v0 sin(ω0t ) with amplitude v0 = 5 V at the node labeled by
blue stars in Figs. 3(a) and 3(b) by an arbitrary function
generator (GW AFG-3022) and then measure the steady-
state voltage distribution using an oscilloscope (Keysight
MSOX3024A). We indeed observe a strong voltage response
along both directions of the device edge. However, the voltage
signal decays very fast away from the voltage source be-
cause of the low quality factor (Q = 25–50) of the inductors.
To overcome this issue, we add active elements (negative
resistance) in the edge nodes to improve the Q factor (see

Appendix B) and directly observe a much longer propaga-
tion distance of the edge states [see Figs. 3(a) and 3(d)].
In Figs. 3(b) and 3(e), we also plot the theoretical steady-
state voltage distributions with higher Q factor inductors
(Q = 1000) for comparison.

To see the propagation details of the edge states, we
perform circuit simulations with LTSPICE [32] and record
the voltage of all nodes. For the two edge states along
molecule-zigzag and partially bearded boundaries, the volt-
age signals propagate in both directions along the edge, as
displayed in Figs. 3(c) and 3(f), accompanied by the helicity
flipping indicated by red and blue arrows (see the analysis
below).

To explain the experimental results, we numerically calcu-
late the band structure of the circuits. By diagonalizing the
circuit Laplacians JI(ω) and JII(ω), we obtain the admittance
spectrum jn and the corresponding wave functions ψn,m, as
shown in Fig. 4. For circuits with a molecule-zigzag edge,
with CA/CB = 0.1, isolated states emerge in the gap of the
bulk admittance spectrum which correspond to the edge states,
as shown in Fig. 4(a). When CA/CB = 10, only bulk states are
identified [see Fig. 4(b)]. For circuits with a partially bearded
edge, on the contrary, we find that the edge states emerge in
the opposite capacitance ratio, i.e., CA/CB = 10, as displayed
in Fig. 4(c). For CA/CB = 0.1, one can observe only the bulk
states [see Fig. 4(d)]. These results are fully consistent with
our experimental observations.

III. TOPOLOGICAL INVARIANT

Next, we analyze the origin of the bidirectional edge states.
First of all, we can exclude the Tamm-Shockley mechanism
[33,34], which predicts that the periodicity breaking of the
crystal potential at the boundary can lead to the formation of
a conducting surface/edge state. However, this surface/edge
state is trivial because it is sensitive to impurities, defects,
and disorder (see Appendix A), which is not compatible with
our experimental findings. There thus must be a topological
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(a) (b)

(c) (d)

FIG. 4. The blue and black dots denote the edge states and bulk states, respectively. Insets: spatial distribution of wave functions, with the
number of states indicated by the arrows. (a) and (b) Molecule-zigzag edge with CA/CB = 0.1 and CA/CB = 10. (c) and (d) Partially bearded
edge with CA/CB = 0.1 and CA/CB = 10.

reason for the emerging bidirectional edge states we observed.
To justify this point of view, we employ the mirror winding
number (n+, n−) defined in the unit cell [15],

n± = − 1

2π

∮
d

dk⊥
arg(det Qk±

⊥
)dk⊥, (3)

where

Qk+
⊥

=
(

CBY
2 √

2CA√
2CA CA + CBY

)
, Qk−

⊥
= CBY − CA

for molecule-zigzag edge termination and

Qk+
⊥

=
(

CB

√
2CA√

2CAY CB + CAY

)
, Qk−

⊥
= CB − CAY

for partially bearded edge termination. Here Y = ei 3
2 k⊥ , with

k⊥ being the projection of wave vector k to the ŷ direction.
The choice of the unit cell depends on the shape of the sample
edge. As shown in Figs. 1(a) and 1(b), the dashed red hexagon
and rhombus represent the unit cells for the two different
edge geometries. For the circuit with the molecule-zigzag
edge, we obtain (n+, n−) = (1,−1) when CA/CB < 1 and
(0,0) when CA/CB > 1. Therefore, we can observe the topo-
logical edge states when CA/CB < 1. For the circuit with the
partially bearded edge, the situation is inverted: (n+, n−) =
(0, 0) when CA/CB < 1 and (1,−1) when CA/CB > 1, indi-

cating that the topological edge states arise in the region of
CA/CB > 1 (see Appendix C).

IV. PSEUDOSPIN AND MAPPING TO THE
BERNEVIG-HUGHES-ZHANG MODEL

Figures 5(a) and 5(d) show two infinitely long ribbons with
molecule-zigzag and partially bearded edges. For the ribbon
with the molecule-zigzag edge, in the case of CA/CB < 1, we
find three isolated modes in the band gap [see Fig. 5(b)]. The
red and blue spectra represent the helical edge states with
opposite group velocities. We introduce the circulating bond
currents inside the unit cell: im→n = i(c†

ncm − c†
mcn), with cn

and c†
n being the annihilation and creation operators, respec-

tively, at site n [35–37], with their flow direction plotted on
the right in Figs. 5(a) and 5(d). Interestingly, we find that
the chiralities of the circulating current are opposite for the
in-gap red and blue bands, which mimics the electron spin-up
and spin-down states, respectively, and the two modes are
independent of each other (see Appendixes D and E). This
observation is reminiscent of the spin-momentum locking in
the QSH effect. The brown line denotes the flat band localized
in the bottom zigzag edge of the ribbon [38]. Moreover, we
find that Kirchhoff’s law can be mapped to the Schrödinger
equation (see Appendix F), and the underlying physics of our
circuit model should be identical to the quantum-mechanical
one. Indeed, by experimentally measuring the crossing
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FIG. 5. (a) Schematic plot of a ribbon with a molecule-zigzag edge (top) and a graphene-zigzag edge (bottom). The ribbon is periodic
along the x̂ direction and contains 40 unit cells along the ŷ direction. Insets: the pesudospin is denoted by the chirality of the circulating current
in the unit cell. (b) Calculated admittance spectrum of the ribbon with capacitor ratio CA/CB = 0.1. Red and blue lines represent the dispersive
edge states with pesudospin up and down counterpropagating along the top edge. The brown line denotes the localized mode in the bottom
edge. (d) Illustration of a ribbon with a partially bearded edge (top) and a graphene-zigzag edge (bottom). (e) Calculated admittance spectrum
with capacitor ratio CA/CB = 10. (c) and (f) Measured band structure in the frequency domain.

spectrum in the frequency domain [see Fig. 5(c)], we observe
good agreement with the admittance spectrum. For CA/CB >

1, there is no in-gap energy spectrum expect for the flat band
(see Appendix F). For the ribbon with a partially bearded
edge, the edge modes with flipped helicity, however, only
appear in the region of CA/CB > 1 [see Figs. 5(e) and 5(f)].

To understand the origin of the helicity flipping, we reduce
the six-band circuit Laplacian to the four-band Bernevig-
Hughes-Zhang (BHZ) model originally proposed for HgTe
quantum wells [5,6]. To this end, we express Jab(ω) =
iHab(ω), in which H (ω) can be viewed as a Hermitian tight-
binding Hamiltonian. Taking the molecule-zigzag unit cell
as an example, one can write the Hamiltonian of an infinite
Kekulé circuit at resonance as

H = −ω0CA

∑
〈i, j〉

c†
i c j − ω0CB

∑
〈i′, j′〉

c†
i′c j′ , (4)

where 〈i, j〉 and 〈i′, j′〉 run over nearest-neighboring sites
inside and between hexagonal unit cells, respectively. Di-
agonalizing Hamiltonian (4), we obtain six bands, two of
which are high-energy bands with the phase transition point
CA/CB = 1 at the low-energy � point. We further note that the
high-energy parts are irrelevant to the topological phase tran-
sition. By performing a unitary transformation H ′ = U †HU
on H around the � point, we separate the two high-energy
orbits and obtain the low-energy effective BHZ-type Hamilto-
nian as follows (see Appendix D):

Heff (k) = −ω0

(
H (k) 0

0 H∗(−k)

)
, (5)

with

H (k) =
(

M − Bk2 Ak−
A∗k+ −M + Bk2

)
,

where M = CB − CA, A = − 3
2 iCB, B = 9

4CB, k2 = k2
x + k2

y ,
and k± = kx±iky.

For the circuit with a partially bearded unit cell, we obtain a
similar low-energy effective Hamiltonian, but with M = CA −
CB. The sign of the parameter M is opposite for the two edge
geometries, leading to the helicity flipping of the edge states
in the opposite parameter regions based on the band inversion
mechanism. Here the parameter M can be interpreted as an
effective spin-orbit coupling (SOC) associated with the pseu-
dospin, which is different from the intrinsic one originating
from the relativistic effect. However, the SOC in the circuit is
tunable and can be very large, enabling the observation of the
quantum pseduospin Hall states at room temperature.

V. CONCLUSION

In summary, we reported an edge-dependent quantum
pseudospin Hall effect in topolectric circuits. We showed that
the pesudospin is represented by the chirality of the circulating
current in the unit cell. Through the impedance measurement
and spatiotemporal voltage signal detection assisted by circuit
simulations, we directly identified the helical nature of the
edge states. The emerging topological phases were character-
ized by mirror winding numbers, which depend on the shape
of the device edge. Our work uncovered the importance of the
edge geometry in the QSH effect and opens a pathway to using
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circuits to simulate the spin-dependent topological physics,
which may inspire research in other solid-state systems and
stimulate applications in information transmission, patterned
imaging, and computing in the future (see Appendix G).

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Grants No. 12074057, No. 11604041,
and No. 11704060). X.R.W. acknowledges the financial
support of Hong Kong RGC (Grants No. 16302321, No.
16301518, and No. 16301619).

APPENDIX A: THE INFLUENCE OF THE TOLERANCES
OF CIRCUIT ELEMENTS

In this Appendix, we investigate the impact of tolerances
of the circuit elements. Considering a simple parallel LC
unit with different tolerances [see the inset in Fig. 6(a)], we
choose 〈L〉 = 39 μH, 〈C〉 = CA + 2CB = 12 nF and calcu-
late its impedance. As shown in Fig. 6(a), the impedance
decreases with larger fluctuations as the tolerance increases
(we averaged the results after 104 realizations of uniformly
distributed disorders). Then, we introduce disorders to the
molecule-zigzag circuit. We calculate the average impedance
after 104 realizations of uniformly distributed disorders [see
Figs. 6(b)–6(e)] and find that the impedance is still well con-
fined to the edge but its magnitude decreases. The real circuit
elements always have large production-related tolerances in
capacitance and inductance (about 10%). To demonstrate a

clean result, we select the circuit components with small tol-
erance (2%).

APPENDIX B: IMPROVING THE Q FACTOR OF
INDUCTORS WITH THE NEGATIVE RESISTANCES

In this Appendix, we improve the Q factor of inductors
by introducing the active elements (negative resistances) to
the circuits. In passive experiments, the voltage signal decays
very quickly during the propagation, which is limited by the
quality factor (Q factor) of the inductor. The quality factor
is defined as Q = ωL/r, with r being the unavoidable loss
of material. To compensate the dissipation, we improve the
Q factor of the inductor by adding a series of active ele-
ments (negative resistance) to the boundary nodes, as shown in
Fig. 7(a).

For an ideal operational amplitude, i+ = 0, i− = 0, and
ud = 0 (most modern amplifiers have large gains and input
impedances, so the analysis is feasible in a real circuit). Ac-
cording to Ohm’s law, we obtain

vin − vo = iR, vo = RA + RB

RB
vin. (B1)

Combining these two equations, we have

vin

i
= −RA

RB
R. (B2)

When RA = RB, the network is equivalent to a negative re-
sistance due to vin = i(−R). With these active elements,
we measure the voltage propagation again. We compare the

FIG. 6. (a) Impedance and its fluctuation for different tolerances of the circuit elements. t is the maximal intensity of the uniformly
distributed disorder. (b)–(f) The distribution of the impedance for different tolerances.
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FIG. 7. (a) The schematic diagram and (b) photograph of the printed circuit board of negative resistances. The distribution of the amplitude
of the voltage signal (c), (d) without and (e), (f) with negative resistances.

distribution of the amplitude of the voltage signal without and
with negative resistance, shown in Figs. 7(c), 7(d) and 7(e),
7(f), respectively. In the presence of negative resistances, the
voltage signal can propagate over a larger distance along the
edge, especially for the partially bearded case.

We also analyze the validity of the experimental setup
(connecting the negative resistances to only the boundary
nodes) with a comparison for two cases: (i) negative re-
sistances associated with only the boundary nodes and (ii)
negative resistances associated with all nodes. The results
are shown in the Fig. 8, from which we observe that (i) the
negative resistances can slow down the decay of the voltage
signal [compare the results in Figs. 8(a) and 8(b)] and (ii) one
can hardly distinguish the results with the negative resistances

connected to only the edge nodes [Fig. 8(b)] and to all nodes
[Fig. 8(c)] because the edge mode is exponentially decaying to
the bulk. We therefore conclude that connecting the negative
resistance to only the boundary nodes is reasonable, which
also lowers the complexity of our experiments (since we can
use fewer electrical elements).

APPENDIX C: MIRROR WINDING NUMBER

In this Appendix, we calculate the topological invariant
i.e., mirror winding number, to characterize the helical edge
states. With the appropriate unit cells in Fig. 9 (unit cell I for
the circuit with a molecule-zigzag edge and unit cell II for
the circuit with a partially bearded edge), we can write the

(a) (b) (c)

FIG. 8. Propagation of the voltage signal for different Q-factor inductors. (a) Q = 50 for all nodes (without negative resistance). (b) Q = 50
for bulk nodes, and Q = 100 for boundary nodes (with negative resistance to only edge nodes). (c) Q = 100 for all nodes (with negative
resistance to all nodes).
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FIG. 9. (a) Appropriate unit cells for molecule-zigzag and par-
tially bearded edges. The orange arrows label the two basic vectors.
(b) The mirror winding numbers (n+, n−) as a function of the capac-
itance ratio CA/CB.

Hamiltonian of an infinite Kekulé circuit as

H = ω

⎛
⎜⎜⎜⎜⎜⎝

h0 0 0
0 h0 0 −Qk
0 0 h0

h0 0 0
−Q†

k 0 h0 0
0 0 h0

⎞
⎟⎟⎟⎟⎟⎠

, (C1)

with the matrix elements h0 = 2CA + CB − 1/(ω2L),

QI
k =

⎛
⎝CBXY

2
CA CA

CA CBXY CA

CA CA CBY

⎞
⎠ (C2)

for the molecule-zigzag edge, where X = eik·a1 and Y = eik·a2 ,
with a1 = 3

√
3x̂ and a2 = 3

√
3

2 x̂ + 3
2 ŷ being the two basic

vectors, and

QII
k =

⎛
⎝ CB CA CA

CAY CB CAXY
CAXY CAY CB

⎞
⎠ (C3)

for the partially bearded edge.
At resonant frequency ω0 = 1/

√
(2CA + CB)L, the di-

agonal element h0 vanishes, and the Hamiltonian can be
simplified as

H = −ω0

(
0 Qk

Q†
k 0

)
, (C4)

where Qk is QI
k [Eq. (C2)] for the molecule-zigzag edge and

QII
k [Eq. (C3)] for the partially bearded edge.
Regarding the momentum k parallel to the unit vector a1

defined as a free parameter k‖, the system can be viewed as an
effective one-dimensional model, to which one can assign the
winding number as

n(k‖) = − 1

2π

∮
d

dk⊥
arg(det Qk‖,k⊥ )dk⊥. (C5)

For k‖ = 0, the mirror symmetry with the mirror plane
perpendicular to a1 enables us to decompose the Hamiltonian
(C4) into even and odd sectors Hk±

⊥
, where k is replaced by

k⊥ (perpendicular to a1). Concretely, Qk can be decomposed
into even and odd sectors Qk±

⊥
. Then, we can assign winding

numbers for the even and odd sectors separately by substitut-

ing Qk+
⊥

and Qk−
⊥

into Eq. (C5), which constitutes the mirror
winding number (n+, n−) [15].

At k‖ = 0, QI
k is decomposed into

QI
k+
⊥

=
(

CBY
2 √

2CA√
2CA CA + CBY

)
, QI

k−
⊥

= CBY − CA (C6)

by a unitary transformation Qk±
⊥

= η−1Qkη, with η being

η =

⎛
⎜⎝

1 0 0

0
√

2
2

√
2

2

0
√

2
2 −

√
2

2

⎞
⎟⎠. (C7)

Similarly, QII
k is decomposed into even and odd sections:

QII
k+
⊥

=
(

CB

√
2CA√

2CAY CB + CAY

)
, QII

k−
⊥

= CB − CAY. (C8)

Using Eq. (C5), we can compute the mirror winding num-
ber (n+, n−) immediately, with the results plotted in Fig. 9(b).
For circuits with molecule-zigzag and partially bearded edges,
the topological edge states appear in the regions of CA/CB < 1
and CA/CB > 1, respectively.

APPENDIX D: ANALOGY TO THE QUANTUM SPIN
HALL PHYSICS

In this Appendix, we clarify the meaning of the pseudospin
and map our six-band Hamiltonian to the four-band Bernevig-
Hughes-Zhang (BHZ) model for CdTe/HgTe/CdTe quantum
wells.

Taking the molecule-zigzag unit cell as an example, we can
write the Hamiltonian of an infinite Kekulé circuit at resonant
frequency as

H = −ω0CA

∑
〈i, j〉

c†
i c j − ω0CB

∑
〈i′, j′〉

c†
i′c j′ , (D1)

where ci is the annihilation operator at site i and 〈i, j〉 and
〈i′, j′〉 run over nearest-neighbor sites inside and between
hexagonal unit cells, respectively. Considering a single hexag-
onal unit cell, the HamiltonianH is given by

H
−ωCA

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (D2)

The eigenenergies are 2, 1, 1,−1,−1,−2, with the corre-
sponding eigenstates

|s〉 =
[√

6

6
,

√
6

6
,

√
6

6
,

√
6

6
,

√
6

6
,

√
6

6

]
,

|px〉 =
[
−1

2
, 0,

1

2
,

1

2
, 0,−1

2

]
,

|py〉 =
[
−

√
3

6
,

2
√

3

6
,−

√
3

6
,

√
3

6
,−2

√
3

6
,

√
3

6

]
,

|dx2−y2〉 =
[√

3

6
,−2

√
3

6
,

√
3

6
,

√
3

6
,−2

√
3

6
,

√
3

6

]
,
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FIG. 10. (a) The orbitals in the hexagonal artificial lattice.
(b) The circulating bond currents inside the unit cell. The top and
bottom panels correspond to states p+ (or d+) and p− (or d−),
respectively.

|dxy〉 =
[

1

2
, 0,−1

2
,

1

2
, 0,−1

2

]
,

| f(3x2−y2 )〉 =
[
−

√
6

6
,−

√
6

6
,−

√
6

6
,

√
6

6
,

√
6

6
,

√
6

6

]
,

respectively. They are like the s, p, d, and f atomic orbits,
shown in Fig. 10(a). We can construct the following states:

|p±〉 = 1√
2

(|px〉 ± i|py〉),

|d±〉 = 1√
2

(|dx〉 ± i|dy〉), (D3)

which are related to each other by the pseudo-time-reversal
(pseudo-TR) transformation T = UK , with U = iσz (σz is
the Pauli matrix) and K being a complex conjugate operator,
i.e., T |p±〉 = ∓i|p∓〉 and T |d±〉 = ∓i|d∓〉. T 2 = −1 indi-
cates the Kramers degeneracy. It is worth mentioning that
the high-energy orbits |s〉 and | f(3x2−y2 )〉 are singlets, so the
pseudospin and pseudo-TR symmetry are valid only for low-
energy orbits. One can straightforwardly verify that the two
modes |p+〉 and |p−〉 (|s+〉 and |s−〉) are orthogonal since
〈p+|p−〉 = 0 (〈p+|p−〉 = 0).

Imitating the definition of the current density for a lattice
model, the bond current density between two nodes, m and
n, is written as im→n = i(c†

ncm − cnc†
m). Using states |p+〉 and

|p−〉 (or |d+〉 and |d−〉), we calculate the current distributions
inside the unit cell, with the result plotted in Fig. 10(b). We
find that the chiralities of the circulating currents in the unit
cell are opposite, which mimics the electron spin-up and spin-
down states.

Then, we downfold the six-dimensional Hamiltonian
H associated with the tight-binding model into the four-
dimensional subspace [p+, d+, p−, d−] by a unitary transfor-
mation.

For the circuit with molecule-zigzag edge geometry, we
impose a unitary transformation H ′ = U †HU on Hamil-
tonian H (D1) to separate the high-energy parts of the
Hamiltonian with the matrix [28]

U = 1√
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ei π
2 eiπ ei 3π

2 eiπ 1 1
ei 7π

6 ei π
3 ei 5π

6 ei 5π
3 −1 1

ei 11π
6 ei 5π

3 ei π
6 ei π

3 1 1
ei π

2 ei2π ei 3π
2 ei2π −1 1

ei 7π
6 ei 4π

3 ei 5π
6 ei 2π

3 1 1
ei 11π

6 ei 2π
3 ei π

6 ei 4π
3 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (D4)

Imposing Taylor expansion on each matrix element ofH ′ around the � point to second-order terms, we obtain

H� = −ω0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δC − 9
4CBk2 − 3

2 iCBk− h13 0 − 3
2 iCBk+ h16

3
2 iCBk+ −δC + 9

4CBk2 0 h24 h25 − 3
2CBk−

h∗
13 0 δC − 9

4CBk2 − 3
2 iCBk+ − 3

2 iCBk− h36

0 h∗
24

3
2 iCBk− δC + 9

4CBk2 h45
3
2CBk+

3
2 iCBk− h∗

25
3
2 iCBk+ h∗

45 −2CA − CB + 9
4CBk2 0

h∗
16 − 3

2CBk+ h∗
36

3
2CBk− 0 2CA + CB − 9

4CBk2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(D5)

with δC = CB − CA, k2 = k2
x + k2

y , k− = kx − iky, h13 = h∗
24 = 9

8CB(k2
y − k2

x ) − 9
4CBikxky, h16 = 9

8CBi(k2
y − k2

x ) − 9
4CBkxky,

h25 = h∗
45 = 9

8CB(k2
x − k2

y ) + 9
4CBikxky, and h36 = 9

8CBi(k2
x − k2

y ) − 9
4CBkxky.

Dropping the last two high-energy orbits and the second-order off-diagonal terms hi j (hi j contributes as high-order perturba-
tions), Hamiltonian (D5) is block diagonalized. We obtain the low-energy effective Hamiltonian as

H I
eff = −ω0

⎛
⎜⎜⎜⎜⎝

δC − 9
4CBk2 − 3

2 iCBk− 0 0
3
2 iCBk+ −δC + 9

4CBk2 0 0

0 0 δC − 9
4CBk2 − 3

2 iCBk+
0 0 3

2 iCBk− δC + 9
4CBk2

⎞
⎟⎟⎟⎟⎠. (D6)
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FIG. 11. (a)–(f) The simulated (left) and experimental (right) results of the propagation of the voltage with different positions of the signal
sources and edge terminations.

The effective HamiltonianH I
eff can be rewritten in a concise BHZ form [5] as

Heff (k) = −ω0

(
H (k) 0

0 H∗(−k)

)
, H (k) =

(
M − Bk2 Ak−

A∗k+ −M + Bk2

)
, (D7)

where M = δC = CB − CA, A = − 3
2 iCB, B = 9

4CB, k2 = k2
x + k2

y , and k± = kx±iky.
Similarly, near the � point, the Hamiltonian of the partially bearded edge geometry can be simplified as

H II
eff = −ω0

⎛
⎜⎜⎜⎜⎝

δC + 9
4CAk2

x + 3
4CAk2

y
3
2 iCAk− 0 0

− 3
2 iCAk+ −δC − 9

4CAk2
x − 3

4CAk2
y 0 0

0 0 δC + 9
4CAk2

x + 3
4CAk2

y
3
2 iCAk+

0 0 − 3
2 iCAk− −δC − 9

4CAk2
x − 3

4CAk2
y

⎞
⎟⎟⎟⎟⎠,

which can be rewritten as the BHZ form with

H (k) = −
(

M − B
(
3k2

x + k2
y

)
Ak−

A∗k+ −M + B
(
3k2

x + k2
y

)
)

, (D8)

where A = − 3
2 iCA, B = 3

4CA, and M = CA − CB. The extra minus sign of H (k) has no effect on the energy spectra because the
four bands are symmetrical with respect to the zero energy. However, the opposite sign of parameter M leads to the helical edge
states emerging in the opposite parameter regions for the two edge geometries.

APPENDIX E: INDEPENDENCE OF THE PSEUDOSPIN-UP
AND PSEUDOSPIN-DOWN MODES

In this Appendix, we separate the pseudospin-up and
pseudospin-down modes by breaking the mirror symmetry.
From a mathematical point of view, the two modes are inde-
pendent because the system Hamiltonian is linear. Practically,
we can send only one of the two modes in our system. As
shown in the left panel of Fig. 11(a), taking the molecule-
zigzag edge as an example, we add two local voltage sources,
v1(t ) = v0 sin(ω0t ) and v2(t ) = v0 sin(ω0t ), to the nodes at
the boundary, indicated by two blue arrows. We then ob-
serve a unidirectional voltage propagation because the mirror
symmetry of this system is broken in the presence of the
two voltage sources. For comparison, we add another voltage
source, v3(t ) = v0 sin(ω0t ), to preserve the mirror symmetry,
and the edge mode propagation becomes bidirectional [see
Fig. 11(c)]. We also analyze the partially bearded case and
obtain the same results [see Figs. 11(d)–11(f)]. The corre-
sponding experimental results are displayed in the right panels

of Figs. 11(a)–11(f), and these results are fully consistent with
the simulated ones.

APPENDIX F: THE RELATION BETWEEN KIRCHHOFF’S
LAWS AND SCHRÖDINGER’S EQUATION

In this Appendix, we explain the relation between Kirch-
hoff’s laws and Schrödinger’s equation and calculate the
admittance spectrum as well as the frequency spectrum.

In a circuit, the equation of motion is given by

dI(t )

dt
= C

d2V(t )

dt2
+ LV(t ), (F1)

where V is the N-component voltage measured at each node
against the ground and I is the N-component input current at
each node.

The homogeneous equations of motion (I = 0) can be
rewritten as 2N differential equations of the first order [24]:

−i
d

dt
ψ (t ) = HSψ (t ), (F2)
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FIG. 12. (a) and (e) The admittance spectrum and (b) and (f) the frequency spectrum of the ribbon with a molecule-zigzag edge (top) and
a graphene-zigzag edge (bottom). Red and blue lines represent the dispersive edge states with pesudospin up and down counterpropagating
along the top edge. The brown line denotes the localized mode in the bottom boundary. (c) and (g) Experimentally measured frequency band
structures near the resonant frequency ω0. The admittance of the ribbon with (d) capacitor ratio CA/CB = 10 and (h) CA/CB = 0.1.

with ψ = (V̇(t ), V(t ))T and the Hamiltonian block matrix
being

HS = i

(
0 C−1L

−1 0

)
.

By diagonalizing HS , we can obtain the spectrum. The
frequency-domain band structure ω(kx ) close to the resonant
point ω0 is obtained from a numerical calculation similar
to that for the circuit Laplacian [see Figs. 12(a), 12(e) and
12(b), 12(f)]. We also experimentally measure the crossing
frequency spectrum near the resonant frequency ω0, as shown
in Figs. 12(c) and 12(g). The experimental results are obtained
by measuring the voltage propagation at different driving fre-
quencies (with the help of negative resistance) and imposing

a fast Fourier transform on the signal v(x). Figures 12(d) and
12(h) show the admittance band structures of the trivial states
for the two different edge terminations.

APPENDIX G: APPLICATIONS OF THE
EDGE-DEPENDENT QUANTUM PSEUDOSPIN

HALL EFFECT

In this Appendix, we introduce the potential applications of
the edge-dependent quantum pseudospin Hall effect. First, the
helical edge state can direct the voltage signal from one node
to another, which can be used to realize information trans-
mission, patterned imaging, and computing [see Figs. 13(a)
and 13(b)]. Then, the edge-dependent effect can be used to
control the signal propagation by modifying the edge shape
[see Figs. 13(c) and 13(d)].

FIG. 13. (a) The voltage signal propagates along the channel between two topologically distinctive regions. (b) The patterned imaging with
the topological boundary mode. Changing the sample edge from zigzag (with gray elements) to (c) molecule-zigzag and (d) partially bearded
edges, the localized states (indicated by the colored balls) transform into the helical edge state and bulk state, respectively (CA/CB < 1).
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