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Nonlinearity-induced transition in the nonlinear Su-Schrieffer-Heeger model and a nonlinear
higher-order topological system
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We study the topological physics in nonlinear Schrödinger systems on lattices. We employ the quench
dynamics to explore the phase diagram, where a pulse is given to a lattice point and we analyze its time evolution.
There are two system parameters λ and ξ , where λ controls the hoppings between the neighboring links and ξ

controls the nonlinearity. The dynamics crucially depends on these system parameters. Based on analytical and
numerical studies, we derive the phase diagram of the nonlinear Su-Schrieffer-Heeger (SSH) model in the (λ, ξ )
plane. It consists of four phases. The topological and trivial phases emerge when the nonlinearity ξ is small.
The nonlinearity-induced localization phase emerges when ξ is large. We also find a dimer phase as a result of a
cooperation between the hopping and nonlinear terms. A similar analysis is made of the nonlinear second-order
topological system on the breathing Kagome lattice, where a trimer phase appears instead of the dimer phase.
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I. INTRODUCTION

Topological phases have attracted much attention in the
context of solid-state materials [1,2] with the emergence of
topological edge states. They are generalized to higher-order
topological phases [3–13], where topological corner states and
topological hinge states emerge. Recently, they have also been
found in various linear systems such as photonic [14–33],
acoustic [34–43], mechanical [44–60], and electric circuit
[61–76] systems. Now, nonlinear topological photonics is an
emerging field [20,22,77–79], where nonlinearity is naturally
introduced by the Kerr effect. Nonlinear higher-order topo-
logical phases have been experimentally studied in photonics
[80,81]. Topological edge states and topological corner states
have been observed in nonlinear systems just as in linear
systems.

It is a hard task to construct a general theory of the
topological physics in nonlinear systems because there are
many ways to introduce nonlinearity. It would be necessary
to make individual studies of typical nonlinear models to
achieve at a systematic understanding. For instance, a non-
linear Su-Schrieffer-Heeger (SSH) model was studied in an
electric circuit[82] with nonlinear elements introduced by
back-to-back varactors, where the enhancement of higher-
order harmonics generation is found in the topological phase.
The dimerized Toda-lattice model [83] and a nonlinear me-
chanical system [84] were studied in previous works, which
contain the SSH model as an essential term. Indeed, these two
models are reduced to the dynamical SSH model provided the
nonlinear term is ignored, where the topological number is
well defined with the emergence of the zero-mode edge state
in the topological phase. Furthermore, we performed numeri-
cal analysis to show the validity of the topological physics in
the presence of the nonlinear term. These models have only
two phases, the topological phase and the trivial phase in the

phase diagram in the (λ, ξ ) plane, with λ being the dimeriza-
tion parameter and ξ being the nonlinearity parameter.

In this paper, we study the quench dynamics governed by
a nonlinear Schrödinger equation consisting of the hopping
term with the hopping matrix Mnm and the nonlinear term
proportional to the nonlinearity parameter ξ . In the quench dy-
namics, we give a pulse to a lattice point and explore its time
evolution. The dynamics is sensitive to the presence of the
topological edge and corner states. We perform a numerical
analysis in a wide region of parameters and construct phase
diagrams in the (λ, ξ ) plane. We are interested in the systems
which describe nontrivial topological dynamics in the linear
limit (ξ = 0). As explicit examples, we take Mnm on the SSH
lattice and on the breathing kagome lattice. We confirm ana-
lytically the validity of the topological dynamics in the weak
nonlinearity regime (ξ � 1) based on the first-order perturba-
tion theory in ξ . We show that the topological phase boundary
between the topological and trivial phases is well defined and
remains unmodified in this weak nonlinearity regime. In the
strong nonlinearity regime (ξ � 1) where the nonlinear term
is dominant, we obtain analytically the nonlinearity-induced
localization phase, where the state is localized due to the
nonlinear term. It is unrelated to the topological physics be-
cause the term Mnm is irrelevant in this regime. The transition
from the weak to the strong nonlinearity regime is a transition
from extended states to localized states. We have also found
a new phase formed by a cooperative effect of these two
terms, which is the oscillation-mode phase in the vicinity
of the dimerized nonlinear SSH model and the trimerized
breathing Kagome model illustrated in Figs. 1(a3) and 1(b3),
respectively.

This paper is composed as follows. In Sec. II, we review
the nonlinear Schrödinger equation. We discuss it analytically
in the linear limit (ξ = 0), in the weak nonlinearity regime
(ξ � 1), and in the strong nonlinearity regime (ξ � 1). We
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FIG. 1. Illustration of (a) a dimerized lattice and (b) a breathing
Kagome lattice with (a) κA = 0, (b) κAκB �= 0, and (c) κB = 0. A
line (triangle) contains many small segments (triangles). At the edges
(corners) of the chain (triangle), there are two (three) isolated atoms
for κA = 0, while there are dimer (trimer) states for κB = 0. They are
marked by dotted circles. The size of the line (triangle) is L = 5.

find that the topological phase transition point does not change
in the weak nonlinear regime. On the other hand, the system
turns into the nonlinearity-induced localization phase in the
strong nonlinearity regime. In Sec. III, we explicitly study the
nonlinear SSH model, where the phase diagram is determined
by a numerical analysis. It consists of the topological phase,
the trivial phase, the nonlinearity-induced localization phase,
and the dimer phase. We discuss the origin of the dimer
phase as an operative effect of the hopping term and the
nonlinear term. In Sec. IV, we explicitly study the nonlinear
second-order topological phase on the breathing kagome lat-
tice, where the phase diagram is constructed by a numerical
analysis. The analysis and the results are quite similar to
those in the nonlinear SSH model except for the trimer phase
replacing the dimer phase.

II. NONLINEAR SCHRÖDINGER EQUATION

A typical nonlinear equation is the nonlinear Schrödinger
equation,

i
∂ψ

∂t
+ κ

∂2ψ

∂x2
+ ξ |ψ |2ψ = 0, (1)

where the third term is a nonlinear term. It is introduced by
the Kerr effect in the case of photonic systems [85,86]. The
nonlinearity is controlled by the parameter ξ , where large ξ

indicates strong nonlinearity. There is a lattice version of the
above equation,

i
dψn

dt
+ κ (ψn+1 − 2ψn + ψn−1) + ξ |ψn|2ψn = 0, (2)

which is called the discrete nonlinear Schrödinger equa-
tion [87,88]. There are two conserved quantities. One is the
Hamiltonian [85,89,90],

H =
N∑

n=1

(
κ|ψn+1 − ψn|2 − ξ

2
|ψn|4

)
. (3)

and the other is the excitation number,

Nexc =
N∑

n=1

|ψn|2. (4)

The discrete nonlinear Schrödinger equation (2) is defined
on the one-dimensional lattice. It is generalized to a nonlinear
equation on an arbitrary lattice [85,86,89],

i
dψn

dt
+

N∑
m=1

Mnmψm + ξ |ψn|2ψn = 0, (5)

where Mnm represents a hopping matrix and N is the number
of the lattice sites. We investigate such a system that contains
the topological and trivial phases provided the nonlinear term
is ignored. We study analytically and numerically the phase
diagram of the model (5). The main issue is how the topologi-
cal phase defined in the linear model (ξ = 0 ) is robust against
the introduction of the nonlinear term.

There are two conserved quantities [90]. One is the
Hamiltonian

H =
N∑

n=1

(
−Mnmψ∗

n ψm − ξ

2
|ψn|4

)
, (6)

and the other is the excitation number (4).
We analyze the quench dynamics by imposing an initial

condition

ψn(t ) = δn,1 at t = 0, (7)

where the site n = 1 denotes the left edge of a chain or the top
corner of a triangle as in Figs. 1(a2) or 1(b2). Namely, giving
an δ-function type input at the site n = 1 initially, we study
its time evolution. Because of the conservation rule (4), the
condition

N∑
n=1

|ψn|2 = 1 (8)

is required throughout the time evolution.
A comment is in order. It is possible to eliminate the

nonlinearity parameter ξ entirely from Eq. (5). By setting
ψ j = ψ ′

j/
√

ξ , we may rewrite (5) as

i
dψ ′

n

dt
+

∑
m

Mnmψ ′
m + |ψ ′

n|2ψ ′
n = 0. (9)

The initial condition (7) is replaced by

ψ ′
n(t = 0) =

√
ξδn,1. (10)

Namely, the quench dynamics subject to Eq. (5) is reproduced
by the nonlinear equation (9) with the modified initial condi-
tion (10). Consequently, it is possible to use a single sample
to investigate the quench dynamics at various nonlinearity ξ

only by changing the initial condition as in (10). Nevertheless,
we use the form of Eq. (5) throughout the paper to make the
nonlinear effect manifest.

A. Linearized model

We first study the linear limit by setting ξ = 0,

i
dψn

dt
+

∑
m

Mnmψm = 0. (11)

Because Eq. (11) is a linear model, the topological numbers
defined with respect to Mnm determines the topological phases
of the system.
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FIG. 2. Bird’s eye’s view of time evolution of the amplitude |ψn| in the nonlinear SSH model. The horizontal axes are the site index n and
the time t ranging 0 � t � 30. [(a1)–(a4)] Topological phase (λ = −0.5). [(b1)–(b4)] Trivial phase (λ = 0.5). We have set ξ = 0 for (a1) and
(b1), ξ = 0.1 for (a2) and (b2), ξ = 0.5 for (a3) and (b3), and ξ = 1 for (a4) and (b4).

We diagonalize Mnm as

Mψ̄p = Epψ̄p, (12)

where p labels the eigenindex, 1 � p � N . Then, we obtain
decoupled equations

i
dψ̄p

dt
+ Epψ̄p = 0, (13)

whose solutions are given by

ψ̄p(t ) = exp[−itEp]ψ̄p(0). (14)

We may expand the initial state (7) as

ψn(0) = δn,1 =
∑

p

cpψ̄p(0) (15)

in terms of the eigenstates ψ̄p.
First, we investigate the topological phase. There exist

edge states in the one-dimensional topological phase or corner
states in the two-dimensional second-order topological phase.
Since they are zero-mode eigenstates of Mnm in Eq. (12), it
is possible to choose the edge (corner) state ψ̄1 with E1 = 0
which is well approximated by ψ1 at t = 0, or

ψ1(0) � c1ψ̄1(0). (16)

There is no dynamics since it has the zero energy,

ψ1(t ) = c1ψ̄1(0). (17)

As a result, there remains a finite component c1 at the edge
(corner) site even after time evolution.

On the other hand, there is no zero-mode localized state
at the edge (corner) in the trivial phase, and the state ψn(t )
rapidly penetrates into the bulk. Consequently, it is possible
to differentiate the topological and trivial phases numerically
by checking whether there remains a finite component under
the initial condition (7).

B. Weak nonlinear regime

We study the weak nonlinear regime of Eq. (5), which is
the regime where the first-order perturbation in ξ is valid.
We may insert the linear solution (14) to the nonlinear term
proportional to ξ in Eq. (5), i.e.,

ξ |ψn(t )|2ψn(t ) = ξ |ψn(0)|2ψn(t ) + O(ξ 2), (18)

and obtain

i
dψn

dt
+

∑
m

Mnmψm = 0, (19)

where

Mnm ≡ Mnm + δnmξ |ψn(0)|2. (20)

The second term δnmξ |ψn(0)|2 may be regarded as an on-site
random potential in the linearized model. Then, the topolog-
ical phase is robust against the on-site potential as far as the
bulk gap does not close, or equivalently ξ |ψn(0)|2 is smaller
than the gap of Mnm. Consequently, in the weak nonlinear-
ity regime, the topological number is well defined, and the
topological phase boundary is unchanged as ξ increases. See
explicit examples in Secs. III and IV, where the topological
phase diagrams are numerically constructed.

C. Strong nonlinear regime

We next study the strong nonlinear regime (ξ � 1), which
is the regime where the hopping term is negligible with respect
to the nonlinear term. We may approximate Eq. (5) as

i
dψn

dt
= −ξ |ψn|2ψn, (21)

where all equations are separated one another. We set

ψn(t ) = rneiθn (t ), (22)
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FIG. 3. [(a1)–(a3)] Phase diagram of the nonlinear SSH model. (a1) Bird’s eye’s view, (a2) top view, and (a3) schematic illustration of the
phase diagram extracted from (a2). [(b1)–(b4)] Amplitude |ψ1| as a function of λ for various ξ . (b1) ξ = 0, (b2) ξ = 0.1, (b3) ξ = 1, and (b4)
ξ = 5.

and make an ansatz that rn is a constant in the time t . This
ansatz is confirmed numerically in Secs. III and IV. Then, the
solution is given by

θn = ξr2
nt + c. (23)

Hence, the amplitude does not decrease. Due to the norm
conservation (8), we find ψm(t ) = δnm. Namely, the state ψn

does not spread under the initial condition (7). This phase may
be referred to as the nonlinearity-induced localization phase.

We note that there is no concept of topology in the strong
nonlinear regime because the Mnm term is irrelevant. This
property is confirmed in Secs. III and IV based on explicit
examples.

D. Dynamics of edge or corner state

We consider the case where the edge (corner) is perfectly
decoupled from all sites in the bulk. See Figs. 1(a1) and
1(b1) as explicit examples. It is enough to solve the single
differential equation,

i
dψ1

dt
= εψ1 − ξ |ψ1|2ψ1, (24)

where ε is the on-site energy of the site n = 1. As in the
strong nonlinear regime, we assume the condition (22), and
we obtain

−rneiθn (t ) dθn(t )

dt
= εrneiθn (t ) − ξr3

neiθn (t ), (25)

or
dθn(t )

dt
= −ε + ξr2

n . (26)

The solution is given by

θn = (−ε + ξr2
n

)
t + c, (27)

with a constant c. It shows that the amplitude does not change
as a function of the time t .

III. NONLINEAR SSH MODEL

A. Model

We consider explicit models. The first example is the non-
linear SSH model [22,91–93], where Mnm is given by

Mnm = −δnm(κA + κB) + (κAδn,2m−1 + κBδ2n,2m+1). (28)

We illustrate the lattice model of the SSH model in Fig. 1,
which is a dimerized lattice. For κA = 0, two edge sites are
perfectly decoupled, whereas all other bulk sites are dimerized
as in Fig. 1(a1). On the other hand, for κB = 0, all of the sites
are dimerized as in Fig. 1(a3).

The equations of motion (5) read

i
dψ2n−1

dt
= κB(ψ2n−2 − ψ2n−1) + κA(ψ2n − ψ2n−1)

− ξ |ψ2n−1|2ψ2n−1, (29)

i
dψ2n

dt
= κA(ψ2n−1 − ψ2n) + κB(ψ2n+1 − ψ2n)

− ξ |ψ2n|2ψ2n, (30)

with alternating bondings κA and κB. We introduce the dimer-
ization control parameter defined by

λ = κA − κA

κA + κA
, (31)

where |λ| � 1.
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B. Phase diagram

Starting from the initial condition (7), we explore the time
evolution of ψn for various ξ and show the results in Fig. 2(b).
As indicated by a general consideration given before, we find
that there remains a finite component at the edge site (n = 1)
in the topological phase, while it is almost zero in the trivial
phase.

We show the absolute value of ψ1 after enough time as
a function of λ for various ξ in Figs. 3(b1)–3(b4). First, we
study the linear model as shown in Fig. 3(b1). The amplitude
|ψ1| is finite in the topological phase, while it is almost zero
in the trivial phase. The overall structure is almost identical
in the linear limit (ξ = 0) and in the weak nonlinear regime
(ξ = 0.1) as shown in Fig. 3(b2). For medium nonlinearity
(ξ = 1), there appears an oscillation mode for λ � 0.55, as
shown in Fig. 3(b3). We will argue that this is due to the
dimerization effect in Sec. III D. For strong nonlinearity (ξ =
5), the amplitude |ψ1| is almost 1 for λ � 0.52. We have
already argued that this is due to the nonlinearity-induced
localization in Sec. II C.

There are four phases. First, we have the topological and
trivial phases in the weak nonlinear regime. The topological
phase boundary is almost independent of the nonlinearity ξ .
The amplitude gradually decreases from 1 to 0 depending on
the dimerization from λ = −1 to λ = 0, as we have argued in
Sec. II B. On the other hand, there is a nonlinearity-induced
localization phase for large ξ . The amplitude is almost 1
entirely in the nonlinearity-induced localization phase, as we
have argued in Sec. II C.

In addition, there is a dimer phase in the vicinity of λ � 1,
where the system is almost dimerized. The states ψ1 and ψ2

oscillate between the two adjacent sites (n = 1, 2) at the edge.
Furthermore, the trivial phase penetrates into the dimer phase
for λ � 0.25 in Fig. 3(a2) as in Fig. 3(a3).

C. Topological number

The hopping matrix (28) leads to the SSH Hamiltonian in
the momentum space,

M(k) = − (κA + κB)I2 +
(

0 κA + κBe−ik

κA + κBeik 0

)
. (32)

The topological number is the Berry phase defined by

pi = 1

2π

∫ 2π

0
A(k)dk, (33)

where A(k) = −i〈ψ (k)|∂k|ψ (k)〉 is the Berry connection with
ψ (k) being the eigenfunction of M(k). We obtain � = 1
for λ < 0 and � = 0 for λ > 0. It is known that the SSH
system is topological for λ < 0 and trivial for λ > 0. There
are two isolated edge states in the limit λ � −1, while
all of the states are dimerized in the limit λ � 1: See
Fig. 1(a).

D. Dimer limit

Next, we study the dimer limit with κB = 0 as in Fig. 1(a3),
where λ = 1. The differential equations are explicitly

FIG. 4. [(a1)–(a4)] Time evolution of Re[ψ1(t )] in the nonlinear
Schrödinger model on the dimer described by Eqs. (34) and (35).
[(a1), (b1)] ξ = 0; [(a2), (b2)] ξ = 0.1; [(a3), (b3)] ξ = 0.5; and
[(a4), (b4)] ξ = 1. [(a1)–(a4)] The vertical axis is Re[ψ1(t )] and
the horizontal axis is the time t . [(b1)–(b4)] Fourier component of
Re[ψ1(ω)]. The horizontal axis is the frequency ω, which is the
Fourier component of the time t , while the vertical axis is Re[ψ1(ω)].

given by

i
dψ1

dt
= κA(ψ2 − ψ1) − ξ |ψ1|2ψ1, (34)

i
dψ2

dt
= κA(ψ1 − ψ2) − ξ |ψ2|2ψ2. (35)

We show a numerical solution of the time evolution of ψ1 and
ψ2 in Fig. 4.

In the linear model (ξ = 0), they oscillate alternately with-
out changing their amplitudes,

ψ1 = e−iκAt cos κAt, ψ2 = ie−iκAt sin κAt, (36)

where the phases are different by π . Once the nonlinearity
is introduced, there appears an oscillation whose period is
much longer than the original period. The overall oscillation
period becomes shorter as the nonlinearity increases. It shows
a complicated behavior for strong nonlinearity as in Fig. 4.

In the nonlinear model (ξ �= 0), there is an oscillatory
behavior with long and short periods in the dimer phase as in
Fig. 4. This is easily seen by examining the Fourier component
ψ (ω), where ω is the frequency as in Figs. 4(b1)–4(b4). There
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FIG. 5. [(a1)–(a3)] Phase diagram of the nonlinear breathing kagome model. (a1) Bird’s eye’s view, (a2) top view, and (a3) schematic
illustration of the phase diagram extracted from (a2). [(b1)–(b4)] Amplitude |ψ1| as a function of λ for various ξ . (b1) ξ = 0, (b2) ξ = 0.1,
(b3) ξ = 1, and (b4) ξ = 5.

are two sharp peaks in ψ (ω), which indicates that there are
short-period and long-period modes.

This oscillatory behavior may be understood as follows. By
using an ansatz

ψ2 = −ψ1, (37)

Eqs. (34) and (35) are summarized to one equation,

i
dψ1

dt
= −2κAψ1 − ξ |ψ1|2ψ1, (38)

whose solution is given by

θ1 = (
2κA + ξr2

1

)
t + c, (39)

with a constant r1 in the polar expression (22). This explains
a short-period oscillation mode in Fig. 4.

However, the ansatz (37) for the analytical solution is not
compatible to the initial condition (7). Thus, we cannot apply
the analytic solution (39) for the quench dynamics, although
the ansatz (37) holds after enough time. In order to adjust
the ansatz (37) to the initial condition (7), the long-period
oscillation mode would appear.

These dimer oscillations give rise to the dimer phase in the
vicinity of λ = 1 in the phase diagram in Fig. 3(a3).

IV. NONLINEAR SECOND-ORDER
TOPOLOGICAL PHASES

A. Model

Recently, the nonlinear second-order topological phase has
been studied in photonics [81]. We proceed to study the case
where the matrix Mnm describes the breathing kagome lattice,

whose lattice structure is illustrated in Fig. 1(b). The matrix
M in the momentum space is given by [12]

M(k) = −
⎛
⎝ 0 h12 h13

h∗
12 0 h23

h∗
13 h∗

23 0

⎞
⎠, (40)

with

h12 = κAei(kx/2+√
3ky/2) + κBe−i(kx/2+√

3ky/2), (41)

h23 = κAei(kx/2−√
3ky/2) + κBei(−kx/2+√

3ky/2), (42)

h13 = κAeikx + κBe−ikx , (43)

where we have introduced two hopping parameters κA and κB

corresponding to upward and downward triangles, as shown
in Fig. 1(b).

B. Topological number

There are three mirror symmetries for the breathing
kagome lattice. They are the mirror symmetries Mx with
respect to the x axis, and M± with respect to the two
lines obtained by rotating the x axis by ±2π/3. The po-
larization along the xi axis is the expectation value of the
position,

pi = 1

S

∫
BZ

Aid
2k, (44)

where Ai = −i〈ψ (k)|∂ki |ψ (k)〉 is the Berry connection with
xi = x, y, S = 8π2/

√
3 is the area of the Brillouin zone, and

ψ (k) the eigenfunction of M(k).
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FIG. 6. Time evolution of the spatial distribution of the amplitude |ψn| in the nonlinear breathing kagome model with the time interval
t0 = 0.06. [(a1)–(b8)] Linear model with ξ = 0 for various time. [(c1)–(d8)] Weak nonlinear model with ξ = 1. [(e1)–(f8)] Strong nonlinear
model with ξ = 4, where the system is in the nonlinearity-induced localized phase. The color density indicates the amplitude |ψn|. We have
set λ = −0.5 for (a1)–(a8), (c1)–(c8), and (e1)–(e8), where the system is topological, while we have set λ = 0.5 for (b1)–(b8), (d1)–(d8), and
(f1)–(f8), where the system is trivial. The amplitude |ψ1| remains finite in the topological and nonlinearity-induced localized phases, while it
rapidly decreases and spreads into the bulk in the trivial phase. See also Fig. 7 for more details.

The topological number is defined by [12]

� = 3
(
p2

x + p2
y

)
. (45)

We obtain � = 0 for κA/κB < −1 and κA/κB > 2, which is
the trivial phase with no zero-mode corner states. On the
other hand, we obtain � = 1 for −1 < ta/tb < 1/2, which is
the topological phase with the emergence of three zero-mode
corner states. Finally, � is not quantized for 1/2 < κA/κB < 2,
which is the metallic phase.

For κA = 0, three corner sites are perfectly decoupled from
the bulk as in Fig. 1(b1). On the other hand, for κB = 0,
all sites are trimerized as in Fig. 1(b3). We study a quench
dynamics starting from the initial condition (7), where the
state is perfectly localized at the top corner site. We note that
we use the tight-bind model although the continuum model is
used in the previous work [81], where the essential physics is
identical.

C. Phase diagram

We show the phase diagram in Fig. 5. There are four
phases in the nonlinear breathing kagome model. The trimer
phase appears instead of the dimer phase characteristic to the
nonlinear SSH model. The trimer phase and the nonlinearity-
induced localization phase are smoothly connected, both of
which are irrelevant to the topological number. The difference
is that there is an oscillatory behavior in the trimer phase
but not in the nonlinearity-induced localization phase. On the
other hand, there is a sharp transition between the trivial and
nonlinearity-induced localization phases. This is also the case
for the transition between the trivial and trimer phases. As in
the case of the nonlinear SSH model, the topological phase
boundary between the topological and trivial phases is almost
unchanged for 0 � ξ � 3 as in Fig. 5(a3).

We start with the study of the linear model (ξ = 0). We
show the spatial distribution of the amplitude |ψn| for various
time in Figs. 6(a1)–6(a8) and Figs. 6(b1)–6(b8). In the topo-
logical phase, the amplitude remains finite at the top corner
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FIG. 7. Time evolution of the amplitude |ψ1| at the top corner
in the nonlinear breathing kagome model. [(a1), (b1)] Linear model
with ξ = 0. [(a2), (b2)] Weak nonlinear model with ξ = 1. [(a3),
(b3)] Strong nonlinear model with ξ = 4. We have set λ = −0.5 for
(a1)–(a3) while we have set λ = 0.5 for (b1)–(b3). The system is in
the topological phase for (a1) and (a2), in the trivial phase for (b1)
and (b2), and in the nonlinearity-induced localized phase in (a3) and
(b3).

site. On the other hand, the amplitude rapidly spreads into the
bulk and disappears in the trivial phase.

The weak nonlinear regime (ξ � 0) is analyzed just as in
Sec. II B. Namely, the topological analysis based on the for-
mula (19) is valid as in the linear model. We have numerically
confirmed this observation in Figs. 6(c1)–6(c8). Indeed, we
may regard the system even with ξ = 1 as the one in the weak
nonlinear regime. We show the spatial distribution for ξ = 1
in Figs. 6(c1)–6(c8), which is almost identical to the one in
the linearized model (ξ = 0) in Figs. 6(a1)–6(a8). This is also
the case for the trivial phase as shown in Figs. 6(d1)–6(d8).
The amplitude at the top corner site after enough time is
shown in Figs. 5(b1)–5(b4). We note that the overall feature
is quite similar to the one in the nonlinear SSH model. On
the other hand, the state is localized for ξ = 4 in Figs. 6(e1)–
6(e8) and Figs. 6(f1)–6(f8). It indicates that the state is in the
nonlinearity-induced localization phase.

We plot the amplitude |ψ1| at the corner as a function of
time in Fig. 7. The amplitude remains finite in the topological
phase of the linear model and the weak nonlinear model. On
the other hand, it decreases rapidly in the trivial phase of the
linear model and the weak nonlinear model. In the strong
nonlinear model, the amplitude remains finite irrespective to
the value of λ, which indicates that the system is in the
nonlinear-induced localized phase.

D. Trimer limit

Next, we study the trimer limit with κB = 0 as in Fig. 1(b3),
where λ = 1. The differential equations are explicitly given by

i
dψ1

dt
= εψ1 + κA(ψ1 − ψ2) + κA(ψ1 − ψ3) − ξ |ψ1|2ψ1,

(46)

i
dψ2

dt
= εψ2 + κA(ψ2 − ψ1) + κA(ψ2 − ψ3) − ξ |ψ2|2ψ2,

(47)

FIG. 8. [(a1)–(a4)] Time evolution of Re[ψ1(t )] in the nonlinear
Schrödinger model on the trimer described by Eqs. (46), (47), and
(48). [(a1), (b1)] ξ = 0; [(a2), (b2)] ξ = 0.1; [(a3), (b3)] ξ = 0.5;
[(a4), (b4)] ξ = 1. [(a1)–(a4)] The vertical axis is Re[ψ1(t )] and the
horizontal axis is time. [(b1)–(b4)] Fourier component of Re[ψ1(ω)].
The horizontal axis is the frequency ω, which is the Fourier compo-
nent of the time t , while the vertical axis is Re[ψ1(ω)].

i
dψ3

dt
= εψ3 + κA(ψ3 − ψ1) + κA(ψ3 − ψ2) − ξ |ψ3|2ψ3.

(48)

Without loss of generality, we may set ψ2 = ψ3 due to reflec-
tion symmetry and obtain

i
dψ1

dt
= εψ1 + 2κA(ψ1 − ψ2) − ξ |ψ1|2ψ1, (49)

i
dψ2

dt
= εψ2 + κA(ψ2 − ψ1) − ξ |ψ2|2ψ2. (50)

It is hard to solve these equations analytically except for the
linear model, where the solution is given by

ψ1 = 1
3 (1 + 2e−3iκAt ), (51)

ψ2 = ψ3 = 1
3 (1 − e−3iκAt ). (52)

Although this is modified smoothly as a function of ξ , it
presents the short-period oscillation. The long-period oscilla-
tion emerges once the nonlinearity ξ is introduced. We show
the Fourier component ψ (ω) in Fig. 8(b1)–8(b4), where we
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see two sharp peaks in ψ (ω) corresponding to the short-period
and long-period oscillations.

These trimer oscillations give rise to the trimer phase in the
vicinity of λ = 1 in the phase diagram in Fig. 5(a3).

V. CONCLUSION

The topological physics has been developed in linear sys-
tems such as condensed matter systems, electric circuits, and
acoustic systems. The key issue of the topological physics is
the emergence of topological edge or corner states in the topo-
logical phase, which has been firmly established by various
experimental observation. Now there are attempts to general-
ize it to nonlinear systems.

In the present work, we investigated the one-dimensional
nonlinear SSH model and the two-dimensional nonlinear
breathing kagome model. These models contain the hopping
term

∑
m Mnmψm and the nonlinear term ξ |ψn|2ψn. Dynamics

is determined as a result of the competition between these two
terms. As far as the hopping term is dominant, the topolog-

ical dynamics is valid in these models. On the other hand,
when the nonlinear term is dominant, the nonlinearity-induced
localization phase emerges. There is another phenomenon
due to a cooperative effect of these two terms, which is the
oscillation mode in the dimer (trimer) limit of the nonlin-
ear SSH (breathing kagome) model. We have studied these
new phenomena analytically and numerically. Our results are
summarized in the phase diagrams in Figs. 3 and in 5. These
results show that there are a variety of nonlinearity effects to
the topological physics. It is an interesting problem to study
various nonlinear topological systems.

ACKNOWLEDGEMENTS

The author is very much grateful to N. Nagaosa for help-
ful discussions on the subject. This work is supported by
the Grants-in-Aid for Scientific Research from MEXT KAK-
ENHI (Grants No. JP17K05490 and No. JP18H03676). This
work is also supported by CREST, JST (Grants No. JP-
MJCR16F1 and No. JPMJCR20T2).

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 110,

046404 (2013).
[4] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science

357, 61 (2017).
[5] F. Schindler, A. Cook, M. G. Vergniory, and T. Neupert, in APS

March Meeting (New Orleans, Louisiana, 2017), Vol. 62.
[6] Y. Peng, Y. Bao, and F. von Oppen, Phys. Rev. B 95, 235143

(2017).
[7] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.

Brouwer, Phys. Rev. Lett. 119, 246401 (2017).
[8] Z. Song, Z. Fang, and C. Fang, Phys. Rev. Lett. 119, 246402

(2017).
[9] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys. Rev.

B 96, 245115 (2017).
[10] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.

Parkin, B. A. Bernevig, and T. Neupert, Sci. Adv. 4, eaat0346
(2018).

[11] C. Fang and L. Fu, Sci. Adv. 5, aat2374 (2019).
[12] M. Ezawa, Phys. Rev. Lett. 120, 026801 (2018).
[13] E. Khalaf, H. C. Po, A. Vishwanath, and H. Watanabe, Phys.

Rev. X 8, 031070 (2018).
[14] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian,

A. H. MacDonald, and G. Shvets, Nat. Mater. 12, 233 (2013).
[15] M. Hafezi, E. Demler, M. Lukin, and J. Taylor, Nat. Phys. 7,

907 (2011).
[16] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. Taylor, Nat.

Photon. 7, 1001 (2013).
[17] L. H. Wu and X. Hu, Phys. Rev. Lett. 114, 223901 (2015).
[18] L. Lu. J. D. Joannopoulos and M. Soljacic, Nat. Photon. 8, 821

(2014).
[19] T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, and I.

Carusotto, Phys. Rev. A 93, 043827 (2016).
[20] D. Leykam and Y. D. Chong, Phys. Rev. Lett. 117, 143901

(2016).

[21] A. B. Khanikaev and G. Shvets, Nat. Photon. 11, 763 (2017).
[22] X. Zhou, Y. Wang, D. Leykam, and Y. D. Chong, New J. Phys.

19, 095002 (2017).
[23] P. St-Jean, V. Goblot, E. Galopin, A. Lemaitre, T. Ozawa, L. Le

Gratiet, I. Sagnes, J. Bloch, and A. Amo, Nat. Photon. 11, 651
(2017).

[24] Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa,
Commun. Phys. 1, 86 (2018)

[25] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu,
M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and L.
Carusotto, Rev. Mod. Phys. 91, 015006 (2019).

[26] Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y.
Arakawa, and S. Iwamoto, Optica 6, 786 (2019).

[27] T. Ozawa and H. M. Price, Nat. Rev. Phys. 1, 349 (2019).
[28] A. E. Hassan, F. K. Kunst, A. Moritz, G. Andler, E. J. Bergholtz,

and M. Bourennane, Nat. Photon. 13, 697 (2019).
[29] Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M.

Notomi, Y. Arakawa, and S. I. Iwamoto, Nanophotonics 9, 547
(2020).

[30] M. Li, D. Zhirihin, D. Filonov, X. Ni, A. Slobozhanyuk, A. Alu,
and A. B. Khanikaev, Nat. Photon. 14, 89 (2020).

[31] H. Yoshimi, T. Yamaguchi, Y. Ota, Y. Arakawa, and S. Iwamoto,
Opt. Lett. 45, 2648 (2020).

[32] M. Kim, Z. Jacob, and J. Rho, Light: Sci. Appl. 9, 130
(2020).

[33] S. Iwamoto, Y. Ota, and Y. Arakawa, Opt. Mater. Express 11,
319 (2021).

[34] E. Prodan and C. Prodan, Phys. Rev. Lett. 103, 248101 (2009).
[35] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B.

Zhang, Phys. Rev. Lett. 114, 114301 (2015).
[36] P. Wang, L. Lu, and K. Bertoldi, Phys. Rev. Lett. 115, 104302

(2015).
[37] M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T.

Chan, Nat. Phys. 11, 240 (2015).
[38] C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu, X.-P.

Liu, L. Feng, and Y.-F. Chen, Nat. Phys. 12, 1124 (2016).

235420-9

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.110.046404
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.95.235143
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat2374
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevX.8.031070
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1103/PhysRevA.93.043827
https://doi.org/10.1103/PhysRevLett.117.143901
https://doi.org/10.1038/s41566-017-0048-5
https://doi.org/10.1088/1367-2630/aa7cb5
https://doi.org/10.1038/s41566-017-0006-2
https://doi.org/10.1038/s42005-018-0083-7
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1364/OPTICA.6.000786
https://doi.org/10.1038/s42254-019-0045-3
https://doi.org/10.1038/s41566-019-0519-y
https://doi.org/10.1515/nanoph-2019-0376
https://doi.org/10.1038/s41566-019-0561-9
https://doi.org/10.1364/OL.391764
https://doi.org/10.1038/s41377-020-0331-y
https://doi.org/10.1364/OME.415128
https://doi.org/10.1103/PhysRevLett.103.248101
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1103/PhysRevLett.115.104302
https://doi.org/10.1038/nphys3228
https://doi.org/10.1038/nphys3867


MOTOHIKO EZAWA PHYSICAL REVIEW B 104, 235420 (2021)

[39] H. Abbaszadeh, A. Souslov, J. Paulose, H. Schomerus, and V.
Vitelli, Phys. Rev. Lett. 119, 195502 (2017).

[40] H. Xue, Y. Yang, F. Gao, Y. Chong, and B. Zhang, Nat. Mater.
18, 108 (2019).

[41] X. Ni, M. Weiner, A. Alu, and A. B. Khanikaev, Nat. Mater. 18,
113 (2019).

[42] M. Weiner, X. Ni, M. Li, A. Alu, and A. B. Khanikaev, Sci.
Adv. 6, eaay4166 (2020).

[43] H. Xue, Y. Yang, G. Liu, F. Gao, Y. Chong, and B. Zhang, Phys.
Rev. Lett. 122, 244301 (2019).

[44] C. L. Kane and T. C. Lubensky, Nat. Phys. 10, 39 (2014).
[45] B. G.-g. Chen, N. Upadhyaya, and V. Vitelli, PNAS 111, 13004

(2014).
[46] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner, and

W. T. M. Irvine, Proc. Natl. Acad. Sci. USA 112, 14495 (2015).
[47] J. Paulose, A. S. Meeussen, and V. Vitelli, Proc. Natl. Acad. Sci.

USA 112, 7639 (2015).
[48] R. Susstrunk and S. D. Huber, Science 349, 47 (2015).
[49] R. Susstrunk and S. D. Huber, Proc. Natl. Acad. Sci. USA 113,

E4767 (2016).
[50] S. D. Huber, Nat. Phys. 12, 621 (2016).
[51] A. S. Meeussen, J. Paulose, and V. Vitelli, Phys. Rev. X 6,

041029 (2016).
[52] T. Kariyado and Y. Hatsugai, Sci. Rep. 5, 18107 (2016).
[53] T. Kariyado and Y. Hatsugai, J. Phys. Soc. Jpn. 85, 043001

(2016).
[54] H. C. Po, Y. Bahri, and A. Vishwanath, Phys. Rev. B 93, 205158

(2016).
[55] D. Z. Rocklin, B. G.-g. Chen, M. Falk, V. Vitelli, and T. C.

Lubensky, Phys. Rev. Lett. 116, 135503 (2016).
[56] Y. Takahashi, T. Kariyado, and Y. Hatsugai, New J. Phys. 19,

035003 (2017).
[57] K. H. Matlack, M. Serra-Garcia, A. Palermo, S. D. Huber, and

C. Daraio, Nat. Mater. 17, 323 (2018).
[58] Y. Takahashi, T. Kariyado, and Y. Hatsugai, Phys. Rev. B 99,

024102 (2019).
[59] A. Ghatak, M. Brandenbourger, J. van Wezel, and C. Coulais,

Proc. Natl. Acad. Sci. USA 117, 29561 (2020).
[60] H. Wakao, T. Yoshida, H. Araki, T. Mizoguchi, and Y. Hatsugai,

Phys. Rev. B 101, 094107 (2020).
[61] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. Molenkamp, T.

Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and
R. Thomale, Nat. Phys. 14, 925 (2018).

[62] C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W.
Molenkamp, T. Kiessling, and R. Thomale, Commun. Phys. 1,
39 (2018).

[63] T. Helbig, T. Hofmann, C. H. Lee, R. Thomale, S. Imhof,
L. W. Molenkamp, and T. Kiessling, Phys. Rev. B 99, 161114
(2019).

[64] Y. Lu, N. Jia, L. Su, C. Owens, G. Juzeliunas, D. I. Schuster,
and J. Simon, Phys. Rev. B 99, 020302 (2019).

[65] Y. Li, Y. Sun, W. Zhu, Z. Guo, J. Jiang, T. Kariyado, H. Chen,
and X. Hu, Nat. Commun. 9, 4598 (2018).

[66] M. Ezawa, Phys. Rev. B 98, 201402(R) (2018).
[67] K. Luo, R. Yu, and H. Weng, Research, 6793752 (2018), doi:

10.1155/2018/6793752.
[68] E. Zhao, Ann. Phys. 399, 289 (2018).
[69] M. Ezawa, Phys. Rev. B 99, 201411(R) (2019).
[70] M. Ezawa, Phys. Rev. B 99, 121411(R) (2019).
[71] M. Serra-Garcia, R. Susstrunk, and S. D. Huber, Phys. Rev. B

99, 020304 (2019).
[72] T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale,

Phys. Rev. Lett. 122, 247702 (2019).
[73] M. Ezawa, Phys. Rev. B 100, 045407 (2019).
[74] M. Ezawa, Phys. Rev. B 102, 075424 (2020).
[75] C. H. Lee, T. Hofmann, T. Helbig, Y. Liu, X. Zhang, M. Greiter,

and R. Thomale, Nat. Commun. 11, 4385 (2020).
[76] T. Kotwal, H. Ronellenfitsch, F. Moseley, A. Stegmaier, R.

Thomale, and J. Dunkel, PNAS 118, e2106411118 (2021).
[77] D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, Appl.

Phys. Rev. 7, 021306 (2020).
[78] S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A.

Slobozhanyuk, A. Shorokhov, I. Kravchenko, B.
Luther-Davies, and Y. Kivshar, Nat. Nanotechnol. 14, 126
(2019).

[79] L. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov, M.
Ehrhardt, F. Martinez, Y. V. Kartashov, V. V. Konotop, L.
Torner, D. Bauer, and A. Szameit, Science 370, 701 (2010).

[80] F. Zangeneh-Nejad and R. Fleury, Phys. Rev. Lett. 123, 053902
(2019).

[81] M. S. Kirsch, Y. Zhang, M. Kremer, L. J. Maczewsky, S. K.
Ivanov, Y. V. Kartashov, L. Torner, D. Bauer, A. Szameit, and
M. Heinrich, Nat. Phys. 17, 995 (2021).

[82] Y. Wang, L.-J. Lang, C. H. Lee, B. Zhang, and Y. D. Chong,
Nat. Commun. 10, 1102 (2019)

[83] M. Ezawa, arXiv:2105.10851.
[84] M. Ezawa, J. Phys. Soc. Jpn. 90, 114605 (2021).
[85] A. Szameit, D. Blöer, J. Burghoff, T. Schreiber, T. Pertsch, S.

Nolte, A. Tünnermann, and F. Lederer, Opt. Express 13, 10552
(2005).

[86] D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature
(London) 424, 817 (2003)

[87] D. Cai, A. R. Bishop, and N. Gronbech-Jensen, Phys. Rev. Lett.
72, 591 (1994).

[88] P. G. Kevrekidis, K. O. Rasmussen, and A. R. Bishop, Int. J.
Mod. Phys. B 15, 2833 (2001).

[89] J. C. Eilbeck, P. S. Lomdahl, and A. C. Scott, Phys. D
(Amsterdam, Neth.) 16, 318 (1985).

[90] N. Korabel and G. M. Zaslavsky, Phys. A (Amsterdam, Neth.)
378, 223 (2006).

[91] Y. Hadad, J. C. Soric, A. B. Khanikaev, and A. Alù, Nat.
Electron. 1, 178 (2018).

[92] M. A. Gorlach and A. P. Slobozhanyuk, Nanosystems 8, 695
(2017).

[93] T. Tuloup, R. W. Bomantara, C. H. Lee, and J. Gong, Phys. Rev.
B 102, 115411 (2020).

235420-10

https://doi.org/10.1103/PhysRevLett.119.195502
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1126/sciadv.aay4166
https://doi.org/10.1103/PhysRevLett.122.244301
https://doi.org/10.1038/nphys2835
https://doi.org/10.1073/pnas.1405969111
https://doi.org/10.1073/pnas.1507413112
https://doi.org/10.1073/pnas.1502939112
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1073/pnas.1605462113
https://doi.org/10.1038/nphys3801
https://doi.org/10.1103/PhysRevX.6.041029
https://doi.org/10.1038/srep18107
https://doi.org/10.7566/JPSJ.85.043001
https://doi.org/10.1103/PhysRevB.93.205158
https://doi.org/10.1103/PhysRevLett.116.135503
https://doi.org/10.1088/1367-2630/aa5edb
https://doi.org/10.1038/s41563-017-0003-3
https://doi.org/10.1103/PhysRevB.99.024102
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1103/PhysRevB.101.094107
https://doi.org/10.1038/s41567-018-0246-1
https://doi.org/10.1038/s42005-018-0035-2
https://doi.org/10.1103/PhysRevB.99.161114
https://doi.org/10.1103/PhysRevB.99.020302
https://doi.org/10.1038/s41467-018-07084-2
https://doi.org/10.1103/PhysRevB.98.201402
https://doi.org/10.1155/2018/6793752
https://doi.org/10.1016/j.aop.2018.10.006
https://doi.org/10.1103/PhysRevB.99.201411
https://doi.org/10.1103/PhysRevB.99.121411
https://doi.org/10.1103/PhysRevB.99.020304
https://doi.org/10.1103/PhysRevLett.122.247702
https://doi.org/10.1103/PhysRevB.100.045407
https://doi.org/10.1103/PhysRevB.102.075424
https://doi.org/10.1038/s41467-020-17716-1
https://doi.org/10.1073/pnas.2106411118
https://doi.org/10.1063/1.5142397
https://doi.org/10.1038/s41565-018-0324-7
https://doi.org/10.1126/science.abd2033
https://doi.org/10.1103/PhysRevLett.123.053902
https://doi.org/10.1038/s41567-021-01275-3
https://doi.org/10.1038/s41467-019-08966-9
http://arxiv.org/abs/arXiv:2105.10851
https://doi.org/10.7566/JPSJ.90.114605
https://doi.org/10.1364/OPEX.13.010552
https://doi.org/10.1038/nature01936
https://doi.org/10.1103/PhysRevLett.72.591
https://doi.org/10.1142/S0217979201007105
https://doi.org/10.1016/0167-2789(85)90012-0
https://doi.org/10.1016/j.physa.2006.10.041
https://doi.org/10.1038/s41928-018-0042-z
https://doi.org/10.17586/2220-8054-2017-8-6-695-700
https://doi.org/10.1103/PhysRevB.102.115411

