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Perfect transverse spin splitting by a single particle with bianisotropy
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Transverse spin splitting is a novel optical phenomenon which stems from the spin-orbit interaction of light.
In this paper, we reveal the perfect transverse spin splitting in the scattered far-field of a single particle with
bianisotropy. It is the result of the polarization twist effect caused by the omega-type bianisotropy of the
structure in which the magnetic and electric fields interact in an unusual way and form a transverse spin dipole
moment. Based on the dipole model, we conducted a detailed theoretical analysis of the relationship between
the magnetoelectric coupling and the polarization state of the scattered far field. Our method reveals a physical
mechanism of splitting the spin state of incident light which is regarded as a kind of giant spin Hall effect.
Moreover, this perfect transverse spin splitting can also be understood by the separation of far-field polarization
singularities. Our results provide a new platform for manipulating the spin state in the scattered far field and
open an avenue for designing the spin structure.
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I. INTRODUCTION

Transverse spin splitting in a scattered far field is a novel
optical phenomenon [1,2] verified by the spin state separa-
tion in far-field scattering. It has attracted increasing attention
on account of its great potential in antennas [3], optical
metrology [4,5], optical sensing [6–8], and spin photonics
devices [9]. Transverse spin splitting essentially belongs to
the spin Hall effect of light that originates from the spin-
orbit interaction of light [10,11]. It is a manifestation of the
interaction between the spin angular momentum and the ex-
ternal orbital angular momentum of light, which is reflected
in the transformation of the polarization state and propagation
direction [12–15]. During the past decade, there has been
considerable attention to the perfect transverse spin split-
ting [1,5,16,17]. The perfect transverse spin splitting means
lateral splitting of polarized light with opposite chirality.
For single particles, the previous methods usually rely on
focused beams [1,5,16] and surface waves [17]. The basis
for achieving perfect transverse spin splitting is to generate
the transverse spin electric dipole moment of the particle.
Whereas, it is a challenge to achieve the perfect transverse
spin splitting based on the characteristics of a single particle
without special light sources, and its physical nature remains
to be explored.

Magnetoelectric coupling of particles corresponds to the
mutual induction between electric and magnetic dipoles [18].
Particles with bianisotropy possess the characteristics of mag-
netoelectric coupling [19–22], which provides an additional
degree of freedom in manipulating the light field and makes
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the mode interference more diverse. The bianisotropy of the
particle could enhance the spin-orbit interaction of light,
which is promising for intriguing optical phenomena. Optical
fields could be effectively modulated by using bianisotropic
metasurfaces which have been demonstrated in many key field
transformations [23–26]. The metasurface is a composite of
the antenna array, so it is different from a single particle in the
mechanism and application. Recently, there have been grow-
ing interests in polarization-dependent optical manipulation
by a single bianisotropic particle [27,28]. However, using an
omega-type bianisotropic particle to achieve the transverse
spin splitting has not been reported. The unusual property of
the bianisotropic particle is a potential pathway to manipulate
the polarization state in scattered far field, but the difficulty
lies in how to effectively tailor the magnetoelectric coupling
in an individual particle.

Polarization singularities are correlated with the spin state
of light. There have been growing interests in polarization
singularities by photonic structures [29–33]. The C point and
the L point are two general types of polarization singulari-
ties that correspond to pure circular and linear polarizations,
respectively. Similar to the periodic photonic structures, the
scattered far field of a single particle also has polarization sin-
gularities but in real space [34–36]. Specifically, polarization
singularity is a key factor in understanding the nature of the
perfect transverse spin splitting.

In this paper, an omega-type bianisotropic particle is in-
vestigated to realize the perfect transverse spin splitting in
the scattered far field. We give detailed analytical expres-
sions to describe the relationship between the magnetoelectric
coupling and the polarization state of the scattered far field.
It is demonstrated that there are two routes to achieve the
perfect transverse spin splitting. One is to construct a trans-
verse spin electric dipole moment that can be realized by
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FIG. 1. (a) Schematic of perfect transverse spin splitting in the
scattered far field of a bianisotropic particle. The inset shows the
geometric view of the bianisotropic particle. (b) Normalized Stokes
polarization parameter S3 distribution of the perfect transverse spin
splitting by a bianisotropic particle.

magnetoelectric coupling. The other is to utilize the transverse
spin magnetic dipole moment that is achieved by electromag-
netic coupling. In addition, the perfect transverse spin splitting
is accompanied by the separation of polarization singular-
ities. The methods and the results might provide practical
guidelines for the further development of light manipulation,
polarization sorters, and optical sensing.

II. THEORETICAL MODEL

The geometry model we considered is shown in Fig. 1(a) in
which linearly polarized light incidents on a bianisotropic par-
ticle. The bianisotropic particle consists of a ceramic disk and
a hollow with heights (H, h) and diameters (R, r). The incident
direction of light is on the y-z plane, and the incident angle is
β with respect to the z axis. We investigate the polarization
state of the scattered far field of the bianisotropic particle.
The red and blue rotatory arrows denote the right circular
polarization (RCP) state and left circular polarization (LCP)
state, respectively. Figure 1(b) depicts the normalized Stokes
polarization parameter S3 distribution of the perfect transverse
spin splitting in scattered far field of a bianisotropic particle.
S3 is equal to 1 and −1, corresponding to RCP and LCP. The
perfect transverse spin splitting means that the polarization
states of opposite chirality are located on the left and right
hemispheres, respectively. The linear polarization line (L line)
is located on the middle boundary of the opposite hemisphere.

In the following analysis, CGS units are employed. The
incident light field can be expressed as

Einc = E0[Ax̂ + B(cos βŷ + sin β ẑ)]eik0(−sin βy+cos βz), (1)

Hinc = H0[−Bx̂ + A(cos βŷ + sin β ẑ)]eik0(−sin βy+cos βz), (2)

where |A|2 + |B|2 = 1, A and B could be real or imaginary
that determine the polarization state of the incident electro-
magnetic field, k0 is the wave number in a vacuum, and
E0 = H0 = 1 are the amplitudes of the electric and magnetic
fields. According to the dipole model, the electric field of the
scattered far field can be written as

E = k2
0eik0r

r
[(n̂ × p) × n̂ − n̂ × m], (3)

where n̂ is the unit direction vector, r is the distance from the
center of the particle, and p and m are electric and magnetic
dipole moments, respectively.

To realize a perfect transverse spin splitting by a single
particle, we need a transverse spin electric dipole moment
p = (px, py, pz )T = (0,±i, 1)T or a transverse spin magnetic
dipole moment m = (mx, my, mz )T = (0,±i, 1)T . The super-
script T denotes the transpose of a matrix. Here, we focus on
the electric dipole model, whereas the magnetic model could
be similar and will be discussed in Sec. IV. In general, the
transverse dipole moment (e.g., pz) can be excited directly
because the incident light is always a transverse wave. For the
longitudinal dipole moment (e.g., py), we can use the strategy
of magnetoelectric coupling of the bianisotropic particle. For
simplicity, we only consider the electric and magnetic dipole
moments of the particle, neglecting quadrupoles and higher-
order moments. The induced electric and magnetic dipole
moments can be given by

p = αee · Einc + αem · Hinc, (4)

m = αme · Einc + αmm · Hinc, (5)

where αee, αem, αme, and αmm are polarizability tensors. We
consider the particle with omega-type bianisotropy [20]. The
polarizability tensors of the particle read as [27]

αee =
⎛
⎝αxx

ee 0 0
0 αxx

ee 0
0 0 αzz

ee

⎞
⎠, (6)

αmm =
⎛
⎝αxx

mm 0 0
0 αxx

mm 0
0 0 αzz

mm

⎞
⎠, (7)

αem = αme =
⎛
⎝ 0 iγ 0

−iγ 0 0
0 0 0

⎞
⎠. (8)

The magnetoelectric coupling strength is embodied in the
value of γ in αem and αme.

According to Eqs. (4) and (5), the electric and magnetic
dipole moments p and m could be regulated by the incident
light field. Assuming the incident light is linearly polarized
along the z direction as shown in Fig. 1(a), the electric
and magnetic components of the incident light could be
written as Einc = (0, 0, 1)T and Hinc = (−1, 0, 0)T , respec-
tively. According to Eqs. (4)–(8), the electric and magnetic
dipole moments can be simplified as p = (px, py, pz )T =
(0, iγ , αzz

ee )T and m = (mx, my, mz )T = (αxx
mm, 0, 0)T , respec-

tively. So far, we can get an ideal transverse spin dipole
moment only if mx = 0, the magnetoelectric coupling coef-
ficient γ and the electric polarizability αzz

ee are in-phase and
have the same amplitude.

We plot the polarization distributions for the stand-alone
electric dipoles py, pz, and an ideal transverse spin moment
p = (0, i, 1)T in Figs. 2(a)–2(d), respectively. The color rep-
resents the Stokes polarization parameter S3 and the arrows
denote the directions of polarization. As shown in Fig. 2(d),
the only L line is located on the boundary between the left
and the right hemispheres, separating the left- and right-
handedness fields. To show the polarization distribution more

235418-2



PERFECT TRANSVERSE SPIN SPLITTING BY A SINGLE … PHYSICAL REVIEW B 104, 235418 (2021)

FIG. 2. Normalized Stokes polarization parameter S3 and po-
larization distributions of an electric dipole (a) pz, (b) py, (c) a
magnetic dipole mx , (d) an ideal transverse spin electric dipole mo-
ment (py, pz ) = (i, 1), and (e) combination of the transverse spin
electric dipole moment (py, pz ) = (i, 1) and a magnetic dipole mx =
−0.5. (f) and (g) Projected polarization major axis for (d) and (e),
respectively.

clearly, we project the major axis of the polarization ellipse
in coordinates (θ , ϕ) and depict it in Fig. 2(f) [36–38]. Here,
θ and ϕ denote the elevation angle and the azimuthal an-
gle, respectively. The elevation angle (θ ) is the angle with
respect to the z axis, and the azimuthal angle (ϕ) represents
the angle formed with respect to the x axis on the x-y plane.
Two circularly polarized fields (C points) are located on the
centers of the right and left hemispheres. The existence and
evolution of C points are governed by the conservation of
topological charge that is defined by the winding number of
the polarization major axis around the point [36]. In Fig. 2(f),
although these two C points have opposite handedness, they
possess the identical topological charge +1.

Now, we move to investigate the influence of the mag-
netic dipole moment mx. The normalized Stokes polarization
parameter S3 and the polarization distributions of a stand-
alone magnetic dipole mx are shown in Fig. 2(c). Comparing
Figs. 2(a)–2(c), we can see that the polarization directions
of the far field on the x = 0 plane are identical for these
three dipoles. Superposing all these dipole moments (py = i,
pz = 1, mx = −0.5), its far field [in Fig. 2(e)] is quite similar
to that of the ideal transverse spin dipole [Fig. 2(f)]. The
L line has not changed its position on the sphere. We also
project the major axis of the polarization ellipses in coordi-
nates (θ , ϕ) and depict it in Fig. 2(g). We can see that when
mx changes to −0.5, the winding pattern is stretched, and
a pair of C points with identical topological charge (+1/2)
and handedness appear. The sign of mx merely affects the
emerging orientation of the new C point. The total topological
charge (+2) is conserved during the generation of the new C
points. So, introducing the magnetic moment mx with a certain

FIG. 3. Dependence in the (a) phase and (b) amplitude of the
different components of the polarizability tensors with frequency.
Dependence of the (c) phase and (d) amplitude of the different dipole
moments on frequency.

amplitude compared with the electric moment will disturb the
polarization distribution, but the spin state of the scattered far
field is still perfectly split.

For a real particle with omega-type bianisotropy, we cal-
culated its polarizability components and the induced electric
and magnetic moments by simulation. Figures 3(a) and 3(b)
show the change in the phase and amplitude of γ , αxx

mm and
αzz

ee with the frequency f from 2.25 to 2.85 GHz. The diameter
and height of the ceramic disk are R = 15 and H = 12 mm.
The diameter and height of the hollow are r = 9.4 and h =
4.5 mm. It is clear that the curve of the polarizability αzz

ee
is almost flat, but the magnetoelectric coupling coefficient
γ exhibits a strong dispersion. The two curves in Fig. 3(a)
cross with each other at about f = 2.55 GHz, which means
that these two components are in phase. Moreover, their am-
plitudes are also close to each other at f = 2.55 GHz. The
dependences of the phase and amplitude of the corresponding
dipole moments (py, pz, and mx) on frequency f are presented
in Figs. 3(c) and 3(d). The phase difference between py and pz

is almost 90◦ at f = 2.55 GHz and the amplitudes of py and
pz are close. The amplitude of mx is quite smaller than that of
py and pz at f = 2.55 GHz. Therefore, we believe the perfect
transverse spin splitting could be achieved at f = 2.55 GHz.

III. STOKES POLARIZATION PARAMETER S3

We now derive the full expression of the scattered far
field based on Eqs. (1)–(8) and investigate its polarization
characteristics. In the spherical coordinate system, the scat-
tered electric field can be divided into three components by r,
elevation angle (θ ), and azimuthal angle (ϕ). For the case of A
= 0 and B = 1, θ and ϕ components of the scattered electric
field can be obtained as

Eθ = k2
0eik0r

r

[
sin ϕ

(
αxx

mm − iγ cos β + iγ cos θ

+αxx
ee cos β cos θ

) − αzz
eesin β sin θ

]
, (9)
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Eϕ = k2
0eik0r

r
cos ϕ

(
iγ − iγ cos β cos θ + αxx

ee cos β

+αxx
mmcos θ

)
. (10)

In this paper, we investigate the polarization state of the
scattered far field by the Stokes polarization parameters. At
every point of the far field, the Stokes polarization parameter
S3 can be expressed as

S3 = −2 Im(EθE∗
φ )

∝ −cos ϕ Im{[sin ϕ(αxx
mm − iγ cos β + iγ cos θ

+αxx
ee cos β cos θ ) − αzz

eesin β sin θ ](−iγ ∗

+ iγ ∗cos β cos θ

+αxx
ee

∗cos β + αxx∗
mmcos θ )}. (11)

Examining the factor cos ϕ in Eq. (11), it can be deduced
that the ellipticity of the scattered far field is antisymmetric
with respect to the y-z plane. Such antisymmetric polarization
distribution in the opposite lateral hemisphere is referred to as
the spin Hall effect of light. The Stokes polarization parameter
S3 falls to zero when ϕ = 90◦ that corresponds to the linearly
polarized light. To describe the effect of polarization separa-
tion, we calculate the average normalized Stokes polarization
parameter S3 in the opposite hemisphere for a monochromatic
electromagnetic beam as

SR
3 =

∫ π/2

−π/2

∫ π

0
S3r2sin θ dθ dϕ

∫ π/2

−π/2

∫ π

0
S0r2sin θ dθ dϕ

, (12)

SL
3 =

∫ 3π/2

π/2

∫ π

0
S3r2sin θ dθ dϕ

∫ 3π/2

π/2

∫ π

0
S0r2sin θ dθ dϕ

. (13)

where S0 = |Eθ |2 + |Eϕ|2 is the total intensity of the scattered

far field, and SR
3 and SL

3 are the average normalized Stokes
polarization parameters S3 in the right (x > 0) and left (x < 0)
hemispheres separated by the y-z plane. By inserting Eqs. (9)–
(11) into Eqs. (12) and (13), we obtain

SR
3 = −2πsinβ

Re
(
γ ∗αzz

ee

) − cosβIm
(
αxx∗

ee αzz
ee

)
C1 + C2

, (14)

SL
3 = 2πsinβ

Re
(
γ ∗αzz

ee

) − cosβIm
(
αxx∗

ee αzz
ee

)
C1 + C2

, (15)

C1 = Re

[
4

3
iπcosβ

(
γαxx∗

ee − γ ∗αxx
ee + γ ∗αxx

mm − γαxx∗
mm

)

+ π

(
2 + 2

3
cos2β

)
γ ∗γ

]
, (16)

C2 = Re

[
2

3
π (1 + cos2β )αxx∗

ee αxx
ee + 2

3
π (1 − cos2β )αzz∗

ee αzz
ee

+ 4

3
παxx∗

mmαxx
mm

]
. (17)

FIG. 4. (a) Geometric view of the bianisotropic particle consist-
ing of a ceramic disk and a hollow. (b) Geometric view of the ceramic
disk. (c) Dependence of S3 in the scattered far field on the incident
angle for the bianisotropic particle. (d) Dependence of S3 in the
scattered far field on the incident angle for the ceramic disk.

It indicates that the average normalized Stokes polarization
parameters in the right and left hemispheres are opposite and
are closely relevant to the polarizability tensors of the particle
and the incident angle. The difference between SR

3 and SL
3

could present the spin Hall effect of light and evaluate the
transverse spin splitting in the scattered far field. The perfect
transverse spin splitting means the average Stokes parameter
S3 in the opposite hemisphere is close to −1 and 1. As shown
in Eqs. (14) and (15), the average Stokes parameter S3 in the
opposite hemispheres (x > 0, x < 0) falls to zero at β = 0◦
(incidence along the positive z direction). The bianisotropy
coefficient γ plays a decisive role in the spin splitting at
β = 90◦ (incidence along the negative y direction).

IV. RESULTS AND DISCUSSIONS

To confirm the theoretical analysis, we give concrete exam-
ples by simulations with the finite element method (COMSOL

MULTIPHYSICS). First, we investigate the difference of the
polarization state in the scattered far field between the bian-
isotropic particle and the ceramic disk in the case of A = 0
and B = 1. The frequency of the incident linearly polarized
light is 2.55 GHz. The geometric view of the bianisotropic
particle consisting of a ceramic disk and a hollow is shown
in Fig. 4(a). The diameter and height of the ceramic disk
are R (= 15 mm) and H (= 12 mm). The diameter and
height of the hollow are r (= 9.4 mm) and h (= 4.5 mm).
The relative permittivity of ceramic is 39. Figure 4(b) shows
the geometric view of the ceramic disk with diameter R and
height H . Dependences of S3 in the scattered far field on
the incident angle for the bianisotropic particle and the ce-
ramic disk are illustrated in Figs. 4(c) and 4(d). The red and
blue curves correspond to the left (x < 0) and right (x > 0)
hemispheres, respectively. It proves that S3 of the left and
right hemispheres are opposite. The left and right hemispheres
have opposite polarization states. It is worth noting that S3 of
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FIG. 5. (a) Dependence of S3 on the height h. (b) Dependence of
S3 on the frequency f .

the bianisotropic particle is more than two orders of magni-
tude larger than that of the ceramic disk, which means the
bianisotropy plays a key role in the transverse spin split-
ting. Considering this factor, S3 of the bianisotropic particle
should change with the incident angle approximately accord-
ing to the law of the sine function by Eqs. (14) and (15). S3

reaches its maximum value at β = 90◦ and is 0 at β = 0◦
and 180◦ for the bianisotropic particle as shown in Fig. 4(c).
For the ceramic disk without bianisotropy, Eqs. (14) and (15)
can be simplified as SR

3 = πsin2βIm(αxx∗
ee αzz

ee )/C2 and SL
3 =

−πsin2βIm(αxx∗
ee αzz

ee )/C2 where S3 approximately varies as
the sine function of twice the incident angle. S3 is 0 at β =
0◦, 90◦, and 180◦ for the ceramic disk as shown in Fig. 4(d).
The dependent rules of S3 with β in Figs. 4(c) and 4(d) are
consistent with the theoretical predictions.

When light incidents along the negative y axis (β = 90◦),
Eqs. (14) and (15) are greatly simplified and become

SR
3 = −2π

Re
(
γ ∗αzz

ee

)
C3

, (18)

SL
3 = 2π

Re
(
γ ∗αee

)zz

C3
, (19)

C3 = 4

3
πRe

[
γ ∗γ + αzz∗

ee αzz
ee + αxx∗

mmαxx
mm

]
. (20)

It indicates that the bianisotropy (represented by γ ) of the
particle determines the polarization states of the scattered far
field at β = 90◦. The polarization state is affected by the
components of the polarizability tensors that is the inherent
characteristic of the particle related to the size of the particle
and the frequency of the incident light. Figure 5(a) shows the
dependence of S3 on the height h of the bianisotropic particle.
The frequency of the incident polarized light is 2.55 GHz. The
diameter and height of the ceramic disk are R = 15 and H =
12 mm. The diameter of the hollow is r = 9.4 mm. The red
and blue curves correspond to the left and right hemispheres,
respectively. It is clear that S3 of the left and right hemispheres
are opposite. There is a good agreement between theoretical
and simulation results. The difference is mainly induced by
neglecting the higher-order moments of the bianisotropic par-
ticle. S3 reaches the maximum at h = 4.5 mm. Similar to
the above analysis, we investigate the change in S3 with the
frequency f from 2.25 to 2.85 GHz as shown in Fig. 5(b). The
diameter and height of the ceramic disk are R = 15 and H =
12 mm. The diameter and height of the hollow are r = 9.4 and
h = 4.5 mm. The effect of perfect transverse spin splitting is
obvious at f = 2.55 GHz which is off the resonant frequency
of the particle as illustrated in Figs. 3(a) and 3(b). The perfect

FIG. 6. Scattered electric field intensity and normalized Stokes
polarization parameter S3 distribution of perfect transverse spin split-
ting by transverse spin (a) electric and (b) magnetic dipole moments.
Two-dimensional scattering diagram of the bianisotropic particle on
the x-y plane and the x-z plane for the transverse spin (c) electric and
(d) magnetic dipole moments.

transverse spin splitting at f = 2.55 GHz accords closely with
our prediction that is achieved by the combination of different
dipoles.

There are two methods to achieve the circular polarization
separation in the x direction by constructing the transverse
spin electric and magnetic dipole moments, respectively. Fig-
ure 6(a) shows the scattered electric field intensity and the
normalized Stokes polarization parameter S3 distributions of
the perfect transverse spin splitting. The distance from the
origin of coordinates corresponds to the scattered electric field
intensity and the color represents the Stokes parameter S3.
The bianisotropic particle consists of a ceramic disk and a
hollow with R = 15, H = 12, r = 9.4, and h = 4.5 mm. The
frequency of the incident polarized light is 2.55 GHz. There
is obvious opposite polarization in the opposite hemisphere
that results from the transverse spin electric dipole moment.
The pure linear polarizations are located on the planes with
ϕ = ±90◦, which split the polarization of scattered far field
into two hemispheres with opposite handedness. In addition to
the transverse spin electric dipole moment, the transverse spin
magnetic dipole moment m = (mx, my, mz )T = (0,±i, 1)T

could be constructed approximatively when the incident elec-
tric field is the x polarized [A = 1, B = 0, and β = 90◦
in Eqs. (1) and (2)]. The size of the bianisotropic particle
remains unchanged. The frequency of the incident polarized
light is 2.5 GHz. The transverse spin splitting is directly ob-
served in Fig. 6(b). It indicates that constructing the transverse
spin magnetic dipole moment is also an effective method to
realize the transverse spin splitting. The results are consistent
with the previous theoretical analysis. Figures 6(c) and 6(d)
depict the two-dimensional scattering diagram on the x-y
plane and the x-z plane for the perfect transverse spin splitting
induced by the transverse spin electric and magnetic dipole
moments, respectively. Furthermore, the perfect transverse
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FIG. 7. (a) and (b) C points in the right (x > 0) and left (x < 0)
hemispheres of the scattered far field by the bianisotropic particle,
respectively. (c) and (d) C points in the right (x > 0) and left (x < 0)
hemispheres of scattered far field by the ceramic disk, respectively.

spin splitting is accompanied by the transversely symmetrical
intensity distribution in the x direction.

V. POLARIZATION SINGULARITIES

To further understand the polarization properties, we inves-
tigate the polarization singularities in the scattering field of the
bianisotropic particle and the ceramic disk. The bianisotropic
particle consists of a ceramic disk and a hollow with R = 15,
H = 12, r = 9.4, and h = 4.5 mm. The diameter and height of
the ceramic disk are R = 15 and H = 12 mm. The frequency of
the incident polarized light is 2.55 GHz and the incident angle
is β = 90◦. It is an effective way to describe a C point by
the polarization ellipse and the phase of the scalar field 	 =
E · E = E2eiφ . C points in the right hemisphere (x > 0) of the
scattered far field by the bianisotropic particle are depicted in
Fig. 7(a). The color represents the phase of E · E. The two
C points with the phase topological indices of −1 lie on the
right hemisphere. Besides, the line segments denote the major
axis of the polarization ellipse. The two C points are of the
lemon type with the polarization topological index of +1/2.
The results agree well with our theoretical prediction as shown
in Fig. 2(g). The interference of the induced dipole modes
results in the emergence of C points in the scattered far-field.
Figure 7(b) shows C points in the left hemisphere (x < 0)
with the phase topological indices of +1 and the polarization
topological index of +1/2, respectively. The phase topologi-
cal indices in the opposite hemisphere are opposite due to the

perfect transverse spin splitting. Figures 7(c) and 7(d) depict
C points in the right and left hemispheres of the scattered far
field of the simple ceramic disk. The two C points have phase
topological indices of −1 and +1 in both the right and the
left hemispheres. The polarization topological indices of C
points are all +1/2. It can be seen from Eqs. (18) and (19)
that the spin state of the scattered far field of the disk is not
split at β = 90◦ due to the absence of bianisotropy (γ = 0).
The perfect transverse spin splitting is referred to as one kind
of giant spin Hall effect of light with the obvious shift of
the polarization singularities. It suggests that C points with
the same phase topological index are located on the same
hemisphere when the perfect transverse spin splitting occurs.

VI. CONCLUSION

To summarize, we demonstrate that a perfect transverse
spin splitting effect could be realized by a bianisotropic par-
ticle. The two types of transverse spin dipole moments can
be constructed to realize the perfect transverse spin splitting,
which relies on the longitudinal dipole moments induced by
the strong magnetoelectric coupling. Based on the dipole
model, we have given a general description of the average
polarization state of the scattered far field and presented the
spin Hall effect of light. Besides, the perfect transverse spin
splitting is highly related to the separation of polarization sin-
gularities, e.g., C points with the same phase topological index
are located on the same hemisphere. The designed particle
can be considered as a circular dipole emitter which could
be used in chiral electromagnetic systems. Similar circu-
lar dipole sources have been exploited in spin-deterministic
waveguide coupling [39,40], polarization-tailored optical
switching [41], and chirality-induced optical isolators [42].
These applications are based on the so-called spin-momentum
locking, that is, the spin of the circular dipole must match the
intrinsic spin of the field in the device [43–45]. We believe
that the proposed method to achieve the perfect transverse
spin splitting through bianisotropic particles is promising for
light manipulation, polarization sorters, optical sensing, and
spin-based devices.
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G. Kiršanskė, T. Pregnolato, H. El-Ella, E. H. Lee, J. D. Song
et al., Nat. Nanotechnol. 10, 775 (2015).

[41] M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, Nano Lett.
14, 2546 (2014).

[42] C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P.
Schneeweiss, J. Volz, and A. Rauschenbeutel, Phys. Rev. X 5,
041036 (2015).

[43] M. F. Picardi, A. V. Zayats, and F. J. Rodríguez-Fortuño, Phys.
Rev. Lett. 120, 117402 (2018).

[44] M. Neugebauer, P. Banzer, and S. Nechayev, Sci. Adv. 5,
eaav7588 (2019).

[45] L. Marrucci, Nat. Phys. 11, 9 (2015).

235418-7

https://doi.org/10.1103/PhysRevLett.121.243903
https://doi.org/10.1103/PhysRevLett.121.193902
https://doi.org/10.1038/ncomms11286
https://doi.org/10.1021/acs.nanolett.8b04219
https://doi.org/10.1021/ph500288u
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1073/pnas.2018816118
https://doi.org/10.1103/PhysRevLett.101.030404
https://doi.org/10.1126/science.1152697
https://doi.org/10.1126/science.1231758
https://doi.org/10.1088/1361-6633/aa5397
https://doi.org/10.1021/acsphotonics.9b01720
https://doi.org/10.1038/ncomms6327
https://doi.org/10.1103/PhysRevB.102.205428
https://doi.org/10.1088/1367-2630/15/5/053008
https://doi.org/10.1103/PhysRevB.92.245130
https://doi.org/10.1103/PhysRevB.91.115119
https://doi.org/10.1109/TAP.2013.2256299
https://doi.org/10.1103/PhysRevApplied.2.044011
https://doi.org/10.1038/s41566-019-0521-4
https://doi.org/10.1109/TAP.2016.2588495
https://doi.org/10.1364/OL.44.001694
https://doi.org/10.1103/PhysRevA.102.063527
https://doi.org/10.1126/science.aau0227
https://doi.org/10.1103/PhysRevLett.120.186103
https://doi.org/10.1103/PhysRevLett.123.116104
https://doi.org/10.1103/PhysRevB.99.180101
https://doi.org/10.1103/PhysRevLett.124.153904
https://doi.org/10.1021/acsphotonics.7b00002
https://doi.org/10.1002/lpor.202000049
https://doi.org/10.1103/PhysRevA.103.023520
https://doi.org/10.1016/S0030-4018(02)02088-6
https://doi.org/10.1088/1464-4258/6/7/003
https://doi.org/10.1103/PhysRevB.95.245416
https://doi.org/10.1038/nnano.2015.159
https://doi.org/10.1021/nl5003526
https://doi.org/10.1103/PhysRevX.5.041036
https://doi.org/10.1103/PhysRevLett.120.117402
https://doi.org/10.1126/sciadv.aav7588
https://doi.org/10.1038/nphys3198

