
PHYSICAL REVIEW B 104, 235416 (2021)

Effects of a noncausal electromagnetic response on the linear momentum transfer
from a swift electron to a metallic nanoparticle

J. Castrejón-Figueroa ,* J. Á. Castellanos-Reyes , and A. Reyes-Coronado
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria,

Avenida Universidad #3000, Mexico City, 04510, Mexico

(Received 7 June 2021; revised 12 October 2021; accepted 30 November 2021; published 13 December 2021)

Electron beams in scanning transmission electron microscopes (STEMs) can be used as a tool to induce
movement on nanoparticles. Employing a classical-electrodynamics approach, it has been reported that the linear
momentum transfer from a STEM-beam electron to a metallic spherical nanoparticle can be either repulsive or
attractive towards the swift electron trajectory. This is in qualitative agreement with experimental observations.
The interaction time between a swift electron and a nanoparticle is typically on the order of attoseconds.
Hence, the electromagnetic response of the nanoparticle at short times is of utmost importance. However, it
has been reported that the dielectric function employed in previous studies presented a noncausal pre-echo
at the attosecond timescale, which might have led to incorrect unphysical results. Therefore, the validity of
these linear momentum transfer results should be revisited. In this theoretical work, we study the noncausality
effects on the linear momentum transferred from a swift electron to a metallic nanoparticle, made of either
aluminum or gold. Using an efficient numerical methodology, we found that noncausality, as well as deficient
numerical convergence, may lead to incorrect repulsive linear momentum transfer results. Contrary to what
previous theoretical studies have reported, our results show that the linear momentum transfer from a swift
electron to spherical aluminum and gold nanoparticles, with radius 1 nm, is always attractive. Hence a theoretical
description of the experimentally observed repulsive interaction is pending.

DOI: 10.1103/PhysRevB.104.235416

I. INTRODUCTION

The manipulation of micro- and nano-objects has been a
field of interest since the second half of the last century given
its potential applications for new technologies [1–8]. In par-
ticular, it has been experimentally observed that the scanning
transmission electron microscope (STEM) can be used as a
tool to induce movement on nanoparticles (NPs) due to forces
of repulsion or attraction toward the electron beam [9–17]
and improved technologies in the reduction of the probe size
[18–21].

The interaction between spherical NPs and aloof STEM
electron beams has been theoretically addressed using a
classical-electrodynamics approach by solving Maxwell’s
equations in frequency space—hereafter called fully retarded
wave solution [22–24]. In particular, this interaction has been
studied through the mechanical linear momentum transferred
by a single swift electron to a small metallic NP [25–29],
which involves the calculation of a closed-surface integral
around the NP and an integral in the whole frequency space.
These previous studies have shown that the linear momen-
tum transferred to an aluminum or gold NP is predominantly
attractive towards the swift electron trajectory but becomes
repulsive at small impact parameters. This is in qualita-
tive agreement with what has been experimentally observed
[10–17].

*Corresponding author: jcastrejon@ciencias.unam.mx

The interaction between a swift electron and a NP typically
occurs at the attosecond timescale [28,30]. Therefore the elec-
tromagnetic response of the NP at this timescale is of utmost
importance for the description of this interaction. However,
it has been reported that the dielectric function employed
in previous linear momentum transfer calculations for gold
NPs presented a noncausal pre-echo of tens of attoseconds
[31], which might have led to incorrect unphysical results.
This noncausality is due to the interpolation and extrapolation
of data, collected from different experiments (with different
samples) and carried out for different frequency ranges, com-
piled by Palik [32]. Therefore the validity of the previous
linear momentum transfer results should be revisited. Addi-
tionally, the Newton-Cotes rules used in previous works (see,
for example, Refs. [26–29]) have a slow convergence rate
(compared to a Gaussian quadrature) and do not provide er-
ror estimations without further calculations [33], leading—in
certain situations—to incorrect physical conclusions. Hence,
it is necessary to examine and improve the numerical method-
ology employed to compute the linear momentum transfer.

In this work we revise the noncausality effects on the
linear momentum transferred from a swift electron to a
metallic NP, made of either aluminum or gold. We use the
fully retarded wave solution to Maxwell’s equations, with the
Gauss-Kronrod quadrature [33,34] and double-exponential
formulas for numerical integration [35,36], presenting an
efficient numerical methodology that provides results with
accurate error estimates. In this work we use SI units unless
otherwise stated.
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FIG. 1. Metallic nanoparticle (gray sphere) of radius a, char-
acterized with a frequency-dependent dielectric function ε(ω) and
embedded in vacuum, interacting with a swift electron (red dot)
traveling in the z direction with constant velocity �v and impact
parameter b.

II. FULLY RETARDED WAVE SOLUTION APPROACH

The electron beams produced in modern STEMs can reach
an energy of up to 400 keV [23]. These beams consist of
electrical currents on the order of tens of pA, equivalent to
a train of swift electrons traveling in a straight trajectory with
constant speed (∼0.83c, with c the speed of light), each one
emitted approximately every 10−8 s. Given that the typical
lifetime of electronic excitations in metals is ∼10−14 s [37],
we can safely assume that the NP interacts with a single
swift electron at a time [22–24]. We consider the NP as an
uncharged nonmagnetic sphere embedded in vacuum, with
radius a and characterized with a frequency-dependent di-
electric function ε(ω). We set the NP center as the origin
of a Cartesian coordinate system, and we assume that the
electron (a classical point particle with electric charge −e)
travels with a constant velocity �v along the z direction, at
a distance b (impact parameter) from the origin, as shown
in Fig. 1. As it has been argued in Ref. [24], under these
conditions, a quantum description of the incident electron and
the NP is not necessary. Thus, in this work we employ a
classical-electrodynamics approach to describe the interaction
between the swift electron and the NP.

The fully retarded wave solution corresponds to the exact
solution to Maxwell’s equations in frequency space. Within
this approach, the electromagnetic fields scattered by the
spherical NP are obtained as a multipole expansion in spheri-
cal coordinates [22]:

�E scat(�r; ω) =
∞∑

�=1

m=�∑
m=−�

Er
�mr̂ + E θ

�mθ̂ + Eφ

�mφ̂, (1)

�H scat(�r; ω) =
∞∑

�=1

m=�∑
m=−�

Hr
�mr̂ + H θ

�mθ̂ + Hφ

�mφ̂. (2)

From these scattered fields, whose detailed expressions can
be found in Ref. [30], together with the electromagnetic fields
produced by the bare swift electron (see Ref. [38]), one can
obtain the total linear momentum transferred by the swift
electron to the NP by integrating the linear momentum con-
servation law in time, which can be written in the frequency
space as [30]

� �P =
∫ ∞

0

�P (ω) dω, (3)

with the spectral contribution to the linear momentum transfer,
�P (ω), given as

�P (ω) = 1

π

∮
S
Re

{
ε0

[
�E (�r; ω) �E∗(�r; ω)− I

↔

2
�E (�r; ω)· �E∗(�r; ω)

]

+μ0

[
�H (�r; ω) �H∗(�r; ω)− I

↔

2
�H (�r; ω)· �H∗(�r; ω)

]}
·d�a,

(4)

where S is a closed surface enclosing the NP that does not in-
tersect the electron path. Here, Re[z] denotes the real part of z,
I
↔

is the unit dyadic, ε0 and μ0 are the electric permittivity and
magnetic permeability of vacuum, respectively, and �E (�r; ω)
and �H (�r; ω) are the total electromagnetic fields—the sum of
those produced by the swift electron and those scattered by the
NP. We refer the reader to Ref. [30] for a detailed derivation
of Eqs. (3) and (4).

To compute the linear momentum transferred by the swift
electron to the NP, it is customary to first calculate �P (ω) from
the closed-surface integral in Eq. (4). Then, � �P is obtained
through the frequency integral of �P (ω) over ω ∈ (0,∞) [see
Eq. (3)].

It has been reported that the NP could be repelled or at-
tracted towards the trajectory of the swift electron [25–29]. In
particular, information about this attraction (or repulsion) is
contained in the transverse (x direction in our case, see Fig. 1)
component of the linear momentum transferred, �P⊥. Thus
we focus our analysis and calculations on this component.
Therefore, in Eqs. (3) and (4), we calculate both surface and
frequency integrals numerically ensuring that at least the first
three significant digits of �P⊥ are correct. The detailed nu-
merical methodology, valid for NPs of any radius, is presented
in Appendix A. In particular, we consider up to 30 multipoles
in Eqs. (1) and (2) (�max = 30) for all the calculations of �P⊥
in this work.

In the next sections, we calculate �P⊥ for a NP with a = 1
nm, made of either aluminum (Drude model) or gold (dielec-
tric function taken from experimental data). It is noteworthy
that these cases have been previously reported, showing
that �P⊥ is negative—repulsive—at small impact parameters
[25–29]. However, as we show in Appendix B, we found that
numerical convergence for �P⊥ was not achieved in those
works, yielding incorrect negative �P⊥ values.

III. LINEAR MOMENTUM TRANSFERRED BY A SWIFT
ELECTRON TO AN ALUMINUM NANOPARTICLE

In this section we calculate the transverse linear momen-
tum, �P⊥, transferred from a swift electron to an aluminum
NP with radius a = 1 nm. The dielectric function for alu-
minum was considered as the one given by the Drude model,
with parameters h̄ωp = 15.1 eV and h̄	 = 0.15 eV, which are
the same used in Ref. [26]. Although size corrections to the
bulk dielectric function are important for metallic NPs with
1 nm radius [39], we found they yield a negligible contribution
to the linear momentum transfer [30]. Thus, in this work we
always use bulk dielectric functions to characterize the NP.

In Fig. 2(a) we show �P⊥ as a function of the impact
parameter b with an electron speed v = 0.5c, and in Fig. 2(b)
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FIG. 2. Transverse linear momentum (�P⊥, black squares) transferred by a swift electron to an aluminum NP with a = 1 nm, (a) as a
function of b with v = 0.5c and (b) as a function of v/c with b = 1.5 nm. The red circles and blue triangles represent the electric and magnetic
contributions to �P⊥, respectively. The red, blue, and black lines are shown as a guide to the eye.

�P⊥ as a function of v/c with b = 1.5 nm. We separate �P⊥
(black squares) in its electric (�PE

⊥ , red circles) and magnetic
(�PH

⊥ , blue triangles) contributions [first and second terms,
inside square brackets, on Eq. (4), respectively]. We highlight
three characteristics of Fig. 2: (i) �P⊥ and its electric and
magnetic contributions are always positive, meaning an effec-
tive attractive interaction between the electron and the NP;
(ii) �P⊥ decreases for larger values of both b [see Fig. 2(a)]
and v [see Fig. 2(b)]; and (iii) at b = 1.5 nm and v/c ≈ 0.58,
the electric and magnetic contributions to �P⊥ cross each
other [see Fig. 2(b)]. Thus, at v/c � 0.58 the electric con-
tribution to �P⊥ dominates over the magnetic one, even if
the impact parameter increases [see Fig. 2(a)]. Conversely, at
v/c � 0.58 the magnetic contribution becomes larger than the
electric one, and at v = 0.95c most of the linear momentum
is transferred by the magnetic contribution.

Our findings show that �P⊥ for an aluminum NP with
radius a = 1 nm is always positive, meaning that the NP
is attracted towards the swift electron trajectory. This is in
contradiction with previous theoretical results reporting �P⊥
as negative at b = 1.5 nm and v = 0.5c [26]. To investigate
the origin of the discrepancies between our results and those
reported in Ref. [26], we compared the numerical methodolo-
gies employed in the calculations, showing that it is possible
to obtain incorrect repulsive results for �P⊥ if the number of
sampling points in the frequency space is low enough so that
numerical convergence is not achieved (see Appendix B for
the details).

The causality of the dielectric function is of utmost im-
portance for the calculation of � �P [31], since it is necessary
to integrate over all frequencies [see Eq. (3)]. The dielectric
function used to characterize the electromagnetic response of
the aluminum NP—the Drude model—is causal, that is, it
fulfills Kramers-Kronig relations [31]. However, it has been
suggested that a noncausality in the dielectric function may
also lead to incorrect repulsive results [31]. Thus, in the fol-
lowing section we study the unphysical effects on the linear
momentum transfer caused by a noncausal response of the
NP. In particular, we focus on the case of a small nanoparticle

of radius 1 nm. Therefore, we study the effects on the linear
momentum transfer computations caused by a noncausality in
the quasistatic polarizability.

IV. UNPHYSICAL REPULSIVE INTERACTION CAUSED
BY A NONCAUSAL ELECTROMAGNETIC

RESPONSE OF THE NP

As has been argued in Ref. [30], the electromagnetic re-
sponse of small spherical NPs is satisfactorily characterized
by the quasistatic polarizability:

αs(ω) = 4πa3 ε(ω) − ε0

ε(ω) + 2ε0
, (5)

where ε(ω) is the frequency-dependent dielectric function of
the NP and a its radius. From Eq. (5) it is possible to express
ε(ω) in terms of αs(ω) as

ε(ω)

ε0
= 2αs(ω) + 4πa3

4πa3 − αs(ω)
. (6)

For an aluminum NP with dielectric function given by the
Drude model (with the parameters chosen in Sec. III), the
quasistatic polarizability is given by

αs(ω) = 4πa3 ω2
s

ω2
s − ω2 − iω	

, (7)

with ωs = ωp/
√

3. By means of a frequency-to-time Fourier
transform, we calculate the quasistatic polarizability as a func-
tion of time:

αs(τ ) = 1

2π

∫ ∞

−∞
αs(ω)e−iωτ dω

= 4πa3�(τ )
ω2

s

s
e−τ	/2 sin(sτ ), (8)

where �(τ ) is the Heaviside step function, and s =
ωs

√
1 − (	/2ωs)2. Since αs(τ < 0) = 0 due to �(τ ), the qua-

sistatic polarizability given in Eq. (8) is causal. It is possible
to add a controlled artificial noncausality fnc to αs, defining a
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FIG. 3. (a) Noncausal polarizability αnc(τ ) as a function of time, given in Eq. (9), for a NP with radius a = 1 nm. The red line represents
the noncausal contribution fnc(τ ), see Eq. (10), added to the quasistatic polarizability αs(τ ) (blue line) given in Eq. (8). (b) Transverse linear
momentum transferred, �P⊥, to the same NP as in (a) as a function of the pre-echo, with b = 1.5 nm and v = 0.5c, considering up to �max = 30
in Eqs. (1) and (2). The blue dot corresponds to �P⊥ transferred to an aluminum NP characterized with a causal dielectric function (with no
pre-echo), while the red dots correspond to a repulsive interaction due to the noncausal response of the NP. The black dash line is a guide to
the eye.

noncausal quasistatic polarizability αnc as

αnc = αs + fnc. (9)

For simplicity, we choose fnc(τ ) as a boxcar function:

fnc(τ ) =
{−A τ ∈ (−T, 0 )

0 other case , (10)

with length T and height A. By means of a time-to-frequency
Fourier transform we obtain

fnc(ω) = −AT sinc

(
ωT

2

)
e−iωT/2, (11)

with sinc(z) = sin(z)/z. Notice from Eq. (11) that T has units
of time and AT has units of volume.

Interestingly, in Ref. [25] it was developed an expression
for the transverse linear momentum transferred in the limit
b � a, given in cgs units as

�px = e2

b4v

(
5.55165γ + 1.85055

γ

)
Re[α(ω = 0)], (12)

with e the fundamental electric charge and γ = [1 −
(v/c)2]−1/2. From Eqs. (7), (9), and (11) one can notice that

αnc(ω = 0) = 4πa3 − AT. (13)

Hence, if the volume AT of the noncausality is larger than
4πa3, then �px is negative [see Eqs. (12) and (13)], meaning
that the NP will be repelled from the electron trajectory.

To corroborate if a noncausal polarizability yields a re-
pulsive interaction within the fully retarded wave solution
approach, from Eq. (6) we define the noncausal dielectric

function as

εnc(ω)

ε0
= 2αnc(ω) + 4πa3

4πa3 − αnc(ω)
, (14)

and we further calculate �P⊥ to a NP characterized with a
dielectric function given by Eq. (14).

In Fig. 3(a) we show the polarizability given in Eq. (9) as
function of time, for a NP characterized with the dielectric
function given by Eq. (14), with the Drude (aluminum) pa-
rameters, and with radius a = 1 nm. We separate αnc(τ ) in
its causal [αs(τ ) given by Eq. (8), blue line] and noncausal
[ fnc(τ ) given by Eq. (10), red rectangle] contributions. We
refer to the length T of the red rectangle as the pre-echo
and we choose A = 10−11 m3/s in Eq. (10) (same order of
αs). In Fig. 3(b) we show �P⊥ transferred to the NP as a
function of the pre-echo, choosing b = 1.5 nm and v = 0.5c,
considering up to �max = 30 in Eqs. (1) and (2) to ensure
numerical convergence (see Appendix A).

Previous studies have reported that most of the linear
momentum is transferred from the electron to the NP in a
timescale on the order of tens of attoseconds [28,30], where
the main interaction between the swift electron and the NP
occurs. A remarkable effect can be observed when the non-
causal pre-echo is on the order of the interaction time between
the NP and the swift electron: the transverse linear momentum
transferred is negative [red dots in Fig. 3(b)], meaning the
NP is repelled from the swift electron trajectory. However,
these negative values of �P⊥ are the result of considering a
noncausal dielectric function for the NP, and thus they are an
artifact.

There have been studies reporting negative values of �P⊥
for other materials [25–29]. In particular, negative values of
�P⊥ for gold nanospheres were reported in Refs. [26,27].
However, it has recently been discovered that the dielectric
function used in those works is not causal [31]. Therefore it
is not clear that the reported negative values of �P⊥ for gold
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FIG. 4. Quasistatic polarizability as a function of time for a gold
NP with a dielectric function taken from experimental data compiled
by Palik [32] (red line) and with a dielectric function taken from
Werner et al. (black dash line) [40]. The NP characterized by the
dielectric function obtained from Palik data has a noncausal pre-echo
for τ < 0. The vertical blue dash line indicates τ = −60 as.

NPs are physical. In the next section we study the effects on
�P⊥ due to the noncausality of the gold NP response.

V. LINEAR MOMENTUM TRANSFERRED FROM A SWIFT
ELECTRON TO A GOLD NANOPARTICLE

In this section we consider a gold NP and study two
cases for its dielectric function taken from experimental data:
(i) a dielectric function from different experiments compiled
by Palik [32], and (ii) a fitted dielectric function from ex-
perimental data reported by Werner et al. [40]. We obtained
�P⊥ with a precision of at least three significant digits (see
Appendix A for further details).

Since the dielectric function taken from experimental data
compiled by Palik is only known in a limited frequency
range, it is necessary to perform extrapolations (as well as
interpolations) of the data, which does not necessarily yield
a causal dielectric function [31]. Conversely, Werner et al.
fitted their experimental data with a superposition of Lorentz
oscillators, resulting in an analytic causal dielectric function
[31]. To analyze the causality of both Palik and Werner et al.
dielectric functions, we calculate the quasistatic polarizability
as a function of time through a numerical frequency-to-time
Fourier transform.

We show in Fig. 4 the time-dependent quasistatic polar-
izability for a gold NP calculated from the Palik data (red
line) and from the Werner et al. analytic function (black dash
line). Since the dielectric function from Palik (coming from
different experiments) is obtained through an interpolation
of the data, the resulting time-dependent polarizability has a
nonzero imaginary part and a pre-echo. We found that this
pre-echo is present regardless of the interpolation method
we employed. For simplicity, in the results presented in this
work, we employed first-order polynomials to interpolate the
Palik data. In contrast, the time-dependent polarizability from
Werner et al. is a real function and is zero for τ < 0. This
means that the dielectric function from Werner et al. is causal,

whereas the dielectric function from Palik data is not. The
pre-echo in the Palik data (red line) shown in Fig. 4 extends
beyond -60 attoseconds (vertical blue dash line), which is on
the same order of magnitude that the interaction time between
the swift electron and the NP. As we show next, this pre-echo
leads to incorrect repulsive results for the linear momentum
transferred to the gold NP.

The noncausal quasistatic polarizability obtained from the
data compiled by Palik αP

s (red line in Fig. 4) can be converted
into a causal polarizability by taking only its real part (in the
time domain) and eliminating the pre-echo:

α̂P
s (ω) =

∫ ∞

−∞
�(τ ) Re

[
αP

s (τ )
]

eiωτ dτ, (15)

from which, using Eq. (6), one can obtain a causal dielectric
function:

ε̂P(ω)

ε0
= 2α̂P

s (ω) + 4πa3

4πa3 − α̂P
s (ω)

. (16)

From now on, we will refer to this causal dielectric function
ε̂P(ω), obtained from Eq. (16) and the experimental data for
gold compiled by Palik, as Palik-Causal.

In Fig. 5(a) we show the transverse linear momentum trans-
ferred �P⊥ to a gold NP as a function of b with v = 0.5c
and in Fig. 5(b) as a function of v/c with b = 1.5 nm. Using
the methodology described in Appendix A, we calculate �P⊥
(with �max = 30) considering the three dielectric functions
used to characterize the electromagnetic response of the gold
NP: Palik (red circles), Werner (black squares), and Palik-
Causal (blue triangles). One can see in Fig. 5(a) that �P⊥ is
positive for the three dielectric functions considered (meaning
an attractive interaction between the NP and the electron).
However, for the red circles (Palik), at b = 1.3 nm [indicated
with a black arrow in 5(a)] it can be seen that

�P⊥(b = 1.3 nm) < �P⊥(b = 1.5 nm), (17)

showing a maximum in �P⊥, which is not observed for the
causal dielectric functions (Werner and Palik-Causal). The
value of �P⊥ at b = 1.3 nm was previously reported as nega-
tive, indicating a repulsive interaction between the NP and the
electron [26,27].

In Fig. 5(b) one can see that �P⊥ decreases for larger
values of v. For Palik data (red circles), �P⊥ is positive
up to v ≈ 0.75c, after which it becomes negative (repulsive
interaction, indicated with magenta crosses). This transition
from attractive to repulsive linear momentum transferred dis-
appears for Werner (black squares) and Palik-Causal (blue
triangles) dielectric functions.

Therefore we conclude that noncausality leads to incor-
rect repulsive linear momentum transfer results for the gold
NP considered. Moreover, in general it can be concluded
that noncausality and deficient numerical convergence may
lead to incorrect repulsive values of the linear momentum
transfer.

VI. CONCLUSIONS

We studied the linear momentum transferred from a swift
electron to a nanoparticle with radius a = 1 nm, made of ei-
ther aluminum or gold. Using the fully retarded wave solution
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FIG. 5. Transverse linear momentum, �P⊥, transferred by a swift electron to a gold NP with a = 1 nm, (a) as a function of b and with
v = 0.5c, and (b) as a function of v/c and with b = 1.5 nm, using �max = 30. The red circles correspond to the results obtained considering a
dielectric function taken from the experimental data compiled by Palik [32], the black squares correspond to a dielectric function taken from
Werner et al. [40], and the blue triangles correspond to the Palik dielectric function after forcing causality [Palik-Causal, Eq. (16)]. The vertical
black arrow in (a) indicates b = 1.3 nm. In (b), the magenta crosses indicate where �P⊥ < 0. The red, blue, and black lines are shown as a
guide to the eye.

to Maxwell’s equations, we presented an efficient numerical
methodology that ensures that at least the first three signif-
icant digits of the transverse linear momentum transferred
are correct. We found that the transverse linear momentum
transferred from a swift electron to a NP with radius of 1 nm,
made of either aluminum or gold, is always positive (meaning
that the NP will be effectively attracted towards the swift
electron trajectory).

We analyzed the effects on the linear momentum transfer
caused by a noncausal dielectric function (characterizing the
NP) with an attoseconds pre-echo. By controlling the mag-
nitude of a noncausal pre-echo in the NP polarizability, we
found that a noncausality on the order of the interaction time
(tens of attoseconds in our case) may lead to an unphysi-
cal repulsive interaction between the swift electron and the
NP.

We calculated the linear momentum transferred from an
electron to a gold NP using two dielectric functions: (i) one
obtained from the data compiled by Palik [32], which we
showed to be noncausal, and (ii) another, that turns out to
be causal, fitted by Werner et al. from their experimental
data [40]. For the noncausal case, we found a transition
from attractive to repulsive interaction at v ≈ 0.75c, with
b = 1.5 nm. This repulsive behavior is not present for a gold
NP characterized by the causal dielectric function. Interest-
ingly, we showed that if the noncausal dielectric function is
forced to be causal, the repulsive results disappear. Hence
we conclude that a noncausal dielectric function leads to
incorrect repulsive results for the gold NP, as could be the
case of Refs. [26,27]. The repulsive linear momentum trans-
fer reported in previous theoretical works may have been
caused by a combination of using a noncausal dielectric func-
tion and a deficient numerical convergence in the frequency
integration. In fact, we have found that both causality and nu-
merical convergence are essential to obtain physically sound
results.

The previously reported theoretical explanation of the ex-
perimentally observed repulsive interaction between STEM-
electron beams and nanoparticles relied on the computed
negative values of the linear momentum transfer. However, we
have shown that the negative values for gold and aluminum
NPs are unphysical and incorrect. Therefore a theoretical de-
scription of the experimentally observed repulsion is pending.
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APPENDIX A: REVISITED NUMERICAL METHODOLOGY

To compute the linear momentum transferred by the swift
electron to the NP, we first calculate �P (ω) from the closed-
surface integral in Eq. (4). Then we obtain � �P through the
frequency integral of �P (ω) over ω ∈ (0,∞) [see Eq. (3)].
Both surface and frequency integrals are obtained numeri-
cally.

As mentioned in the main text, the numerical methods
employed in previous works might have led to incorrect re-
sults. For this reason, we revise the numerical methods used
to calculate �P⊥, proposing a more precise methodology and
ensuring that at least the first three significant digits of �P⊥
are correct.
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1. Closed surface integral

As mentioned in Sec. II, the spectral contribution to the
linear momentum transfer is given by

�P (ω) = 1

π

∮
S

↔
T (�r; ω) · d�a, (A1)

with
↔
T (�r; ω) = Re

[
ε0 �E (�r; ω) �E∗(�r; ω) − ε0

2
I
↔ �E (�r; ω) · �E∗(�r; ω)

+μ0 �H (�r; ω) �H∗(�r; ω) − μ0

2
I
↔ �H (�r; ω) · �H∗(�r; ω)

]
.

(A2)

We choose the surface S in Eq. (A1) as a spherical shell,
concentric to the NP, with radius R = a + 0.05 nm, and
we considered the spherical coordinate system (r, θ, φ), de-
termined by the spherical-to-Cartesian transformation: x =
r sin θ cos φ, y = r sin θ sin φ, z = r cos θ , with (x, y, z) the
Cartesian coordinate system shown in Fig. 1. Equation (A1)
can be written as

�P (ω) = R2

π

∫ 2π

0

∫ π

0

↔
T (R, θ, φ; ω) · r̂ sin θ dθ dφ. (A3)

As mentioned before, previous studies obtained �P (ω) numer-
ically using a composite Simpson 3/8 rule, a Newton-Cotes
(NC) rule of third degree (see Refs. [26–29]). However, a
Gaussian quadrature has a faster converge rate than a NC rule
with respect to the number of evaluations N of the integrand
[33].

The Gauss-Kronrod quadrature (GKQ) is constructed by
adding N + 1 points to a N-point Gauss-Legendre quadrature
(GLQ), resulting in a total of 2N + 1 nodes and weights
[33,34]. The GKQ provides an error estimate by comparing
the result of the integral with the one obtained using the nested
N-point GLQ. We define gj and θ j as the weights and nodes
for the integration of �P (ω) in θ , and gk and φk as the weights
and nodes for the integration in φ. Notice that the region of
integration in Eq. (A3) is the rectangle [0, 2π ) × [0, π ].

The transverse component of the spectral contribution to
the linear momentum transfer is given by

P⊥(ω) =R2

π

Nφ∑
k=1

Nθ∑
j=1

g jgkT⊥(R, θ j, φk ; ω) sin θ j ± εP⊥ (ω),

(A4)

with εP⊥ the absolute numerical error, and T⊥ = x̂ · ↔
T · r̂,

Nθ = 2nθ + 1, and Nφ = 2nφ + 1, where nθ and nφ corre-
spond to the orders of the nested Gauss-Legendre quadratures.

To quantitatively compare the two methods of numerical
integration—(i) the composite Simpson 3/8 rule, and (ii) the
Gauss-Kronrod quadrature—we calculate the transverse com-
ponent of the spectral contribution to the linear momentum
transfer, P⊥(ω), for the aluminum NP with a = 1 nm, consid-
ering the Drude model with the parameters used in Sec. III.
We show in Table I the relative error of P⊥(ω) as a function
of the number of evaluations N on the surface S. In Table I,
N = 2n2

NC
is the number of evaluations on the surface S for

the NC rule, with nNC the number of sampling points for θ

TABLE I. Relative error of the closed-surface integral shown in
Eq. (A4) as a function of the number of evaluations N on the surface
S, obtained using a Newton-Cotes (NC) rule of third degree (δPNC

⊥ ),
and a Gauss-Kronrod quadrature (δPGKQ

⊥ ), for an aluminum (Drude
model) NP with a = 1 nm, and a swift electron with b = 1.5 nm
and v = 0.5c. We chose the dipole resonance frequency h̄ω = 8.7 eV
(arbitrarily) to illustrate this particular example.

N δPNC
⊥ δPGKQ

⊥

288 6.4 × 10−2 2 × 10−3

450 1.1 × 10−2 5.5 × 10−5

882 9.7 × 10−4 2.5 × 10−9

1800 7.6 × 10−5 7.4 × 10−12

and 2nNC the number of sampling points for φ. For the GKQ,
N � Nθ × Nφ with Nφ ≈ Nθ + 10. It can be seen that the
GKQ has a smaller relative error (δPGKQ

⊥ ) than the NC rule
(δPNC

⊥ ), indicating a faster convergence rate. Hence, in all our
calculations we employ the GKQ to calculate P⊥ with an error
estimate εP⊥ .

2. Frequency integral

The GKQ is useful to obtain the integral of functions on
bounded intervals. To use the GKQ for the frequency inte-
gration given in Eq. (3), it is convenient to define a cutting
frequency ωc so that the integral is calculated on (0, ωc)
instead of (0,∞). By defining gi and ωi as a collection of
weights and nodes of the GKQ for the frequency interval
(0, ωc), the linear momentum transferred from the swift elec-
tron to the NP can be written as

�P⊥ =
∑

i

giP⊥(ωi ) ± εP⊥ , (A5)

where εP⊥ is the absolute numerical error.
To estimate εP⊥ in Eq. (A5), it is necessary to consider all

the sources of numerical error, in particular, the numerical
error of the spectral contribution to the linear momentum [see
Eq. (A4)]. The absolute numerical error for the closed-surface
integral εP⊥ in Eq. (A4) is a function of the frequency ω, and
it is given by the difference between the results obtained with
GKQs and GLQs [33]. The contribution of εP⊥ to the linear
momentum transfer is given by the integral of εP⊥ over the
frequency interval (0, ωc). However, we only need to estimate
an upper bound to such error:

ωc Max[εP⊥ (ωi )] �
∫ ωc

0
εP⊥ (ω) dω, (A6)

where the index i runs over the sum for the frequency in-
tegral [shown in Eq. (A5)]. Hence, the error due to the
closed-surface numerical integration can be expressed as
ωc Max[εP⊥].

Then the absolute numerical error εP⊥ is given by

εP⊥ = εGKQ + ωc Max[εP⊥ (ωi )] + ε̃cut, (A7)

with εGKQ the estimation of the error provided by the
GKQ for the frequency integration on the interval (0, ωc),
ωc Max[εP⊥ (ωi )] the closed-surface integration error, and ε̃cut
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FIG. 6. Typical spectral contribution to the transverse linear mo-
mentum transfer, P⊥(ω), (a) for an aluminum (Drude model) NP and
(b) for a gold NP [40]. Four relevant frequency regions are shown in
colors: I1 in green, I2 in red, I3 in yellow, and I4 in blue. The blue
region is used to estimate ωc and ε̃cut using the Exp-Sinh quadrature,
while the green, red, and yellow regions are integrated using the
GKQ.

an upper bound to the error by frequency truncation:

ε̃cut � εcut =
∫ ∞

ωc

P⊥(ω) dω. (A8)

Next we discuss the criteria for choosing ωc and the collec-
tion of weights and nodes (gi and ωi) in Eq. (A5). In Fig. 6(a)
we show a typical spectral contribution to the transverse linear
momentum, P⊥(ω), for the aluminum NP (Drude model), and
in Fig. 6(b) we show a typical P⊥(ω) for gold NP (Werner).
We have separated the entire frequency range into four regions
labeled from I1 to I4 and highlighted with colors green, red,
yellow, and blue, respectively. In the red region of Fig. 6(a),
I2, P⊥(ω) shows a rich peak structure, in contrast to the
other regions (green, yellow, and blue), in which P⊥(ω) varies
smoothly. Analogously, in the red region of Fig. 6(b), P⊥(ω)
changes from positive to negative. For this reason a greater
number of sampling points is needed in the red regions than
in the remaining ones. As mentioned before, the GKQ is used
to compute �P⊥ in (0, ωc) instead of (0,∞). To calculate
the error by frequency truncation εcut [see Eq. (A8)], at a
given cutoff frequency ωc we employ the Exp-Sinh quadra-
ture (double-exponential method) [35,36] implemented in the
BOOST libraries [41] to obtain the integral of P⊥(ω) in

FIG. 7. Relative error by frequency truncation of the linear mo-
mentum transferred, δcut = εcut/�P⊥, as a function of h̄ωc. (a) δcut for
different impact parameters b, with v = 0.5c, and (b) δcut for different
speeds of the electron v, with b = 1.5 nm. It is shown a fitted line to
the calculated dots as a guide to the eye.

(ωc,∞) (blue region in Fig. 6). It is worth mentioning that the
Exp-Sinh quadrature has convergence limitations for rapidly
changing integrands, like the ones shown in the red regions of
Fig. 6, hence we only applied it for the blue regions.

In Fig. 7 we show the relative error by frequency trunca-
tion, δcut = εcut/�P⊥, as a function of h̄ωc for the aluminum
(Drude model) NP with the parameters indicated in the inset.
One can notice that the inclination of the fitted line decreases
when b decreases [Fig. 7(a)] and v increases [Fig. 7(b)]. The
information shown in Fig. 7 can be used as a guide to repli-
cate, with a given error tolerance, the results presented in the
main text. For example, to obtain �P⊥ with ε̃cut ∼ 10−6�P⊥
for an electron with v = 0.5c and b = 1.5 nm, it is neces-
sary to integrate P⊥ up to h̄ωc ≈ 1 keV [shown with black
dashed lines in Fig. 7(a)]. The gold NP case is completely
analogous.

After choosing ωc so that δcut has the desired tolerance,
we select the weights and nodes, gi and ωi, in Eq. (A5)
and calculate �P⊥ using a GKQ in the remaining regions I1

to I3 (see Fig. 6). For our results we selected Nθ = 83 and
Nφ = 91 for the GKQ in the closed-surface integral, achieving
a relative numerical error of δP⊥ ∼ 10−11. For the aluminum
NP we choose GKQ orders of 51, 201, and 151 (equivalent
to 103, 403, and 303 sampling points) for the green, red, and

235416-8



EFFECTS OF A NONCAUSAL ELECTROMAGNETIC … PHYSICAL REVIEW B 104, 235416 (2021)

FIG. 8. Transverse linear momentum, �P⊥, transferred from a
swift electron with v = 0.5c and b = 1.5 nm to an aluminum NP with
a = 1 nm, as a function of the maximum number of multipoles, �max,
considered in the scattered fields [Eqs. (1) and (2)]. The blue squares
correspond to �P⊥ obtained with the CUHRE algorithm [42], while
the red circles to the one obtained with the GKQ. The horizontal
black dashed line indicates the value of �P⊥ with �max = 30 obtained
with GKQ. The blue and red lines are shown as a guide to the eye.

yellow regions shown in Fig. 6(a), respectively. For the gold
NP we choose GKQ orders of 101, 181, and 101 (equivalent
to 203, 363, and 203 sampling points) for the green, red,
and yellow regions shown in Fig. 6(b), respectively. We also
considered �max = 30 in Eqs. (1) and (2), and we choose ωc

[accordingly to Fig. 7] so that δcut < 10−6 in each case. By
this means, in all our results we ensure a numerical precision
εP⊥ < 10−4�P⊥ [see Eq. (A5)], which means that at least
the first three significant digits of �P⊥ are correct. In our
calculations we observed that the main contribution to the
error in Eq. (A7) is εGK , which means that the number of
sampling points on ω ∈ (0, ωc) determines if the numerical
convergence is achieved, assuming h̄ωc is on the order of
kiloelectronvolts and a sufficiently large number of sampling
points for the surface S is considered.

To corroborate the accuracy of the numerical method em-
ployed, we quantitatively validate our results with the CUHRE
algorithm [42], which provides an automatic integrator re-
porting accurate error estimates. However, due to the high
computational demand of this method, we only applied it
to a few points. In Fig. 8 we show �P⊥ as a function of
the maximum number of multipoles, �max, for an aluminum
NP with a = 1 nm, b = 1.5 nm, and v = 0.5c, using both
methods: the GKQ (red circles) and CUHRE (blue squares).
It can be seen that when �max increases, both methods con-
verge to the same value, indicated with a horizontal black
dashed line. At �max = 8, the difference between the two
methods and the black dashed line is in the fourth signifi-
cant digit. Therefore, in this case, choosing �max � 8 ensures
the desired accuracy of �P⊥. In general, the specific value
of �max depends on the radius of the NP and the impact
parameter.

FIG. 9. Transverse linear momentum, �P⊥, transferred from a
swift electron with v = 0.5c and b = 1.5 nm to an aluminum NP
with a = 1 nm, as a function of the number of sampling points N3

in the region I3, and obtained using a composite Simpson 3/8 rule.
�Pmax

⊥ is the result obtained with the GKQ. The blue line is a guide
to the eye. The previously repulsive result for the linear momentum
transferred reported in Ref. [26] is shown as a red dot.

APPENDIX B: INCORRECT REPULSIVE RESULTS
CAUSED BY DEFICIENT NUMERICAL CONVERGENCE

To investigate the origin of the discrepancies between our
results and those reported in Ref. [26], we now compare
the numerical methodologies used in the calculations of the
frequency integral [Eq. (3)]. As discussed before, we divided
the spectral contribution to the linear momentum transfer into
four regions. Region I4 was used to determine the cutoff
frequency ωc, and the other three regions, I1 to I3, were inte-
grated with the GKQ using different quadrature orders on each
region to achieve a numerical convergence of at least three
significant digits in �P⊥. The main contribution of negative
(repulsive) linear momentum transfer comes from the region
I3 (see yellow region in Fig. 6(a); notice the logarithmic scale).
In Ref. [26], the frequency integral was calculated using a
composite Simpson 3/8 rule. Hence, to understand why a
repulsive interaction was previously obtained, we integrate
region I3 using a composite Simpson 3/8 rule and a fixed
high-order GKQ in regions I1 and I2. In Fig. 9 we show the
transverse linear momentum transferred, �P⊥, as a function
of the number of sampling points N3 in the region I3. As
can be seen, when the number of sampling points is below
N3 = 21, �P⊥ is negative, incorrectly indicating that the NP
will be repelled from the swift electron trajectory. However,
when the number of sampling points increases, �P⊥ con-
verges asymptotically to the result obtained using the GKQ. In
Fig. 9 we indicate with a red dot the repulsive value previously
reported in Ref. [26], which we infer to be incorrect due to
a lack of convergence in the frequency integral, caused by a
low number of sampling points. Interestingly, it is possible to
obtain incorrect repulsive results for the gold NP, as in the case
of the aluminum NP, if the number of sampling points in the
frequency space is low enough so that numerical convergence
is not achieved.
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